JPS62287683A - Light branching semiconductor laser - Google Patents

Light branching semiconductor laser

Info

Publication number
JPS62287683A
JPS62287683A JP13033386A JP13033386A JPS62287683A JP S62287683 A JPS62287683 A JP S62287683A JP 13033386 A JP13033386 A JP 13033386A JP 13033386 A JP13033386 A JP 13033386A JP S62287683 A JPS62287683 A JP S62287683A
Authority
JP
Japan
Prior art keywords
semiconductor laser
waveguide
optical
light
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13033386A
Other languages
Japanese (ja)
Inventor
Yuichi Odagiri
小田切 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP13033386A priority Critical patent/JPS62287683A/en
Publication of JPS62287683A publication Critical patent/JPS62287683A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To offer a light branching semiconductor laser with many functions applying a semiconductor laser, by combining a circular light waveguide and a linear light waveguide. CONSTITUTION:A basic constitution is one in which four linear light waveguides 104 are made to contact with a circular light waveguide 103. In this case, four kinds of resonator combination are possible for a semiconductor laser 102, that is, two kinds of resonator formed only by the respective linear waveguides 104, and the two kinds of resonator formed by a combination of half of the circular light waveguide 103 and the two linear waveguides 104. In order to operate independently these resonators, an N-type clad layer is eliminated in the vicinity of connecting parts of each light waveguide in the manner in which independent carrier injection into each light waveguide is possible. By controlling in this manner the density of carrier injection into a divided N-side electrode 114, a light signal can be branched in one or both directions out of two directions in a state wherein the light signal coming from outward is amplified and its waveform is shaped.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は、光信号の切換えを行う光分岐半導体レーデに
関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical branching semiconductor radar for switching optical signals.

[従来の技術] 伝送路に光ファイバを用いた光通信は、光ファイバが広
帯域であることから多量の情報を伝送可能であることや
、誘導雑音の影響を受けない等の利点があることから、
今後広く使用されるものと予想される。この光通信では
、送る情報を送信装置で電気信号から光信号に変えて光
ファイバで情報を伝達し、それを再び受信装置で電気信
号に変えている。この場合、光信号は伝送線路の光ファ
イバの伝送損失が極めて小さいということを利用して信
号を一方から他方へ伝達するといった伝送手段にすぎず
、光情報の信号処理に光信号が積極的な役割を演じるま
でに至っていない。もし、光信号を電気信号に変えるこ
となく光の切換え、さらには光増幅、波形整形を一つま
たは数個の光素子の組合せで実現できれば、光通信シス
テムの機能の多様化にとって極めて有効である。
[Prior art] Optical communication using optical fibers as transmission paths has advantages such as being able to transmit a large amount of information due to the wide band of optical fibers and being unaffected by induced noise. ,
It is expected that it will be widely used in the future. In this optical communication, a transmitting device converts the information to be sent from an electrical signal to an optical signal, the information is transmitted through an optical fiber, and a receiving device converts the information back into an electrical signal. In this case, the optical signal is nothing more than a transmission means that takes advantage of the extremely small transmission loss of the optical fiber of the transmission line to transmit the signal from one side to the other, and the optical signal is used for active signal processing of optical information. I haven't gotten to the point where I can play a role. If optical switching, optical amplification, and waveform shaping could be achieved without converting optical signals into electrical signals by combining one or several optical elements, it would be extremely effective for diversifying the functions of optical communication systems. .

光の切換えには従来1機械式と光導波路方式が知られて
いる。機械式はプリズムやンンズ系を機械的に移動させ
て光の導波切換えを行う。一方。
Conventionally, two types of optical switching methods are known: a mechanical system and an optical waveguide system. The mechanical type switches the optical waveguide by mechanically moving the prism or lens system. on the other hand.

光導波路方式はリチウム・ナイオベイトCLxNbOs
)等の電気光学結晶上に光導波路を形成し、電圧をオン
・オフさせることによシ光の導波切換えを行う。
Optical waveguide method is lithium niobate CLxNbOs
An optical waveguide is formed on an electro-optic crystal such as ), and the waveguide of light is switched by turning the voltage on and off.

[発明が解決しようとする問題点] しかしながら、これらの方式に基づいた光の切換え装置
は、小形化にとって材料面での制約があり、”薄小短″
といつた光部品の目ざす方向とは逆行するという問題が
ある。
[Problems to be solved by the invention] However, light switching devices based on these methods have limitations in terms of materials for miniaturization, and cannot be made thin, small, or short.
There is a problem in that the direction of the optical components is opposite to the direction they are aimed at.

本発明の目的は、従来の欠点を除去せしめ薄小短な半導
体レーデを用いて多機能を有する光分岐半導体レーデを
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical branching semiconductor radar which eliminates the conventional drawbacks and has multiple functions using a thin, small and short semiconductor radar.

[問題点を解決するための手段] 本発明によれば、共振器が分岐された半導体レーザにお
いて2円形状導波路と、この導波路に接する複数の直線
状導波路とで2つ以上の共振器を形成し、さらに直線状
導波路の劈開端面が共振器面を構成しており、且つ円形
状導波路と直線状導波路へのキャリア注入が各々独立に
機能するように電極を分割形成したことを特徴としてい
る。
[Means for Solving the Problems] According to the present invention, in a semiconductor laser having a branched resonator, two or more resonances can be achieved by a two circular waveguide and a plurality of straight waveguides in contact with this waveguide. Furthermore, the cleaved end face of the linear waveguide constitutes the resonator surface, and the electrodes were formed separately so that carrier injection into the circular waveguide and the linear waveguide function independently. It is characterized by

[実施例] 次に2本発明の詳細な説明する。第1図は本発明の一実
施例の上面図である。第2図〜第5図は本発明の実施9
りの製造工程を説明するだめの端面図である。また、第
6図、第7図はそれぞれ。
[Example] Next, two aspects of the present invention will be described in detail. FIG. 1 is a top view of one embodiment of the present invention. FIG. 2 to FIG. 5 are implementation 9 of the present invention.
FIG. 3 is an end view illustrating the manufacturing process. Also, Figures 6 and 7 are respectively.

第3図、第5図の段階を上面図で示す。The stages of FIGS. 3 and 5 are shown in top view.

この実施例では、構造及びプロセスの容易なp形InP
基板101をペースにしたりツノ形へテロ構造の半導体
レーデ102を用いている。
In this example, p-type InP, which is easy to structure and process, is used.
A substrate 101 is used as a base, or a semiconductor radar 102 having a horn-shaped heterostructure is used.

基本構成は円形状導波路103に4本の直線状導波路1
04が接するかたちをとっている。この場合、半導体レ
ーザ102では4種類の共振器組合せが考えられる。す
なわち2個々の直線状導波路104でのみ構成する2種
類の共振器と2円形状導波路1030半分と2本の直線
状導波路1040組合せで構成される2種類の共振器で
ある。このような共振器を各々独立に機能させるため、
各導波路の接続近傍では、n形InPクラッド層七略を
除去しである。このn形InPクラッド層111の除去
部113が広ければ広いほど、半導体レーデ102の共
振器に可飽和吸収部分の割合が拡大するため、注入電流
対光出力特性にヒステリシス特性を持つこととなシ、そ
のヒステリシス幅が増加しやすくなる。これについては
、特願昭58−142922号及び特願昭58−167
798号に詳細に説明されている。
The basic configuration is a circular waveguide 103 and four straight waveguides 1.
04 is in the shape of touching. In this case, four types of resonator combinations are possible for the semiconductor laser 102. That is, there are two types of resonators that are configured only with two individual linear waveguides 104 and two types of resonators that are configured with a combination of two circular waveguide 1030 halves and two linear waveguides 1040. In order to make each of these resonators function independently,
In the vicinity of the connection of each waveguide, approximately seven of the n-type InP cladding layers are removed. The wider the removed portion 113 of the n-type InP cladding layer 111, the larger the proportion of the saturable absorption portion in the resonator of the semiconductor radar 102, which causes the injection current vs. optical output characteristics to have hysteresis characteristics. , the hysteresis width tends to increase. Regarding this, Japanese Patent Application No. 58-142922 and Japanese Patent Application No. 58-167
No. 798 describes this in detail.

この実施例は以下のように製造される。This example is manufactured as follows.

まず、第2図において、p形1nP基板101上に液相
エピタキシャル成長法又は気相エピタキシャル成長法に
よりp形InPバッファ層108.p形1nPクラッド
層109.波長1.3μm組成のノンドープInGaA
sP活性層110.n形InPクラッド層111を顆次
成長させる。
First, in FIG. 2, a p-type InP buffer layer 108 is formed on a p-type 1nP substrate 101 by liquid phase epitaxial growth or vapor phase epitaxial growth. p-type 1nP cladding layer 109. Non-doped InGaA with wavelength 1.3μm composition
sP active layer 110. The n-type InP cladding layer 111 is grown condylarly.

次に、第3図では、第6図に示すように、リップ形の円
形状導波路103と4本の直線状導波路104が2点で
接するようにフォトリソグラフィーとエツチング技術に
よりリッジ形の導波路を形成する。このときのリッジの
幅は単−横モード発振が可能な2μmとする。また、エ
ツチングの深さはp形InPバッファ層108手前まで
とする。各導波路への電子注入に独立性を持たせるため
、各導波路が接する除去部113では、n形InPクラ
ッド層111をエツチングで除去しである。
Next, in FIG. 3, as shown in FIG. 6, a ridge-shaped waveguide is formed using photolithography and etching techniques so that the lip-shaped circular waveguide 103 and the four linear waveguides 104 touch at two points. Form a wave path. The width of the ridge at this time is 2 μm, which enables single-transverse mode oscillation. Further, the etching depth is set to just before the p-type InP buffer layer 108. In order to inject electrons into each waveguide independently, the n-type InP cladding layer 111 is removed by etching in the removed portion 113 where each waveguide contacts.

第4図では、全面にCVD (ケミカル・グエイノE−
・ディ?ジション)法によりS iO2膜112を30
00に厚に積層させる。
In Figure 4, the entire surface is coated with CVD (Chemical Gueno E-
・D? 30% SiO2 film 112 by
00 is laminated thickly.

第5図では、再びフォトリソグラフィーとエツチング技
術によりリッジ形導波路のn形InPクラッド層のみを
露出させるように除去部113をのぞく全面にわたって
S r 02膜をパノファードブン酸により除去し、第
7図にも示すように、除去した領域の上からn側電極1
14としてAu−Ge−Ntを蒸着しアロイする。除去
部113でばS r 02膜112上にAu−Ge−N
iが蒸着されているが、半導体材料とアロイできないた
め部分的な化学エツチングで簡単に除去できる。このよ
うにして6分割化されたn側電極114が形成される。
In FIG. 5, the S r 02 film is removed by panofur dopanic acid over the entire surface except for the removed portion 113 so as to expose only the n-type InP cladding layer of the ridge waveguide using photolithography and etching techniques again, and as shown in FIG. As shown, the n-side electrode 1 is
As 14, Au-Ge-Nt is deposited and alloyed. In the removal part 113, Au-Ge-N is deposited on the S r 02 film 112.
Although i is deposited, it cannot be alloyed with the semiconductor material and can be easily removed by partial chemical etching. In this way, the n-side electrode 114 divided into six parts is formed.

次に、第5図に示すように、半導体全体の厚さを150
μm程度に研磨したのち、p形電極115としてここで
はTi−Pt−Auをスパッタ装置によシアロイしてウ
ェハの製造を終了する。6分割のn側電極114では。
Next, as shown in Figure 5, the thickness of the entire semiconductor is 150 mm.
After polishing to about .mu.m, Ti--Pt--Au is shear-alloyed as a p-type electrode 115 using a sputtering device, and the wafer manufacturing is completed. In the n-side electrode 114 divided into six parts.

電子注入が全てリッジ形の導波路上のn形InPクラッ
ド層111から活性層110中へ入ることとなるため、
はとんどn側電極間相互のクロストークを考えなくても
よい。
Since all electrons are injected into the active layer 110 from the n-type InP cladding layer 111 on the ridge-shaped waveguide,
There is no need to consider mutual crosstalk between the n-side electrodes.

次に、この光分岐の半導体レーザ102の動作をわかり
やすく説明するために、第1図での6分割されたn側電
極114を(4)〜(F)領域にわける。
Next, in order to clearly explain the operation of this optical branching semiconductor laser 102, the n-side electrode 114, which is divided into six parts in FIG. 1, is divided into regions (4) to (F).

(C) 、 (D)領域にのみ電子・正孔注入をおこな
うと。
When electrons and holes are injected only into regions (C) and (D).

除去部113を除いてフォトンが生成され、共振器内の
ケ°インが全体としてロスを上廻れば第1及び第2の臂
開面116,117を共振器面としてレーザ発振を始め
る。また、レーデ発振手前の状態でも1例えば第1の臂
開面116側から(C)領域にレーデ発振波長と近傍の
波長の光を注入した場合には、これがトリガーとなって
レーデ発振を開始する。このとき、先に説明したように
、除去部113が可飽和吸収部分となるため、光出力は
レーザ発振と同時に急峻な立上りを示し、20dB以上
の光増幅率と波形整形の機能を併せもつこととなる。
Photons are generated except for the removal part 113, and if the cane in the resonator exceeds the loss as a whole, laser oscillation starts using the first and second arm opening surfaces 116 and 117 as resonator surfaces. In addition, even in the state before Rade oscillation, for example, if light with a wavelength close to the Rade oscillation wavelength is injected from the first arm opening 116 side into the region (C), this will act as a trigger to start Rade oscillation. . At this time, as explained earlier, since the removal section 113 becomes a saturable absorption section, the optical output shows a steep rise at the same time as the laser oscillation, and has an optical amplification factor of 20 dB or more and a waveform shaping function. becomes.

次に、 (A) 、 (B) 、 (C) 、 (F)
の領域に電子・正孔注入した場合を考える。この場合に
は、(A)と(B) 、 (A)とCF)及び(C)の
2本の共振器が共存している。もし。
Next, (A), (B), (C), (F)
Consider the case where electrons and holes are injected into the region. In this case, two resonators (A) and (B), (A) and CF), and (C) coexist. if.

外部より光信号118が(A)領域へ注入された結果。This is the result of an optical signal 118 being injected into the region (A) from the outside.

その光注入がトリガーとなってレーデ発振する場合、光
出力信号が(B)領域の光信号119となるかあるいは
(C)領域の光信号120となるかは、共振器長の差と
CB) 、 ((:)領域への電流注入密度の大小に左
右される。(B) 、 (C)領域への電流注入密度が
同程度であれば、共振器長の長い方が光クエンチングさ
れて短い方の共振器が活性化し、共振器長の長い方のケ
゛インを奪ってレーザ発振する。この場合にも除去部1
13の存在により光出力の急峻な立上りをもたらし、光
出力がオフ状態からオン状態へ切り換えられる際には、
やはり20 dB以上の光増幅率と波形整形の機能を併
せもつこととなる。
When the optical injection triggers Raded oscillation, whether the optical output signal becomes the optical signal 119 in the (B) region or the optical signal 120 in the (C) region depends on the difference in resonator length and CB). , ((:) depends on the magnitude of the current injection density into the region. If the current injection density into the (B) and (C) regions is about the same, the one with the longer cavity length will be optically quenched. The shorter resonator is activated and takes the key from the longer resonator to oscillate the laser.In this case, the removal unit 1
The presence of 13 causes a steep rise in the optical output, and when the optical output is switched from the off state to the on state,
It also has an optical amplification factor of 20 dB or more and a waveform shaping function.

なお、実施例では(A)領域からの光信号118注大の
場合について説明したが、光信号の注入領域は限定され
ないことは言うまでもない。また、光分岐半導体レーザ
として、p形基板でリッジ型のInP系半導体レーザを
用いたがこれも特に限定されない。更に、実施例では6
分割されたn側電極114を用いたが、3分割以上であ
れば特性上の差は殆んど問題とならず、したがって任意
でよい。
In the embodiment, the case where the optical signal 118 is large from the region (A) has been described, but it goes without saying that the region where the optical signal is injected is not limited. Furthermore, although a ridge-type InP-based semiconductor laser with a p-type substrate was used as the optical branching semiconductor laser, this is not particularly limited either. Furthermore, in the example, 6
Although the divided n-side electrode 114 is used, as long as it is divided into three or more, the difference in characteristics will hardly be a problem, so it may be arbitrary.

[発明の効果] 以上説明したように本発明は8円形状導波路と直線状導
波路を組合わせることにより、半導体レーザ内に複数個
の共振器を共存させることが出来る。そして9分割した
n側電極へのキャリア注入密度を制御することによシ、
外部からの光信号を増幅しさらには波形整形した状態で
、光信号を2方向のうちのいずれか一方又は両方向に光
分岐ができる。これにより光の分岐を微小な半導体レー
ザを用いて実現できる。
[Effects of the Invention] As described above, the present invention allows a plurality of resonators to coexist within a semiconductor laser by combining an 8-circular waveguide and a linear waveguide. By controlling the carrier injection density to the nine-divided n-side electrode,
After the optical signal from the outside is amplified and further waveform-shaped, the optical signal can be optically branched in one or both of two directions. This makes it possible to split light using a minute semiconductor laser.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の上面図、第2図〜第5図は
本発明の半導体レーデの製造方法を説明するだめの端面
図、第6図、第7図はそれぞれ。 第3図、第5図の段階の中間製造物を上から見た図であ
る。なお、第3図、第5図はそれぞれ、第6図、第7図
のG−G線、 I(−H線による端面図である。 101・・・p形InP基板、102・・・半導体レー
ザ。 103・・・円形状導波路、104・・・直線状導波路
。 108 ・p形InPバッファ層、 109−p形In
Pクラッド層、110・・・ノンドープInGaAsP
活性層。 111− n形InPクラッド層、112 ・−810
2膜。 113・・・除去部、114・・n側電極、115・・
・n側電極、116・・・第1の臂開面、117・・・
第2の璧開面、118・・・光信号、119・・・(B
)領域からの光信号、120・・・(C)領域からの光
信号。
FIG. 1 is a top view of an embodiment of the present invention, FIGS. 2 to 5 are end views illustrating the method of manufacturing a semiconductor radar of the present invention, and FIGS. 6 and 7 are respectively. FIG. 5 is a top view of the intermediate product at the stage of FIGS. 3 and 5; Note that FIGS. 3 and 5 are end views taken along lines GG and I (-H) in FIGS. 6 and 7, respectively. 101...p-type InP substrate, 102... semiconductor Laser. 103... Circular waveguide, 104... Straight waveguide. 108 - P-type InP buffer layer, 109-p-type In
P cladding layer, 110...non-doped InGaAsP
active layer. 111- n-type InP cladding layer, 112 ・-810
2 membranes. 113...Removal part, 114...N-side electrode, 115...
- N-side electrode, 116... first arm opening surface, 117...
Second crystal opening plane, 118... optical signal, 119... (B
) optical signal from the area, 120... (C) optical signal from the area.

Claims (1)

【特許請求の範囲】 1、共振器が分岐された半導体レーザにおいて、円形状
導波路と、該円形状導波路に接する複数の直線状導波路
とで2つ以上の共振器を形成し、前記直線状導波路の劈
開端面が共振器面を構成していることを特徴とする光分
岐半導体レーザ。 2、前記円形状導波路と複数の前記直線状導波路へのキ
ャリア注入が各々独立に機能するように電極分割される
ことを特徴とする特許請求の範囲第1項記載の光分岐半
導体レーザ。
[Claims] 1. In a semiconductor laser having a branched resonator, two or more resonators are formed by a circular waveguide and a plurality of straight waveguides in contact with the circular waveguide, and An optical branching semiconductor laser characterized in that a cleaved end face of a linear waveguide constitutes a resonator surface. 2. The optical branching semiconductor laser according to claim 1, wherein the electrodes are divided so that carrier injection into the circular waveguide and the plurality of linear waveguides function independently.
JP13033386A 1986-06-06 1986-06-06 Light branching semiconductor laser Pending JPS62287683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13033386A JPS62287683A (en) 1986-06-06 1986-06-06 Light branching semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13033386A JPS62287683A (en) 1986-06-06 1986-06-06 Light branching semiconductor laser

Publications (1)

Publication Number Publication Date
JPS62287683A true JPS62287683A (en) 1987-12-14

Family

ID=15031854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13033386A Pending JPS62287683A (en) 1986-06-06 1986-06-06 Light branching semiconductor laser

Country Status (1)

Country Link
JP (1) JPS62287683A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021650A3 (en) * 2000-09-06 2002-08-15 Lambda Crossing Ltd A multisegment integrated laser and a method for fabrication thereof
CN112072459A (en) * 2020-08-12 2020-12-11 武汉云岭光电有限公司 Semiconductor laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118183A (en) * 1982-01-05 1983-07-14 Nec Corp Semiconductor laser
JPS60161692A (en) * 1984-01-13 1985-08-23 シーメンス、アクチエンゲゼルシャフト Semiconductor laser diode
JPS61272704A (en) * 1985-05-02 1986-12-03 ポラロイド コ−ポレ−シヨン Multiplex resonator light apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118183A (en) * 1982-01-05 1983-07-14 Nec Corp Semiconductor laser
JPS60161692A (en) * 1984-01-13 1985-08-23 シーメンス、アクチエンゲゼルシャフト Semiconductor laser diode
JPS61272704A (en) * 1985-05-02 1986-12-03 ポラロイド コ−ポレ−シヨン Multiplex resonator light apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002021650A3 (en) * 2000-09-06 2002-08-15 Lambda Crossing Ltd A multisegment integrated laser and a method for fabrication thereof
CN112072459A (en) * 2020-08-12 2020-12-11 武汉云岭光电有限公司 Semiconductor laser
CN112072459B (en) * 2020-08-12 2021-08-24 武汉云岭光电有限公司 Semiconductor laser

Similar Documents

Publication Publication Date Title
US7292739B2 (en) Optical modulator
JPS60134219A (en) Optical switch
US5627929A (en) Integrated optical XY coupler
US5369719A (en) Optical device with an optical coupler for effecting light branching and/or combining and an optical amplifier
EP0517499B1 (en) Directional coupler type optical device and a driving method therefor
JPH01116530A (en) Optical switching element and optical switching matrix comprising the same
JPS62287683A (en) Light branching semiconductor laser
US5995530A (en) Interferometric semiconductor laser with low-loss coupling of light therefrom and an arrangement with such a laser
JP2940141B2 (en) Waveguide type optical control device
JPS58137280A (en) Switch for optical guide
JP2897371B2 (en) Semiconductor waveguide polarization controller
Laybourn et al. Integrated optics: a tutorial review
JPH0511609B2 (en)
JP2626208B2 (en) Semiconductor waveguide polarization controller
JPS6348535A (en) Optical switch
JPH083595B2 (en) Light switch
JPH10256663A (en) Light amplifier accumulated light branching filter, and its manufacturing method
JP3104817B2 (en) Semiconductor laser device
JPH02199882A (en) Semiconductor optical amplifier
JP3104801B2 (en) Integrated optical coupler
JPH03200924A (en) Optical modulator
JP2994078B2 (en) Directional coupler type optical functional device and driving method thereof
JPH0682863A (en) Optical semiconductor element and its production
JPH0293435A (en) Optical switch
JPS62145225A (en) Optical branching device