JPS6228839B2 - - Google Patents

Info

Publication number
JPS6228839B2
JPS6228839B2 JP53128755A JP12875578A JPS6228839B2 JP S6228839 B2 JPS6228839 B2 JP S6228839B2 JP 53128755 A JP53128755 A JP 53128755A JP 12875578 A JP12875578 A JP 12875578A JP S6228839 B2 JPS6228839 B2 JP S6228839B2
Authority
JP
Japan
Prior art keywords
phosphor
zno
display tube
pigment particles
fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53128755A
Other languages
Japanese (ja)
Other versions
JPS5556183A (en
Inventor
Katsuzo Kanda
Akyuki Kagami
Yoshuki Mimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP12875578A priority Critical patent/JPS5556183A/en
Publication of JPS5556183A publication Critical patent/JPS5556183A/en
Publication of JPS6228839B2 publication Critical patent/JPS6228839B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は顔料粒子で表面を被覆された螢光体
(以後「顔料付螢光体」と称する)、を螢光膜とす
る低速電子線励起螢光表示管に関する。 周知のように、低速電子線励起螢光表示管(以
後「螢光表示管」と略称する)は片面に螢光膜を
有する陽極プレートと、前記螢光膜に対向した陰
極とを、その内部が真空である容器内に封入した
本質的構造を有し、陰極から放射される低速電子
線によつて陽極プレート上の螢光膜を励起して発
光せしめるものである。第1図および第2図は螢
光表示管の典型例の概略構成図であり、第1図は
二極管、第2図は三極管を示すものである。第1
図および第2図に示すようにアルミニウム板等か
らなる陽極プレート11の片面に螢光膜12が設
けられている。陽極プレート11はセラミツク基
板13によつて支持されている。陽極プレート1
1の片面に設けられた前記螢光膜12に対向して
陰極14が設けられ、この陰極14から放射され
る低速電子線によつて螢光膜12が励起されて発
光する。特に第2図の三極管においては陰極14
と螢光膜12との間隙に、陰極14より放射され
る低速電子線を制御あるいは拡散せしめるための
格子電極15が設けられている。なお第1図およ
び第2図に示された螢光表示管においては1本の
陰極14が使用されているが、螢光膜12が広面
積である場合等には陰極を2本以上設けてもよ
く、その本数に特に制限はない。片面に螢光膜1
2を有する前記陽極プレート11、セラミツク基
板13および陰極14(第1図)あるいは片面に
螢光膜12を有する陽極プレート11、セラミツ
ク基板13、陰極14および格子電極15(第2
図)はガラス等の透明な容器16中に封入されて
おりその内部17は10-5〜10-9Torrの高真空に保
たれている。 従来、低速電子線励起によつて高輝度に発光す
る螢光体として亜鉛付活酸化亜鉛螢光体(ZnO:
Zn)が知られている。このZnO:Zn螢光体は加
速電圧が1KV、以下、特に100V以下の低速電子
線にて励起した場合、510nm付近に発光スペク
トルのピークを有する高輝度の緑白色発光を示
し、このZnO:Zn螢光体からなる螢光膜を有する
上記構造の螢光表示管は例えば卓上電子計算機、
各種計測器等の表示素子として工業的に広く利用
されている。 一般に、ZnO:Zn螢光体を螢光膜とする螢光表
示管を表示素子として用いるに際しては表示のコ
ントラストを高める目的でZnO:Zn螢光体の発光
スペクトルのうちの一部の可視域をカツトすると
共に外光の一部を吸収するフイルター(緑白系フ
イルター)が螢光表示管の前面に設置される。し
かしながら、螢光表示管の前面にフイルターを設
置することは螢光表示管の付属部品が増えること
になるので好ましくない。また、各表示セグメン
トの螢光膜がそれぞれZnO:Zn螢光体を含む発光
色が互いに異なる複数種の螢光体からなる螢光表
示管、すなわち多色螢光表示管の場合には螢光表
示管の前面に設置されるフイルターはZnO:Zn螢
光体を螢光膜とするセグメントの発光に対しては
コントラストを高めるのに有効であつてもZnO:
Zn螢光体以外の螢光体を螢光膜とするセグメン
トからの光を著しく吸収するので好ましくない。
従つて、前面にフイルターを設置しなくても高コ
ントラストの発光を示すようなZnO:Zn螢光体を
螢光膜とする螢光表示管が望まれている。 本発明は上述のような現状に鑑みてなされたも
のであり、従来のZnO:Zn螢光体を螢光膜とする
螢光表示管よりも高コントラストの発光を示し、
従つて表示素子として使用するにあたつてその前
面にコントラストを向上させるためのフイルター
を設置する必要のないZnO:Zn螢光体を螢光膜と
する螢光表示管を提供することを目的とするもの
である。 本発明者等は上記目的を達成するためにZnO:
Zn螢光体のコントラスト改良について種々の研
究を行なつた。その結果、適当量のTiO2−ZnO
−CoO−NiO系酸化物緑白顔料粒子をZnO:Zn螢
光体に付着せしめてZnO:Zn螢光体を顔料付螢光
体とすると、この顔料粒子のフイルター効果によ
つてZnO:Zn螢光体の発光スペクトルのうちの一
部の可視域がカツトされて発光色が鮮明になり、
さらに外光の一部が吸収されて反射光が減少する
ためコントラストが向上することを見出し本発明
を完成するに至つた。 すなわち本発明の螢光表示管は片面に螢光膜を
有する陽極プレートと、前記螢光膜に対向してあ
る陰極とを、その内部が真空である容器内に封入
した構造を有する螢光表示管において、前記螢光
膜が、ZnO:Zn螢光体と、この螢光体表面に付着
したTiO2−ZnO−CoO−NiO系酸化物緑色顔料粒
子とからなり、前記顔料粒子の付着量が前記
ZnO:Zn螢光体と前記顔料粒子の合計量の0重量
%より多く35重量%以下である顔料付螢光体より
なることを特徴とする。 以下本発明を詳しく説明する。 本発明の螢光表示管用顔料付螢光体に用いられ
るZnO:Zn螢光体は、酸化亜鉛(ZnO)を還元性
雰囲気中で焼成するかあるいはZnOに硫化亜鉛
(ZnS)等の亜鉛化合物を微量添加して空気中で
焼成する等の従来知られている製造方法によつて
得られたものである。 一方、本発明の螢光表示管用顔料付螢光体のも
う一方の構成成分であるTiO2−ZnO−CoO−NiO
系酸化物緑色顔料粒子としては、一般に市販され
ているものが使用される。TiO2−ZnO−CoO−
NiO系酸化物緑色顔料は酸化チタン(TiO2)、酸
化亜鉛(ZnO)、酸化コバルト(CoO)および酸
化ニツケル(NiO)を主成分とするものであり、
その製造方法、粒子径、前記各成分含有量等によ
つて体色が異なるものであるが、本発明の顔料付
螢光体に用いられるTiO2−ZnO−CoO−NiO系酸
化物緑色顔料粒子は、酸化マグネシウム拡散板の
反射率を100%とした時、可視領域の反射率、す
なわち400nm、450nm、500nm、550nm、600n
m、650nmおよび700nmにおける反射率がそれ
ぞれ下表の範囲にあるものである。
The present invention relates to a low-speed electron beam-excited fluorescent display tube whose fluorescent film is a phosphor whose surface is coated with pigment particles (hereinafter referred to as "pigmented phosphor"). As is well known, a low-speed electron beam-excited fluorescent display tube (hereinafter abbreviated as a "fluorescent display tube") has an anode plate having a fluorescent film on one side, and a cathode facing the fluorescent film. The device essentially has a structure in which it is sealed in a vacuum container, and the fluorescent film on the anode plate is excited by the low-speed electron beam emitted from the cathode, causing it to emit light. 1 and 2 are schematic diagrams of typical examples of fluorescent display tubes, with FIG. 1 showing a diode tube and FIG. 2 a triode tube. 1st
As shown in the drawings and FIG. 2, a fluorescent film 12 is provided on one side of an anode plate 11 made of an aluminum plate or the like. Anode plate 11 is supported by ceramic substrate 13. Anode plate 1
A cathode 14 is provided opposite the fluorescent film 12 provided on one side of the fluorescent film 1, and the fluorescent film 12 is excited by the low-speed electron beam emitted from the cathode 14 to emit light. In particular, in the triode shown in Fig. 2, the cathode 14
A grid electrode 15 is provided in the gap between the cathode 14 and the fluorescent film 12 for controlling or diffusing the low-speed electron beam emitted from the cathode 14. Although one cathode 14 is used in the fluorescent display tube shown in FIGS. 1 and 2, two or more cathodes may be provided when the fluorescent film 12 has a large area. There is no particular limit to the number. Fluorescent film 1 on one side
2, a ceramic substrate 13 and a cathode 14 (FIG. 1), or an anode plate 11 having a fluorescent film 12 on one side, a ceramic substrate 13, a cathode 14 and a grid electrode 15 (a second
(Fig.) is sealed in a transparent container 16 made of glass or the like, and the interior 17 thereof is maintained at a high vacuum of 10 -5 to 10 -9 Torr. Conventionally, zinc-activated zinc oxide phosphor (ZnO:
Zn) is known. When this ZnO:Zn phosphor is excited with a slow electron beam at an accelerating voltage of 1KV or less, particularly 100V or less, it exhibits high-intensity green-white light emission with an emission spectrum peak around 510nm, and this ZnO:Zn A fluorescent display tube having the above structure having a fluorescent film made of a fluorescent substance can be used, for example, in a desktop computer,
It is widely used industrially as a display element for various measuring instruments. Generally, when using a fluorescent display tube with a ZnO:Zn phosphor as a phosphor film as a display element, a part of the visible range of the emission spectrum of the ZnO:Zn phosphor is used to increase the contrast of the display. A filter (a green-white filter) is installed in front of the fluorescent display tube to cut out and absorb some of the external light. However, it is not preferable to install a filter in front of the fluorescent display tube because it increases the number of accessories attached to the fluorescent display tube. In addition, in the case of a fluorescent display tube in which the fluorescent film of each display segment is composed of multiple types of phosphors with different emission colors including ZnO:Zn phosphors, that is, a multicolor fluorescent display tube, the fluorescent film The filter installed on the front of the display tube is effective for increasing the contrast of the light emitted by the segment whose phosphor film is ZnO:Zn phosphor.
This is not preferable because it significantly absorbs light from segments whose fluorescent film is made of a phosphor other than the Zn phosphor.
Therefore, there is a need for a fluorescent display tube that uses a ZnO:Zn phosphor as a fluorescent film and can emit high-contrast light without installing a filter on the front surface. The present invention was made in view of the above-mentioned current situation, and exhibits higher contrast luminescence than a fluorescent display tube using a conventional ZnO:Zn phosphor as a fluorescent film.
Therefore, an object of the present invention is to provide a fluorescent display tube using a ZnO:Zn phosphor as a fluorescent film, which does not require a filter to improve contrast on the front surface when used as a display element. It is something to do. In order to achieve the above object, the present inventors used ZnO:
Various studies have been conducted on improving the contrast of Zn phosphors. As a result, an appropriate amount of TiO 2 −ZnO
-CoO-NiO based oxide green-white pigment particles are attached to a ZnO:Zn phosphor to make the ZnO:Zn phosphor into a pigmented phosphor. A part of the visible range of the light emission spectrum of the light object is cut out, making the emission color clearer.
Furthermore, they have discovered that contrast is improved because part of the external light is absorbed and reflected light is reduced, leading to the completion of the present invention. That is, the fluorescent display tube of the present invention is a fluorescent display having a structure in which an anode plate having a fluorescent film on one side and a cathode facing the fluorescent film are enclosed in a container with a vacuum inside. In the tube, the fluorescent film is composed of a ZnO:Zn phosphor and TiO 2 -ZnO-CoO-NiO-based oxide green pigment particles attached to the surface of the phosphor, and the amount of the pigment particles attached is Said
ZnO: It is characterized in that it consists of a pigmented phosphor that is more than 0% by weight and less than 35% by weight of the total amount of the Zn phosphor and the pigment particles. The present invention will be explained in detail below. The ZnO:Zn phosphor used in the pigmented phosphor for fluorescent display tubes of the present invention is produced by baking zinc oxide (ZnO) in a reducing atmosphere or adding a zinc compound such as zinc sulfide (ZnS) to ZnO. It is obtained by a conventionally known manufacturing method such as adding a small amount and firing in air. On the other hand, TiO 2 −ZnO−CoO−NiO, which is the other component of the pigmented phosphor for fluorescent display tubes of the present invention,
As the green oxide pigment particles, those commonly available on the market are used. TiO 2 −ZnO−CoO−
NiO-based oxide green pigments are mainly composed of titanium oxide (TiO 2 ), zinc oxide (ZnO), cobalt oxide (CoO), and nickel oxide (NiO).
TiO 2 -ZnO-CoO-NiO-based oxide green pigment particles used in the pigmented phosphor of the present invention, although the body color varies depending on the manufacturing method, particle size, content of each of the above components, etc. is the reflectance in the visible range, i.e. 400nm, 450nm, 500nm, 550nm, 600n, when the reflectance of the magnesium oxide diffuser plate is 100%.
The reflectance at m, 650 nm and 700 nm is within the range shown in the table below.

【表】 第3図、曲線eは本発明の螢光表示管用顔料付
螢光体に用いられるTiO2−ZnO−CoO−NiO系酸
化物緑色顔料粒子の反射スペクトルを例示するも
のである。第3図において縦軸の反射率は酸化マ
グネシウム拡散板の反射率を100%とした相対値
で示してある。また本発明の螢光表示管用顔料付
螢光体に用いられるTiO2−ZnO−CoO−ZiO系酸
化物緑色顔料粒子は平均粒子径が3.0μ以下のも
のが好ましい。平均粒子径が3.0μより大きい
TiO2−ZnO−CoO−Nio系酸化物緑色顔料粒子を
用いた場合は、粒子径が大きすぎるために充分な
付着強度を得ることができない。より好ましい平
均粒子径は0.1μ乃至1.5μである。 ZnO:Zn螢光体表面にTiO2−ZnO−CoO−NiO
系酸化物緑色顔料粒子を付着せしめ、本発明の螢
光表示管用顔料付螢光体を製造する方法としては
例えば特開昭50−56146号に記載されているよう
な従来の顔料付螢光体の製造方法を採用してもよ
い。特開昭50−56146号では、ポリビニルピロリ
ドン等の適当な水溶性樹脂液中に分散された顔料
粒子とゼラチン溶液中に分散された螢光体を混合
し撹拌し、生成した沈澱物を乾燥することにより
顔料付螢光体を製造している。しかしながら顔料
付螢光体を製造するにあたつては、顔料粒子を螢
光体表面に均一に、しかも強固に付着せしめるこ
とが重要である。螢光体表面に顔料粒子をより均
一に、しかもより強固に付着せしめる方法として
は、本出願人が先に特許出願した静電塗布法によ
る製造方法(特開昭52−133088号)、懸濁重合法
による製造方法(特開昭52−133089号)、共重合
法による製造方法(特開昭53−3980号)およびゼ
ラチンとアラビアゴムの混合物を接着剤とする製
造方法(特開昭53−5088号)が、また螢光体懸濁
液と顔料粒子を分散させたアクリル系、ポリスチ
レン系等のエマルジヨンとを混合する製造方法が
推奨される。 本発明の螢光表示管用顔料付螢光体において、
ZnO:Zn螢光体表面に付着せしめられるTiO2
ZnO−CoO−NiO系酸化物緑色顔料粒子量を増し
てゆくと得られる顔料付螢光体の発光強度は徐々
に低下するが、それと共に得られる顔料付螢光体
の比反射率も徐々に低下する。そして顔料付螢光
体のコントラストがTiO2−ZnO−CoO−NiO系酸
化物緑色顔料粒子が付着していない従来のZnO:
Zn螢光体のコントラストよりも高くなるのは、
TiO2−ZnO−CoO−NiO系酸化物緑色顔料粒子付
着量が得られる顔料付螢光体の量(すなわち、
ZnO:Zn螢光体とTiO2−ZnO−CoO−NiO系酸化
物緑色顔料粒子の合計量)の0重量%より多く35
重量%以下の場合である(以下TiO2−ZnO−
CoO−NiO系酸化物緑色顔料粒子付着量を重量%
で表わす場合、その重量%は上記と同様にして計
算されたものである)。TiO2−ZnO−CoO−NiO
系酸化物緑色顔料粒子付着量が35重量%より多い
場合には、得られる顔料付螢光体のコントラスト
は顔料粒子が付着していないZnO:Zn螢光体のコ
ントラストよりも低くなり本発明の目的は達成さ
れず、また発光強度も著しく低下する。特に
TiO2−ZnO−CoO−NiO系酸化物緑色顔料粒子付
着量が5重量%乃至30重量%の範囲にある時、実
用的な条件の下で顕著なコントラスト効果が得ら
れる。 第3図は本発明の螢光表示管用顔料付螢光体、
ZnO:Zn螢光体およびTiO2−ZnO−CoO−NiO系
酸化物緑色顔料粒子の反射スペクトルを示すもの
であり、曲線a,bおよびcはTiO2−ZnO−
CoO−NiO系酸化物緑色顔料粒子付着量がそれぞ
れ0.1、9、33.3重量%である本発明の螢光表示
管用顔料付螢光体の反射スペクトル、曲線dは
ZnO:Zn螢光体の反射スペクトル、曲線eは
TiO2−ZnO−CoO−NiO系酸化物緑色顔料粒子の
反射スペクトルである。なお縦軸の反射率は酸化
マグネシウム拡散板の反射率を100%とした相対
値で示してある。第3図から明らかなように、本
発明の螢光表示管用顔料付螢光体に用いられる
TiO2−ZnO−CoO−NiO系酸化物緑色顔料粒子は
530〜550nm付近に反射スペクトルのピークを有
し、このピークは510nm付近に存在するZnO:
Zn螢光体の発光スペクトルのピークに比較的良
く合致している。従つて、全可視波長領域に亘つ
て高い反射率を有する(すなわち体色が白色であ
る)ZnO:Zn螢光体表面に付着したTiO2−ZnO
−CoO−NiO系酸化物緑色顔料粒子は、ZnO:Zn
螢光体の発光の緑色領域の光を選択的に透過さ
せ、緑色領域以外の可視領域の光を吸収しそれと
同時に外光の緑色領域以外の可視領域の光を吸収
して螢光体表面におけるその反射を減少させると
いう優れたフイルター効果を示す。TiO2−ZnO
−CoO−NiO系酸化物緑色顔料粒子付着量が増加
するに従つてこのフイルター効果は顕著となる。 第4図は本発明の螢光表示管用顔料付螢光体の
TiO2−ZnO−CoO−NiO系酸化物緑色顔料粒子付
着量と発光強度(曲線a)および平均反射率(曲
線b)との関係を示すグラフである。発光強度お
よび平均反射率はいずれも顔料粒子が付着してな
いZnO:Zn螢光体の発光強度および平均反射率を
100%とした相対値で示してある。なお、平均反
射率とは反射スペクトルの400nm乃至700nmに
おける積分値を酸化マグネシウムの反射スペクト
ルのそれに対する百分率で示した値である。第4
図から明らかなようにTiO2−ZnO−CoO−NiO系
酸化物緑色粒料粒子付着量が増加するに従つて得
られる顔料付螢光体の平均反射率は徐々に低下
し、それと同時に発光強度も徐々に低下する。そ
してTiO2−ZnO−CoO−NiO系酸化物緑色顔料粒
子付着量が35重量%までは平均反射率の低下率の
方が発光強度の低下率よりも大きいが、35重量%
を越えると発光強度の低下率の方が平均反射率の
低下率よりも大きくなり、従つてTiO2−ZnO−
CoO−NiO系酸化物緑色顔料粒子付着量が35重量
%より多くなると得られる顔料付螢光体のコント
ラストは顔料粒子が付着してないZnO:Zn螢光体
のコントラストよりも低くなり、本発明の目的は
達成されない。すなわち、螢光表示管の螢光膜面
でのコントラスト(C)は一般に C=B/E0K+1 (但しBは螢光膜面の発光強度、E0は周囲光の強
度およびKは螢光膜面の反射率) で表わされるので、顔料粒子が付着してない
ZnO:Zn螢光体からなる螢光膜面および顔料付螢
光体からなる螢光膜面が周囲光E0のもとで発光
している時、そのコントラストをそれぞれC0
よびC、螢光膜面での発光強度をそれぞれB0
よびB、螢光膜面での反射率をそれぞれK0およ
びKとすると、前記コントラストC0とCの差は C0−C=1/E・B/K{1−(B/B)/
(K/K)} となる。従つて顔料付螢光体からなる螢光膜面お
よび顔料粒子が付着してないZnO:Zn螢光体から
なる螢光膜面においてそれら両者の発光強度の比
(B/B0)と反射率の比(K/K0)との比、すなわ
ち(B/B0)/(K/K0)の値が1以上の時周囲
光の強度にかかわらずC0よりCが大きくなるこ
とがわかる。このことは顔料付螢光体からなる螢
光膜面と顔料粒子が付着してないZnO:Zn螢光体
からなる螢光膜面を比較した時、後者の発光強度
に対する前者の発光強度の相対値(B/B0)が後
者の平均反射率に対する前者の平均反射率の相対
値(K/K0)より大きい時、前者、すなわち顔料
付螢光体からなる螢光膜面の方が顔料粒子が付着
してないZnO:Zn螢光体からなる螢光膜面よりコ
ントラストが高くなることを意味する。第4図か
ら明らかなように、TiO2−ZnO−CoO−NiO系酸
化物緑色顔料粒子付着量が35重量%以下の場合に
発光輝度の値の方が平均反射率の値よりも大き
く、従つてTiO2−ZnO−CoO−NiO系酸化物緑色
顔料粒子付着量が0重量%より多く35重量%以下
の範囲にある顔料付螢光体は顔料粒子が付着して
ないZnO:Zn螢光体よりもコントラストの高い螢
光膜を与える。 周囲光強度(E0)が200ft−Lであり(昼中にお
ける室内の明るさはこの程度である)、ZnO:Zn
螢光体の発光強度(B0)が現在実用の螢光表示管
におけるZnO:Zn螢光体の発光強度に近い200ft
−Lである実用的な周囲光強度および発光強度の
場合について顔料付螢光体のコントラストを上述
の式を用いて計算し図示すると第5図のような結
果が得られる。すなわち、第5図は実用的な条件
下における本発明の螢光表示管用顔料付螢光体の
TiO2−ZnO−CoO−NiO系酸化物緑色顔料粒子付
着量とコントラストとの関係を示すグラフであ
る。コントラストは周囲光強度およびZnO:Zn螢
光体の発光強度が変化すると当然変化するが第5
図から明らかなように、周囲光強度およびZnO:
Zn螢光体の発光強度がいずれも200ft−Lである
実用的な条件の下ではTiO2−ZnO−CoO−NiO系
酸化物緑色顔料粒子付着量が5重量%乃至30重量
%の範囲にある場合に螢光膜のコントラストが著
しく向上する。 本発明の螢光表示管は以下に述べる方法によつ
て作製される。まず上述の顔料付螢光体を沈降塗
布法によつて通常セラミツク基板によつて支えら
れている陽極プレート上に塗布し螢光膜とする。
すなわち顔料付螢光体を水中に分散させた懸濁液
中に陽極プレートをおき、顔料付螢光体の自重に
よつて顔料付螢光体を陽極プレートの片面上に沈
降させて塗布し、その後水を除去して塗膜を乾燥
させる。この場合得られる螢光膜の陽極プレート
への接着性を向上させるために懸濁液に微量
(0.01〜0.1%)の水ガラスを添加してもよい。ま
た塗布密度は2mg/cm2〜30mg/cm2が適当である。
なお螢光膜作成方法は上述の沈降塗布法が一般的
であり広く行なわれているが本発明の螢光表示管
において螢光膜の作成方法はこの沈降塗布法に限
られるものではない。次に線状ヒーターをBaO、
SrO、CaO等の酸化物で被覆してなる陰極を陽極
プレート上の螢光膜に対向させて約1mm〜5mm程
度の間隔をおいて配置し、この一対の電極をガラ
ス等の透明な容器中に設置した後容器内の排気を
行なう。容器内が少なくとも10-5Torr以上の真
空度になつて排気を止めて封止を行なう。封止後
ゲツターを飛ばして容器内の真空度を更に高め
る。この様にして本発明の螢光表示管を得ること
ができる。 なお陽極プレート上の螢光膜は平板状であり、
陰極は線状であるので陰極より放射される低速電
子線を拡散させるために陰極と螢光膜との中間に
第2図の様に拡散電極として網目状の格子電極を
設置するのが望ましい。この場合、螢光膜の発光
量の損失が少なくかつ低速電子線が良く拡散する
様に網目ができるだけ細い方が好結果を得ること
ができる。具体的には網目の径が500ミクロン以
下であり、開口率(格子電極全面積に対する低速
電子線を透過する穴の面積)が50%以上であるこ
とが望ましい。陽極プレートはその電極形態を必
要とされる文字、図形の形に分割して、それぞれ
の電極に必要とされる電圧が選択的に印加できる
様にしておけば、任意の文字、図形を表示するこ
とができる。また陽極プレートを点状あるいは線
状に分割し、その一部の電極上に本発明の顔料付
螢光体の螢光膜を形成し、他の電極上に前記顔料
付螢光体とは発光色が異なる低速電子線励起用螢
光体よりなる螢光膜を形成することによつて、多
色表示が可能な螢光表示管を得ることができる。 以上説明したように、本発明は加速電圧が1KV
以下、特に100V以下の低速電子線で励起した場
合に従来のZnO:Zn螢光体よりも高コントラスト
の発光を示す顔料付螢光体を螢光膜とする高コン
トラストの螢光表示管を提供するものである。本
発明の螢光表示管を表示素子として使用するにあ
たつては、ZnO:Zn螢光体を螢光膜とする従来の
螢光表示管の場合のようにコントラストを向上さ
せるためのフイルターをその前面に設置する必要
はない。 次に実施例によつて本発明を説明する。 実施例 1 ZnO:Zn螢光体50gを300mlのビーカーに入
れ、純水100mlを加えて15分間マグネツトスター
ラーで撹拌し、ZnO:Zn螢光体の水分散懸濁液を
調製した。得られた螢光体の水分散懸濁液中に平
均粒子径がおよそ0.5μのTiO2−ZnO−CoO−
NiO系酸化物緑色顔料粒子(大日精化工業
#9320)5gを加えて30分間マグネツトスターラ
ーで撹拌してZnO:Zn螢光体と前記顔料粒子の均
一な分散懸濁液とした。次にアクリル系エマルジ
ヨン(日本カーバイド製ニカゾールRX−242、固
形分60%)、0.17mlを10倍に希釈して前記螢光体
−顔料粒子均一分散懸濁液中に加え、15分間撹拌
した。放置後、上澄み液をデカンテーシヨンにて
取除き、沈澱物を100℃で3時間乾燥後300メツシ
ユの篩にかけた。このようにして顔料粒子付着量
が9.1重量%の低速電子線励起用顔料付螢光体を
得た。 次に、上述のようにして得た顔料付螢光体100
mgを0.01%の水ガラスを含む蒸留水100ml中に分
散させた懸濁液を用いて沈降塗布法によつてセラ
ミツク基板によつて支持された2cm×1cmのアル
ミニウム陽極プレート上に螢光膜を形成した。次
にタングステン線状ヒーターを酸化物で被覆して
なる陰極を陽極プレート上の螢光膜に対向させて
およそ5mmの間隔を置いて配置し、この一対の電
極を硬質ガラス容器中に設置した後、容器内の排
気を行なつた。容器内の真空度が10-5Torr程度
の真空度となつた後に排気を止め封止を行ない、
次いでゲツターを飛ばして容器内の真空度を更に
高めた。この様にして第1図に示される構造の螢
光表示管を作製した。 得られた螢光表示管は同一条件で螢光膜を励起
した場合、顔料粒子が付着していないZnO:Zn螢
光体を用いて上述と同様の方法で作製した従来の
螢光表示管の発光強度が200ft−Lの時、130ft−
Lの発光強度を示した。またこの時、この螢光表
示管のコントラストは周囲光強度が200ft−Lの
場合、従来の螢光表示管の約1.3倍であり、螢光
表示管の前面にフイルターを設けなくても従来の
螢光表示管の前面にフイルターを配した場合と同
様にコントラストの良好な発光を示した。 実施例 2 ZnO:Zn螢光体を49gおよびTiO2−ZnO−
CoO−NiO系酸化緑色顔料粒子を1g使用するこ
と以外は実施例1と同様にして顔料粒子付着量が
2重量%の低速電子線励起用顔料付螢光体を得
た。 次に、得られた顔料付螢光体を用いて実施例1
と同様にして第1図に示される構造の螢光表示管
を作製した。 得られた螢光表示管は同一条件で螢光膜を励起
した場合、顔料粒子が付着していないZnO:Zn螢
光体を用いて上述と同様の方法で作製した従来の
螢光表示管の発光強度が200ft−Lの時、136ft−
Lの発光強度を示した。またこの時、この螢光表
示管のコントラストは周囲強度が200ft−Lの場
合、従来の螢光表示管の約1.05倍であり、螢光表
示管の前面にフイルターを設けなくても従来の螢
光表示管の前面にフイルターを配した場合と同様
にコントラストの良好な発光を示した。 実施例 3 ZnO:Zn螢光体を40g、TiO2−ZnO−CoO−
NiO系酸化物緑色顔料粒子を10gおよびアクリル
系エマルジヨンを0.34ml使用すること以外は実施
例1と同様にして顔料粒子付着量が20重量%の低
速電子線励起用顔料付螢光体を得た。 次に、得られた顔料付螢光体を用いて実施例1
と同様にして第1図に示される構造の螢光表示管
を作製した。 得られた螢光表示管は同一条件で螢光膜を励起
した場合、顔料粒子が付着していないZnO:Zn螢
光体を用いて上述と同様の方法で作製した従来の
螢光表示管の発光強度が200ft−Lの時、96ft−L
の発光強度を示した。またこの時、この螢光表示
管のコントラストは周囲光強度が200ft−Lの場
合、従来の螢光表示管の約1.26倍であり、螢光表
示管の前面にフイルターを設けなくとも従来の螢
光表示管の前面にフイルターを配した場合と同様
にコントラストの良好な発光を示した。
[Table] Figure 3, curve e, illustrates the reflection spectrum of TiO 2 -ZnO-CoO-NiO based oxide green pigment particles used in the pigmented phosphor for fluorescent display tubes of the present invention. In FIG. 3, the reflectance on the vertical axis is shown as a relative value with the reflectance of the magnesium oxide diffuser plate as 100%. Further, the TiO 2 -ZnO-CoO-ZiO type oxide green pigment particles used in the pigmented phosphor for a fluorescent display tube of the present invention preferably have an average particle diameter of 3.0 μm or less. Average particle size is larger than 3.0μ
When TiO 2 -ZnO-CoO-Nio based oxide green pigment particles are used, sufficient adhesion strength cannot be obtained because the particle size is too large. A more preferable average particle diameter is 0.1μ to 1.5μ. ZnO: TiO 2 −ZnO−CoO−NiO on the Zn phosphor surface
As a method for producing a pigmented phosphor for a fluorescent display tube according to the present invention by depositing green pigment particles, a conventional pigmented phosphor such as that described in JP-A No. 50-56146 can be used. The manufacturing method may also be adopted. In JP-A-50-56146, pigment particles dispersed in a suitable water-soluble resin solution such as polyvinylpyrrolidone and a phosphor dispersed in a gelatin solution are mixed and stirred, and the resulting precipitate is dried. In this way, pigmented phosphors are manufactured. However, in producing a pigmented phosphor, it is important to uniformly and firmly adhere the pigment particles to the surface of the phosphor. Methods for more uniformly and more firmly adhering pigment particles to the surface of the phosphor include a manufacturing method using an electrostatic coating method (Japanese Patent Application Laid-Open No. 133088/1988), which the applicant previously applied for a patent for, and a suspension method. Production method using polymerization method (JP-A-52-133089), copolymerization method (JP-A-53-3980), and production method using a mixture of gelatin and gum arabic as an adhesive (JP-A-53-1989) No. 5088), but a manufacturing method in which a phosphor suspension is mixed with an acrylic or polystyrene emulsion in which pigment particles are dispersed is also recommended. In the pigmented phosphor for fluorescent display tubes of the present invention,
ZnO: TiO 2 − attached to the surface of Zn phosphor
As the amount of ZnO−CoO−NiO oxide green pigment particles increases, the emission intensity of the pigmented phosphor gradually decreases, but at the same time, the specific reflectance of the pigmented phosphor also gradually decreases. descend. And the contrast of the pigmented phosphor is TiO 2 -ZnO-CoO-NiO-based oxide.Conventional ZnO without green pigment particles attached:
The contrast is higher than that of Zn phosphor.
TiO 2 −ZnO−CoO−NiO based oxide The amount of pigmented phosphor that provides the amount of attached green pigment particles (i.e.,
ZnO: more than 0% by weight of the total amount of Zn phosphor and TiO 2 -ZnO-CoO-NiO-based oxide green pigment particles 35
(hereinafter referred to as TiO 2 −ZnO−
CoO−NiO oxide green pigment particle adhesion amount by weight%
, the weight percent was calculated in the same way as above). TiO2 −ZnO−CoO−NiO
When the amount of green pigment particles attached is more than 35% by weight, the contrast of the resulting pigmented phosphor is lower than that of the ZnO:Zn phosphor to which no pigment particles are attached. The purpose is not achieved, and the emission intensity is also significantly reduced. especially
When the amount of TiO 2 -ZnO-CoO-NiO based oxide green pigment particles is in the range of 5% to 30% by weight, a remarkable contrast effect can be obtained under practical conditions. FIG. 3 shows a pigmented phosphor for a fluorescent display tube of the present invention;
ZnO: This shows the reflection spectra of Zn phosphor and TiO 2 -ZnO-CoO-NiO-based oxide green pigment particles, and curves a, b and c are TiO 2 -ZnO-
The curve d of the reflection spectrum of the pigmented phosphor for fluorescent display tubes of the present invention in which the amount of CoO−NiO green oxide pigment particles attached is 0.1, 9, and 33.3% by weight, respectively, is
ZnO: The reflection spectrum of Zn phosphor, curve e is
It is a reflection spectrum of TiO2 -ZnO-CoO-NiO-based oxide green pigment particles. Note that the reflectance on the vertical axis is shown as a relative value with the reflectance of the magnesium oxide diffuser plate as 100%. As is clear from FIG. 3, the pigmented phosphor used in the fluorescent display tube of the present invention
TiO 2 −ZnO−CoO−NiO-based oxide green pigment particles are
ZnO has a reflection spectrum peak around 530-550 nm, and this peak exists around 510 nm:
It matches the peak of the emission spectrum of Zn phosphor relatively well. Therefore, TiO 2 −ZnO attached to the ZnO:Zn phosphor surface has a high reflectance over the entire visible wavelength range (i.e., the body color is white).
−CoO−NiO-based oxide green pigment particles are ZnO:Zn
It selectively transmits the light in the green region emitted by the phosphor, absorbs the light in the visible region other than the green region, and at the same time absorbs the light in the visible region other than the green region of the external light, so that the light on the surface of the phosphor is absorbed. It exhibits an excellent filtering effect in reducing its reflection. TiO2 −ZnO
As the amount of -CoO-NiO-based oxide green pigment particles attached increases, this filter effect becomes more significant. Figure 4 shows the pigmented phosphor for fluorescent display tubes of the present invention.
It is a graph showing the relationship between the amount of TiO 2 -ZnO-CoO-NiO-based oxide green pigment particles adhered to the emission intensity (curve a) and the average reflectance (curve b). Emission intensity and average reflectance are both the emission intensity and average reflectance of ZnO:Zn phosphor without pigment particles attached.
The values are shown relative to 100%. Note that the average reflectance is a value expressed as a percentage of the integral value of the reflection spectrum from 400 nm to 700 nm with respect to that of the reflection spectrum of magnesium oxide. Fourth
As is clear from the figure, as the amount of TiO 2 −ZnO−CoO−NiO-based oxide green particles increases, the average reflectance of the pigmented phosphor gradually decreases, and at the same time, the emission intensity decreases. also gradually decreases. The rate of decrease in average reflectance is greater than the rate of decrease in luminescence intensity until the amount of TiO 2 −ZnO−CoO−NiO-based oxide green pigment particles adheres to 35% by weight, but at 35% by weight
When exceeding , the rate of decrease in emission intensity is greater than the rate of decrease in average reflectance, and therefore TiO 2 −ZnO−
When the amount of CoO−NiO-based oxide green pigment particles attached exceeds 35% by weight, the contrast of the resulting pigmented phosphor becomes lower than that of the ZnO:Zn phosphor to which no pigment particles are attached. purpose is not achieved. In other words, the contrast (C) on the phosphor surface of a fluorescent display tube is generally C=B/E 0 K+1 (where B is the emission intensity of the phosphor surface, E 0 is the intensity of ambient light, and K is the fluorescence It is expressed as the reflectance of the film surface), so there are no pigment particles attached.
ZnO: When a phosphor surface made of Zn phosphor and a phosphor surface made of pigmented phosphor emit light under ambient light E 0 , the contrast is C 0 and C, respectively. If the emission intensity on the film surface is B 0 and B, and the reflectance on the fluorescent film surface is K 0 and K, respectively, then the difference between the contrasts C 0 and C is C 0 −C=1/E 0・B 0 /K 0 {1-(B/B 0 )/
(K/K 0 )}. Therefore, the ratio of the luminescence intensity (B/B 0 ) and the reflectance of the phosphor film surface made of a pigmented phosphor and the phosphor film surface made of a ZnO:Zn phosphor to which no pigment particles are attached. It can be seen that when the ratio of (K/K 0 ), that is, the value of (B/B 0 )/(K/K 0 ), is 1 or more, C becomes larger than C 0 regardless of the intensity of the ambient light. . This shows that when comparing a phosphor film surface made of a pigmented phosphor and a phosphor film surface made of a ZnO:Zn phosphor to which no pigment particles are attached, the relative luminescence intensity of the former to that of the latter is shown. When the value (B/B 0 ) is larger than the relative value (K/K 0 ) of the average reflectance of the former to the average reflectance of the latter, the former, that is, the surface of the phosphor film made of the pigmented phosphor has more pigment. This means that the contrast is higher than that of a phosphor film surface made of ZnO:Zn phosphor without particles attached. As is clear from Figure 4, when the amount of TiO 2 -ZnO-CoO-NiO-based oxide green pigment particles attached is 35% by weight or less, the luminance value is larger than the average reflectance value, and A pigmented phosphor in which the amount of TiO 2 −ZnO−CoO−NiO-based oxide green pigment particles attached is in the range of more than 0% by weight and less than 35% by weight is a ZnO:Zn phosphor without pigment particles attached. Provides a fluorescent film with higher contrast. The ambient light intensity (E 0 ) is 200 ft-L (indoor brightness during the day is around this level), and ZnO:Zn
At 200ft, the emission intensity (B 0 ) of the phosphor is close to the emission intensity of ZnO:Zn phosphor in currently practical fluorescent display tubes.
When the contrast of the pigmented phosphor is calculated and illustrated using the above-mentioned formula for a practical ambient light intensity and emission intensity of -L, the results shown in FIG. 5 are obtained. That is, FIG. 5 shows the pigmented phosphor for fluorescent display tubes of the present invention under practical conditions.
It is a graph showing the relationship between the amount of TiO 2 -ZnO-CoO-NiO-based oxide green pigment particles attached and contrast. Contrast naturally changes as the ambient light intensity and the emission intensity of the ZnO:Zn phosphor change, but the fifth
As is clear from the figure, ambient light intensity and ZnO:
Under practical conditions where the emission intensity of the Zn phosphor is 200 ft-L, the amount of TiO 2 -ZnO-CoO-NiO oxide green pigment particles attached is in the range of 5% to 30% by weight. In some cases, the contrast of the fluorescent film is significantly improved. The fluorescent display tube of the present invention is manufactured by the method described below. First, the pigmented phosphor described above is coated by a precipitation coating method onto an anode plate, which is usually supported by a ceramic substrate, to form a phosphor film.
That is, an anode plate is placed in a suspension of a pigmented phosphor dispersed in water, and the pigmented phosphor is applied by settling onto one side of the anode plate by the weight of the pigmented phosphor. The water is then removed and the coating is dried. In order to improve the adhesion of the resulting fluorescent film to the anode plate, a small amount (0.01 to 0.1%) of water glass may be added to the suspension. The appropriate coating density is 2 mg/cm 2 to 30 mg/cm 2 .
Although the above-mentioned precipitation coating method is generally used as a method for forming a fluorescent film and is widely practiced, the method for forming a fluorescent film in the fluorescent display tube of the present invention is not limited to this precipitation coating method. Next, the linear heater is BaO,
A cathode coated with an oxide such as SrO or CaO is placed facing the fluorescent film on the anode plate with an interval of approximately 1 mm to 5 mm, and this pair of electrodes is placed in a transparent container such as glass. After installing the container, exhaust the inside of the container. When the inside of the container reaches a vacuum level of at least 10 -5 Torr, stop the exhaust and seal it. After sealing, the getter is removed to further increase the vacuum inside the container. In this manner, the fluorescent display tube of the present invention can be obtained. Note that the fluorescent film on the anode plate is flat,
Since the cathode is linear, it is desirable to install a mesh-like grid electrode as a diffusion electrode between the cathode and the fluorescent film, as shown in FIG. 2, in order to diffuse the low-speed electron beam emitted from the cathode. In this case, better results can be obtained if the mesh is as narrow as possible so that the loss of the amount of light emitted by the fluorescent film is small and the low-speed electron beam is well diffused. Specifically, it is desirable that the diameter of the mesh is 500 microns or less, and the aperture ratio (the area of the holes that transmit low-speed electron beams relative to the total area of the grid electrode) is 50% or more. The anode plate can display any character or figure by dividing its electrode form into the required character or figure shapes and making it possible to selectively apply the required voltage to each electrode. be able to. In addition, the anode plate is divided into dots or lines, and a fluorescent film of the pigmented phosphor of the present invention is formed on some of the electrodes, and the pigmented phosphor emits light on other electrodes. A fluorescent display tube capable of displaying multiple colors can be obtained by forming a fluorescent film made of fluorescent materials for excitation of slow electron beams of different colors. As explained above, the present invention has an acceleration voltage of 1KV.
Hereinafter, we will provide a high-contrast fluorescent display tube whose fluorescent film is a pigmented phosphor that emits light with higher contrast than conventional ZnO:Zn phosphors, especially when excited with a slow electron beam of 100 V or less. It is something to do. When using the fluorescent display tube of the present invention as a display element, it is necessary to add a filter to improve the contrast, as in the case of conventional fluorescent display tubes using ZnO:Zn phosphor as the fluorescent film. There is no need to install it in front of it. Next, the present invention will be explained with reference to Examples. Example 1 50 g of ZnO:Zn phosphor was placed in a 300 ml beaker, 100 ml of pure water was added, and the mixture was stirred for 15 minutes using a magnetic stirrer to prepare a water-dispersed suspension of ZnO:Zn phosphor. TiO 2 −ZnO−CoO− with an average particle size of approximately 0.5μ is contained in the resulting aqueous suspension of the phosphor.
5 g of NiO-based oxide green pigment particles (Dainichisei Chemical Industry Co., Ltd. #9320) were added and stirred for 30 minutes using a magnetic stirrer to form a uniformly dispersed suspension of the ZnO:Zn phosphor and the pigment particles. Next, 0.17 ml of acrylic emulsion (Nicazole RX-242 manufactured by Nippon Carbide, solid content 60%) was diluted 10 times and added to the uniformly dispersed suspension of phosphor-pigment particles, followed by stirring for 15 minutes. After standing, the supernatant liquid was removed by decantation, and the precipitate was dried at 100°C for 3 hours and passed through a 300 mesh sieve. In this way, a pigmented phosphor for excitation with slow electron beams was obtained with a pigment particle adhesion amount of 9.1% by weight. Next, the pigmented phosphor 100 obtained as described above was
A phosphor film was deposited on a 2 cm x 1 cm aluminum anode plate supported by a ceramic substrate by a precipitation coating method using a suspension of 1.0 mg of water glass dispersed in 100 ml of distilled water containing 0.01% water glass. Formed. Next, a cathode made of a tungsten wire heater coated with oxide is placed facing the fluorescent film on the anode plate with an interval of approximately 5 mm, and this pair of electrodes is placed in a hard glass container. , the inside of the container was evacuated. After the vacuum level inside the container reaches approximately 10 -5 Torr, the exhaust is stopped and the container is sealed.
Next, the getter was blown off to further increase the degree of vacuum inside the container. In this manner, a fluorescent display tube having the structure shown in FIG. 1 was produced. When the fluorescent film was excited under the same conditions, the resulting fluorescent display tube was as good as a conventional fluorescent display tube prepared in the same manner as described above using a ZnO:Zn phosphor to which no pigment particles were attached. When the luminous intensity is 200ft-L, 130ft-
The luminescence intensity of L is shown. At this time, the contrast of this fluorescent display tube is approximately 1.3 times that of a conventional fluorescent display tube when the ambient light intensity is 200 ft-L, and even without a filter on the front of the fluorescent display tube, it can be compared to a conventional fluorescent display tube. It showed light emission with good contrast, similar to when a filter was placed in front of the fluorescent display tube. Example 2 ZnO: 49g of Zn phosphor and TiO 2 -ZnO-
A pigmented phosphor for excitation with a slow electron beam was obtained in the same manner as in Example 1, except that 1 g of CoO--NiO-based oxidized green pigment particles was used, and the amount of pigment particles attached was 2% by weight. Next, using the obtained pigmented phosphor, Example 1
A fluorescent display tube having the structure shown in FIG. 1 was prepared in the same manner as above. When the fluorescent film was excited under the same conditions, the resulting fluorescent display tube was as good as a conventional fluorescent display tube prepared in the same manner as described above using a ZnO:Zn phosphor to which no pigment particles were attached. When the luminous intensity is 200ft-L, 136ft-
The luminescence intensity of L is shown. At this time, the contrast of this fluorescent display tube is approximately 1.05 times that of a conventional fluorescent display tube when the ambient intensity is 200 ft-L, and even if no filter is installed in front of the fluorescent display tube, the contrast of the fluorescent display tube is approximately 1.05 times that of a conventional fluorescent display tube. Light emission with good contrast was exhibited, similar to when a filter was placed in front of the light display tube. Example 3 ZnO: 40g of Zn phosphor, TiO 2 −ZnO−CoO−
A pigmented phosphor for low-speed electron beam excitation with a pigment particle adhesion amount of 20% by weight was obtained in the same manner as in Example 1, except that 10 g of NiO-based oxide green pigment particles and 0.34 ml of acrylic emulsion were used. . Next, using the obtained pigmented phosphor, Example 1
A fluorescent display tube having the structure shown in FIG. 1 was prepared in the same manner as above. When the fluorescent film was excited under the same conditions, the resulting fluorescent display tube was as good as a conventional fluorescent display tube prepared in the same manner as described above using a ZnO:Zn phosphor to which no pigment particles were attached. When the luminous intensity is 200ft-L, 96ft-L
The luminescence intensity was shown as follows. At this time, the contrast of this fluorescent display tube is approximately 1.26 times that of a conventional fluorescent display tube when the ambient light intensity is 200 ft-L, and even without a filter installed in front of the fluorescent display tube, the contrast of the fluorescent display tube is approximately 1.26 times that of a conventional fluorescent display tube. Light emission with good contrast was exhibited, similar to when a filter was placed in front of the light display tube.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は螢光表示管の典型例の概
略図であり、第1図は二極管、第2図は三極管で
ある。第3図は本発明の螢光表示管用顔料付螢光
体、ZnO:Zn螢光体および本発明の螢光表示管用
顔料付螢光体に用いられるTiO2−ZnO−CoO−
NiO系酸化物緑色顔料粒子の反射スペクトルを示
すグラフである。第4図は本発明の螢光表示管用
顔料付螢光体のTiO2−ZnO−CoO−NiO系酸化物
緑色顔料粒子付着量と発光強度および平均反射率
との関係を示すグラフである。第5図は本発明の
螢光表示管用顔料付螢光体のTiO2−ZnO−CoO
−NiO系酸化物緑色顔料粒子付着量とコントラス
トと関係を示すグラフである。 11……陽極プレート、12……螢光膜、13
……セラミツク基板、14……陰極、15……格
子電極、16……容器、17……高真空に保たれ
た表示管内部。
1 and 2 are schematic diagrams of typical examples of fluorescent display tubes, with FIG. 1 being a diode and FIG. 2 being a triode. FIG. 3 shows the pigmented phosphor for fluorescent display tubes of the present invention, the ZnO:Zn phosphor, and the TiO 2 −ZnO−CoO− used in the pigmented phosphor for fluorescent display tubes of the present invention.
It is a graph showing the reflection spectrum of NiO-based oxide green pigment particles. FIG. 4 is a graph showing the relationship between the amount of TiO 2 --ZnO--CoO--NiO-based oxide green pigment particles adhered to the pigmented phosphor for a fluorescent display tube of the present invention, the emission intensity, and the average reflectance. FIG. 5 shows the pigmented phosphor for fluorescent display tubes of the present invention, TiO 2 −ZnO−CoO.
- It is a graph showing the relationship between the amount of adhesion of NiO-based oxide green pigment particles and contrast. 11... Anode plate, 12... Fluorescent film, 13
... Ceramic substrate, 14 ... Cathode, 15 ... Grid electrode, 16 ... Container, 17 ... Inside of display tube kept in high vacuum.

Claims (1)

【特許請求の範囲】 1 片面に螢光膜を有する陽極プレートと、前記
螢光膜に対向してある陰極とを、その内部が真空
である容器内に封入した構造を有する低速電子線
励起螢光表示管において前記螢光膜が、亜鉛付活
酸化亜鉛螢光体とこの螢光体表面に付着した
TiO2−ZnO−CoO−NiO系酸化物緑色顔料粒子と
からなり、前記顔料粒子の付着量が前記螢光体と
前記顔料粒子の合計量の0重量%より多く35重量
%以下である顔料付螢光体よりなることを特徴と
する低速電子線励起螢光表示管。 2 前記顔料粒子の反射率が400nm、450nm、
500nm、550nm、600nm、650nmおよび700nm
の波長において、酸化マグネシウム拡散板の反射
率を100%とする時、それぞれ15%以下20%以
下、15%以下乃至40%、20%乃至45%、25%以
下、20%以下および20%以下であることを特徴と
する特許請求の範囲第1項記載の低速電子線励起
螢光表示管。 3 前記顔料粒子付着量が5重量%乃至30重量%
の範囲にあることを特徴とする特許請求の範囲第
1項または第2項記載の低速電子線励起螢光表示
管。
[Scope of Claims] 1. A low-speed electron beam-excited fluorescent lamp having a structure in which an anode plate having a fluorescent film on one side and a cathode facing the fluorescent film are enclosed in a vacuum container. In the light display tube, the phosphor film is attached to a zinc-activated zinc oxide phosphor and to the surface of this phosphor.
TiO 2 -ZnO-CoO-NiO-based oxide green pigment particles, and the amount of the pigment particles attached is more than 0% by weight and not more than 35% by weight of the total amount of the phosphor and the pigment particles. A low-speed electron beam-excited fluorescent display tube comprising a fluorescent material. 2 The reflectance of the pigment particles is 400 nm, 450 nm,
500nm, 550nm, 600nm, 650nm and 700nm
When the reflectance of the magnesium oxide diffuser plate is 100% at the wavelength of A low-speed electron beam-excited fluorescent display tube according to claim 1, characterized in that: 3 The pigment particle adhesion amount is 5% by weight to 30% by weight.
A low-speed electron beam-excited fluorescent display tube according to claim 1 or 2, characterized in that the fluorescent display tube is within the range of .
JP12875578A 1978-10-19 1978-10-19 Fluorescent substance containing pigment and fluorescent display tube excited with low-velocity electron beam Granted JPS5556183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12875578A JPS5556183A (en) 1978-10-19 1978-10-19 Fluorescent substance containing pigment and fluorescent display tube excited with low-velocity electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12875578A JPS5556183A (en) 1978-10-19 1978-10-19 Fluorescent substance containing pigment and fluorescent display tube excited with low-velocity electron beam

Publications (2)

Publication Number Publication Date
JPS5556183A JPS5556183A (en) 1980-04-24
JPS6228839B2 true JPS6228839B2 (en) 1987-06-23

Family

ID=14992654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12875578A Granted JPS5556183A (en) 1978-10-19 1978-10-19 Fluorescent substance containing pigment and fluorescent display tube excited with low-velocity electron beam

Country Status (1)

Country Link
JP (1) JPS5556183A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500150A (en) * 1987-08-07 1990-01-18 コブライン・ナームローズ・ベンノットシャップ Method and apparatus for dry processing or etching substrates
KR20220130128A (en) 2020-02-07 2022-09-26 에드워즈 가부시키가이샤 vacuum pump, and vacuum pump components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310061A (en) * 1993-02-26 1994-11-04 Sony Corp Display device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827832A (en) * 1981-08-12 1983-02-18 Hino Motors Ltd Exhaust brake device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827832A (en) * 1981-08-12 1983-02-18 Hino Motors Ltd Exhaust brake device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500150A (en) * 1987-08-07 1990-01-18 コブライン・ナームローズ・ベンノットシャップ Method and apparatus for dry processing or etching substrates
KR20220130128A (en) 2020-02-07 2022-09-26 에드워즈 가부시키가이샤 vacuum pump, and vacuum pump components

Also Published As

Publication number Publication date
JPS5556183A (en) 1980-04-24

Similar Documents

Publication Publication Date Title
JPH01104684A (en) Luminous composition
CN1236182A (en) fluorescent lamp and its producing method
JPS6228839B2 (en)
JPH0717899B2 (en) Luminescent composition
JPS5933153B2 (en) Luminescent composition and slow electron beam excitation fluorescent display tube
JPS6261293A (en) Electroluminescent device
JP4157243B2 (en) Phosphor surface treatment method and phosphor film
JPS6212834B2 (en)
JPS6253554B2 (en)
JPH0145508B2 (en)
JPS6252421B2 (en)
JPS629153B2 (en)
JPS6039310B2 (en) Red luminescent composition and slow electron beam excitation fluorescent display tube
JPH03234789A (en) Phosphor excited by slow electron beam and fluorescent film
JPH088074B2 (en) Cathode ray tube
KR100636447B1 (en) Display
JPS6219793B2 (en)
JPS606414Y2 (en) Slow electron beam excitation fluorescent display tube
JPS6244035B2 (en)
CN1143664A (en) Whitening method for luminescent material
JP3394098B2 (en) Method for manufacturing fluorescent display tube
JPH02197077A (en) El panel
KR100187484B1 (en) Element phosphorescent
JP2594808B2 (en) Mixed phosphor used for monochrome display
JPS5933155B2 (en) Green luminescent composition and slow electron beam excitation fluorescent display tube