JPS62288195A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPS62288195A
JPS62288195A JP13217386A JP13217386A JPS62288195A JP S62288195 A JPS62288195 A JP S62288195A JP 13217386 A JP13217386 A JP 13217386A JP 13217386 A JP13217386 A JP 13217386A JP S62288195 A JPS62288195 A JP S62288195A
Authority
JP
Japan
Prior art keywords
crystal
solid
liquid interface
single crystal
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13217386A
Other languages
Japanese (ja)
Other versions
JPH0631200B2 (en
Inventor
Tadashi Shiozaki
塩嵜 忠
Ryuichi Komatsu
隆一 小松
Akira Kawabata
川端 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Mining and Cement Co Ltd
Original Assignee
Mitsubishi Mining and Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Mining and Cement Co Ltd filed Critical Mitsubishi Mining and Cement Co Ltd
Priority to JP61132173A priority Critical patent/JPH0631200B2/en
Publication of JPS62288195A publication Critical patent/JPS62288195A/en
Publication of JPH0631200B2 publication Critical patent/JPH0631200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To grow single crystal free from macroscopic defects such as foams, nontransparent rings, cracks, etc., at high growth rate, growing single crystal Li2B4O7 while controlling protrusion height on the solid-liquid interface and temperature gradient just under the solid-liquid interface properly. CONSTITUTION:Single crystal 10 of Li2B4O7 is grown from melt 11 of Li2B4O7 in a wall face 20 of a crucible by Czochralski method. In the operation, the rotational speed of the crystal 10 is selected so that the value of a ratio H/D of a diameter D of the crystal and protrusion height H on a solid-liquid interface 10a is in a range of 0.1-0. The position of a heater (figure is abbreviated) of the melt is selected simultaneously with the selection and the temperature gradient just under the solid-liquid interface 10a is regulated in a range of 50-100 deg.C/cm. Consequently an impurity 13 in the vicinity of the solid-liquid interface 10a is pushed away to the side of the wall face 20 of the crucible and is prevented from admixing with the crystal 10 to promote growth of the crystal 10.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は、光学素子や弾性表面波素子として有望なリチ
ウムテトラボレート(Li*Bn(h)の単結晶をチョ
クラルスキー法(以下、CZ法という)により育成する
方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is based on a single crystal of lithium tetraborate (Li*Bn(h)), which is promising as an optical element or a surface acoustic wave element. It relates to a method of growing by the Ralsky method (hereinafter referred to as the CZ method).

[従来の技術] リチウムテトラボレート単結晶は、実用上、光の透過率
が高く、光の散乱を引き起こす巨視的な欠陥を含まない
ことが必要である。
[Prior Art] For practical purposes, a lithium tetraborate single crystal needs to have high light transmittance and not contain macroscopic defects that cause light scattering.

従来%CZ法によりビスマス・ユーリタイト族化合物の
単結晶を育成する方法として、成長結晶の直径をD、こ
の結晶の固液界面の凸出高さをHとしたときに、H/D
の値が−0,2〜0.2の範囲内になるように成長結晶
の回転速度を選ぶ方法が知られている(特公昭58−4
9517) 、この方法によれば、結晶内の気泡の数を
減少して歩留りを高めることができる。
Conventionally, as a method for growing a single crystal of a bismuth-euritite group compound by the %CZ method, when the diameter of the growing crystal is D and the protrusion height of the solid-liquid interface of this crystal is H, H/D
A method is known in which the rotational speed of the growing crystal is selected so that the value of
9517), according to this method, the number of bubbles in the crystal can be reduced and the yield can be increased.

しかし、この種の単結晶の高品質化は、 H/Dの一要
因の制御だけでは気泡を減少させることはできても、完
全になくすことはできない、この点を改良した従来のC
Z法によるリチウムテトラボレート単結晶の育成方法は
、上記H/Dの値に加えて育成速度である種結晶の引上
げ速度や、成長結晶の固液界面直下の温度勾配を、単結
晶の高品質化の制御要因にしている。
However, to improve the quality of this type of single crystal, controlling only one factor of H/D can reduce bubbles, but it cannot completely eliminate them.
The method for growing lithium tetraborate single crystals using the Z method is based on the above-mentioned H/D value, the pulling rate of the seed crystal, which is the growth rate, and the temperature gradient just below the solid-liquid interface of the growing crystal, in order to obtain a high quality single crystal. It is used as a controlling factor.

この改良した従来の育成方法は、単結晶の巨視的な欠陥
を完全になくすため、高純度の結晶原料を用いた上で、
育成速度を0.6mm/hr以下の極め、て低い速度に
抑え、H/Dの値がO,OS〜0.1の範囲内になるよ
うに成長結晶の回転速度を設定し、更に固液界面直下の
温1度勾配を20〜b [発明が解決しようとする問題点] しかし、従来の育成方法は巨視的な欠陥のない優れた単
結晶が得られる反面、その成長が極めて遅い問題点があ
った。この点を解消するために育成速度を高める試みが
なされた。しかし、単に育成速度を高めると、成長結晶
の固液界面から融液に吐き出された固溶ガスを主成分と
する不純物が融液内に十分に拡散されず、気泡になって
結晶内に取り込まれる不具合があった。
This improved conventional growth method uses high-purity crystal raw materials to completely eliminate macroscopic defects in the single crystal.
The growth rate was kept extremely low, below 0.6 mm/hr, the rotational speed of the growing crystal was set so that the H/D value was within the range of O,OS ~ 0.1, and the solid-liquid [Problems to be solved by the invention] However, while conventional growth methods can yield excellent single crystals without macroscopic defects, the problem is that the growth is extremely slow. was there. In order to solve this problem, attempts have been made to increase the growth rate. However, if the growth rate is simply increased, impurities mainly composed of solid solution gas discharged into the melt from the solid-liquid interface of the growing crystal will not be sufficiently diffused into the melt, and will become bubbles and be incorporated into the crystal. There was a problem with the

第3図に示すように、ここでLi2B4Oを結晶10の
回転速度v1が低い場合には、Li2B4Oを融液11
は図外の高周波加熱装置による熱対流12によって固液
界面10aを凸にするため、不純物13は固液界面10
aの中心に寄せ集められる。集まった不純物13は結晶
コア部に気泡14となって残る。
As shown in FIG. 3, when the rotation speed v1 of the crystal 10 is low, Li2B4O is transferred to the melt 11.
Since the solid-liquid interface 10a is made convex by thermal convection 12 caused by a high-frequency heating device (not shown), the impurity 13 is caused by the solid-liquid interface 10a.
are gathered at the center of a. The collected impurities 13 remain as bubbles 14 in the crystal core.

また第4図に示すように、ここでL12B4O?結晶I
Oの回転速度■2が高い場合には、融液11の遠心力に
よる強制対流1Bが熱対流12に打ち勝って固液界面1
0aは平坦又は凹になる。このため結晶中心の気泡はな
くなるが、不純物13が成長結晶10の引上げ方向に垂
直に、言い換えれば結晶10の半径方向に広がるドーナ
ツ状の不透明リング(opaquering)17とし
て残る問題点があった。
Also, as shown in FIG. 4, L12B4O? Crystal I
When the rotational speed ■2 of O is high, the forced convection 1B due to the centrifugal force of the melt 11 overcomes the thermal convection 12 and the solid-liquid interface 1
0a becomes flat or concave. As a result, the bubble at the center of the crystal disappears, but there is a problem in that the impurity 13 remains as a donut-shaped opaque ring 17 that spreads perpendicularly to the pulling direction of the growing crystal 10, in other words, in the radial direction of the crystal 10.

本発明の目的は、従来の2倍程度の高い育成速度で、結
晶内部に気泡、不透明リング、クラック等の巨視的な欠
陥のないリチウムテトラボレートの単結晶を育成する方
法を提供することにある。
An object of the present invention is to provide a method for growing a single crystal of lithium tetraborate free from macroscopic defects such as bubbles, opaque rings, and cracks inside the crystal at a growth rate about twice as high as that of conventional methods. .

[問題点を解決するための手段] 本発明者らは、巨視的な欠陥の一つである不透明リング
を微視的に観察したところ、そこには金属や半導体の結
晶に良く見られるセル(細胞)と呼ばれる小区域の結晶
が存在し、その中に微小な空洞を数多く発見した。光は
この空洞で乱反射し一結晶を不透明にしていることが分
った。そしてこのセルは成長結晶の固液界面における不
純物の組成的過冷却(compositional s
upercooling)によって成長することを見出
し、この組成的過冷却を解消することによって本発明を
完成するに至った。
[Means for Solving the Problems] The present inventors microscopically observed an opaque ring, which is one of the macroscopic defects, and found that there were cells ( They found small crystals called cells, with many tiny cavities inside them. It was found that light was diffusely reflected in this cavity, making the crystal opaque. This cell is characterized by compositional supercooling of impurities at the solid-liquid interface of the growing crystal.
The present invention was completed by solving this compositional supercooling.

本発明は、第1図のLi2B4Oを結晶1oの形状にお
いて、この結晶10の直径をD、この結晶1Gの固液界
面10aの凸出高さをHとしたときに、H/Dの値が−
0,1〜0の′範囲内になるようにこの結晶の回転速度
を選び、かつ前記固液界面直下の温度勾配を50℃/ 
Cm ” 100 ”C/ ’Cm (7)範囲内にな
るように加熱装置の鉛直方向位置を選んだことを特徴と
する。ここで、H/Dが負の値のときは固液界面10a
が凹であり、零のときは固液界面10aが平坦であるこ
とを表す。
In the present invention, when Li2B4O in FIG. 1 is in the shape of a crystal 1o, the diameter of this crystal 10 is D, and the protrusion height of the solid-liquid interface 10a of this crystal 1G is H, the value of H/D is −
The rotation speed of this crystal was selected so that it was within the range of 0.
Cm "100"C/'Cm (7) The vertical position of the heating device is selected so as to fall within the range of (7). Here, when H/D is a negative value, the solid-liquid interface 10a
is concave, and when it is zero, it means that the solid-liquid interface 10a is flat.

[作 用] 第2図に示すように、H/Dの値が一〇、1〜0の範囲
内になるようにLi2B40v結晶1oの回転速度を選
ぶと、回転遠心力による強制対流18が図外の加熱装置
による熱対流12に打ち勝って固液界面10aのLi2
B<Ot融液11をるつぼの壁面2oに押しやる。その
ため固液界面10aから融液11に吐き出された不純物
13もこの強制対流1Bに乗って固液界面10aから外
方に飛ばされる。同時に成長結晶1oの固液界面直下の
温度勾配を50℃/am−100”C/ c mの範囲
内になるようにすることにより、育成速度を上げて不純
物13を多量に発生させても、この固液界面10aの組
成的過冷却は防止される。
[Function] As shown in Fig. 2, if the rotational speed of the Li2B40v crystal 1o is selected so that the H/D value is within the range of 10, 1 to 0, the forced convection 18 due to the rotating centrifugal force will occur as shown in Fig. The Li2 at the solid-liquid interface 10a overcomes the thermal convection 12 caused by the external heating device.
B<Ot Push the melt 11 onto the wall 2o of the crucible. Therefore, the impurities 13 discharged from the solid-liquid interface 10a into the melt 11 are also blown away from the solid-liquid interface 10a by riding on this forced convection 1B. At the same time, by setting the temperature gradient just below the solid-liquid interface of the grown crystal 1o within the range of 50°C/am-100"C/cm, even if the growth rate is increased and a large amount of impurity 13 is generated, Compositional supercooling of this solid-liquid interface 10a is prevented.

H/Dの値が−0,1未満であると、固液界面10aの
形状が凹になり過ぎ、結晶1oにクラックが入り易くな
る。またH/Dの値が0を越えるときは、熱対流の方が
強制対流より強いため、不純物が結晶の中心に集中し、
コア部に気泡が残存する。
If the value of H/D is less than -0.1, the shape of the solid-liquid interface 10a becomes too concave, making it easy for cracks to form in the crystal 1o. Also, when the H/D value exceeds 0, thermal convection is stronger than forced convection, so impurities concentrate at the center of the crystal,
Air bubbles remain in the core.

また成長結晶の固液界面直下の温度勾配が50”C/ 
c m未満であると、固液界面において組成的過冷却が
生じ、不透明リングが作られる。更に100℃/ c 
mを越えると、結晶体にクラックが入り易くなる。
In addition, the temperature gradient just below the solid-liquid interface of the growing crystal is 50”C/
Below cm, compositional supercooling occurs at the solid-liquid interface, creating an opaque ring. Further 100℃/c
If it exceeds m, cracks will easily form in the crystal.

[発明の効果] 以上述べたように、本発明によれば、成長結晶の固液界
面の融液の流れを固液界面の外方に向うようにすること
により、気泡が結晶コア部に全く残らない。また成長結
晶の固液界面直下の温度勾配を高めることにより、この
固液界面から発生する不純物の量が増えてもこの固液界
面の組成的過冷却を防止して、不透明リングが形成され
ないため、巨視的な欠陥をつくることなく、育成速度を
と昇させることができる。
[Effects of the Invention] As described above, according to the present invention, by directing the flow of the melt at the solid-liquid interface of the growing crystal to the outside of the solid-liquid interface, no bubbles are allowed to reach the crystal core. There's nothing left. In addition, by increasing the temperature gradient just below the solid-liquid interface of the growing crystal, even if the amount of impurities generated from this solid-liquid interface increases, compositional supercooling of this solid-liquid interface is prevented and an opaque ring is not formed. , the growth rate can be increased without creating macroscopic defects.

[実施例] 次に本発明を実施例と比較例により詳しく説明する。[Example] Next, the present invention will be explained in detail with reference to Examples and Comparative Examples.

直径50mmの白金るつぼを用い、CZ法により、直径
25mmのLi2BnO〒単結晶を育成した。
A Li2BnO single crystal with a diameter of 25 mm was grown by the CZ method using a platinum crucible with a diameter of 50 mm.

熱電対を用いて、固液界面の中心の鉛直方向の温度勾配
d T / d zが次表の値になるように高周波加熱
装置の鉛直方向位置を選んだ0次いで引上げ軸に種結晶
を取付け、この軸を次表の育成速度で引上げながら、次
表の回転速度で回転させ、成長結晶のH/Dの値が次表
の値になるようにした。
Using a thermocouple, select the vertical position of the high-frequency heating device so that the vertical temperature gradient dT/dz at the center of the solid-liquid interface becomes the value shown in the table below.Then, attach a seed crystal to the pulling shaft. While this axis was pulled up at the growth rate shown in the table below, it was rotated at the rotation speed shown in the table below, so that the H/D value of the grown crystal became the value shown in the table below.

汀成条件と結晶体の目視による結果を次表に示す。The table below shows the soil formation conditions and the results of visual inspection of the crystals.

表 表から明らかなように、温度勾配又は結晶の回転速度の
一方又は双方を上げた中で実施例1〜3だけが、不透明
リング、結晶コア部の気泡及びクラックのない単結晶と
なった。
As is clear from the table, only Examples 1 to 3, in which one or both of the temperature gradient and the crystal rotation speed were increased, became single crystals without an opaque ring, bubbles in the crystal core, or cracks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の単結晶の外形を示す要部正面図。 第2図は本発明の単結晶の育成状況を示す図。 第3図は従来例の単結晶コア部に気泡が出現する状況を
示す図。 第4図は従来例の単結晶内部に不透明リングが出現する
状況を示す図。 to :  Li2B40を結晶、  10a :固液
界面、11:  Li2B+Ot融液、  20:るつ
ぼの壁面。 第1図 第2図 第3図    第4図 手続補正書 昭和61年7月22日 特許庁長官 黒 1)明 雄 殿 1、事件の表示  昭和61年 特許願 第13217
3号2、発明の名称  単結晶のa成力法 3、補正をする者 事件との関係  特許出願人 住 所   京都府京都市左京区田中東高原町27番地
白川セントラルハイツ401号 氏名 塩嵜 忠 住 所   東京都千代田区丸の内1丁目5番1号名 
称   三菱鉱業セメント株式会社4、代理人
FIG. 1 is a front view of the main part showing the external shape of the single crystal of the present invention. FIG. 2 is a diagram showing the growth status of the single crystal of the present invention. FIG. 3 is a diagram showing a situation in which bubbles appear in a single crystal core in a conventional example. FIG. 4 is a diagram showing a situation in which an opaque ring appears inside a conventional single crystal. to: crystal of Li2B40, 10a: solid-liquid interface, 11: Li2B+Ot melt, 20: wall of crucible. Figure 1 Figure 2 Figure 3 Figure 4 Procedural amendment July 22, 1985 Commissioner of the Patent Office Kuro 1) Akio Yu 1, Indication of the case 1986 Patent application No. 13217
No. 3 No. 2, Title of the invention Single crystal a-formation method 3, Relationship with the case of the person making the amendment Patent applicant address 401, Shirakawa Central Heights, 27 Tanakagaku Kogen-cho, Sakyo-ku, Kyoto-shi, Kyoto Name Tadashi Shiozaki Address: 1-5-1 Marunouchi, Chiyoda-ku, Tokyo
Name: Mitsubishi Mining Cement Co., Ltd. 4, Agent

Claims (1)

【特許請求の範囲】[Claims] 1)チョクラルスキー法によりリチウムテトラボレート
の単結晶を育成する方法において、成長結晶の直径をD
、この結晶の固液界面の凸出高さをHとしたときに、H
/Dの値が−0.1〜0の範囲内になるようにこの結晶
の回転速度を選び、かつ前記固液界面直下の温度勾配を
50℃/cm〜100℃/cmの範囲内になるように加
熱装置の鉛直方向位置を選んだことを特徴とする単結晶
の育成方法。
1) In the method of growing a single crystal of lithium tetraborate by the Czochralski method, the diameter of the growing crystal is D.
, when the protrusion height of the solid-liquid interface of this crystal is H,
The rotation speed of this crystal is selected so that the value of /D is within the range of -0.1 to 0, and the temperature gradient directly below the solid-liquid interface is within the range of 50 ° C / cm to 100 ° C / cm. A method for growing a single crystal, characterized in that the vertical position of the heating device is selected as follows.
JP61132173A 1986-06-07 1986-06-07 Single crystal growth method Expired - Lifetime JPH0631200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61132173A JPH0631200B2 (en) 1986-06-07 1986-06-07 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61132173A JPH0631200B2 (en) 1986-06-07 1986-06-07 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPS62288195A true JPS62288195A (en) 1987-12-15
JPH0631200B2 JPH0631200B2 (en) 1994-04-27

Family

ID=15075078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61132173A Expired - Lifetime JPH0631200B2 (en) 1986-06-07 1986-06-07 Single crystal growth method

Country Status (1)

Country Link
JP (1) JPH0631200B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350316A (en) * 2004-06-11 2005-12-22 Hitachi Chem Co Ltd Manufacturing method of single crystal
JP2010285342A (en) * 2009-06-10 2010-12-24 Siltronic Ag Method for pulling silicon single crystal
JP2011057476A (en) * 2009-09-07 2011-03-24 Sumco Techxiv株式会社 Method of producing single crystal silicon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503270A (en) * 1973-05-11 1975-01-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503270A (en) * 1973-05-11 1975-01-14

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350316A (en) * 2004-06-11 2005-12-22 Hitachi Chem Co Ltd Manufacturing method of single crystal
JP4622326B2 (en) * 2004-06-11 2011-02-02 日立化成工業株式会社 Single crystal manufacturing method
JP2010285342A (en) * 2009-06-10 2010-12-24 Siltronic Ag Method for pulling silicon single crystal
JP2011057476A (en) * 2009-09-07 2011-03-24 Sumco Techxiv株式会社 Method of producing single crystal silicon
US8888911B2 (en) 2009-09-07 2014-11-18 Sumco Techxiv Corporation Method of producing single crystal silicon

Also Published As

Publication number Publication date
JPH0631200B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
JP4948504B2 (en) Silicon single crystal pulling method
JP4233059B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
JP4803784B2 (en) Method for producing quartz glass crucible for pulling silicon single crystal
CN105506731A (en) Monocrystalline silicon growth oxygen content control technology
JPS62288195A (en) Method for growing single crystal
EP0400266B1 (en) Apparatus for manufacturing single silicon crystal
JP3353681B2 (en) Silicon wafer and crystal growing method
JP3168294B2 (en) Lithium barium fluoride single crystal and method for producing the same
JP2016193809A (en) Quartz glass crucible for pulling silicon single crystal
JPS63301525A (en) Manufacture of bso wafer
JP2507910B2 (en) Method for producing oxide single crystal
JPH068237B2 (en) Quartz crucible for pulling silicon single crystal
JP4044315B2 (en) Single crystal manufacturing method
JPS589800B2 (en) Manufacturing method of oxide single crystal
JP2864066B2 (en) Quartz crucible for pulling silicon single crystal and its manufacturing method
US2736659A (en) Method for preparation of highly refractive material
RU2241792C1 (en) Single crystal growing process
JP2002234795A (en) Lithium calcium aluminum fluoride single crystal and method for producing the same
JPH02252689A (en) Production of single crystal of bismuth germanate
SU1059029A1 (en) Process for preparing single crystals of fe bo3 from melt solution
JP2000351696A (en) Production of fluoride bulk single crystal
JPS6360194A (en) Method for pulling up single crystal
JPS5933560B2 (en) Bi↓4Ge↓3O↓1↓2 single crystal manufacturing method
US3822338A (en) Method of preparing massive monocrystalline yttriium titanate
JP2622165B2 (en) Method for producing bismuth germanate single crystal