JPS62287108A - Measuring method for position of electronic parts - Google Patents

Measuring method for position of electronic parts

Info

Publication number
JPS62287108A
JPS62287108A JP61130174A JP13017486A JPS62287108A JP S62287108 A JPS62287108 A JP S62287108A JP 61130174 A JP61130174 A JP 61130174A JP 13017486 A JP13017486 A JP 13017486A JP S62287108 A JPS62287108 A JP S62287108A
Authority
JP
Japan
Prior art keywords
image
electronic component
board
substrate
hand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61130174A
Other languages
Japanese (ja)
Inventor
Kenji Suzuki
健司 鈴木
Seiji Hata
清治 秦
Kenjiro Fujii
健二郎 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61130174A priority Critical patent/JPS62287108A/en
Publication of JPS62287108A publication Critical patent/JPS62287108A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the need for rough positioning by extracting a characteristic pattern corresponding to the characteristic shape of the pin array of an electronic parts from an image obtained by a visual device and measuring the position of the electronic parts on a substrate from the position of the pattern. CONSTITUTION:A flat package IC10 and the substrate 12 are put in the visual field of the visual device 13 to detect the array of pins 14 of the flat package IC10 and an array of lands 15 of the substrate 12, and straight lines 16, 17, 18, and 19 are found from the pin array or land array to perform the positioning. Then the image of the substrate 12 including the lands 15 is picked up by a camera 26 for the substrate 26 and processed by the image processing part 24 to find the positions of the lands 15 by a robot coordinate system. Then, a hand 25 is moved onto a camera 27 for the IC and pick its image up and the image is processed by the processing part 24 to find the position shift between the IC10 and hand 25 by the robot coordinate system. Lastly, the hand 25 is moved and lowered vertically, thereby mounting the IC10 on the lands 15.

Description

【発明の詳細な説明】 五 発明の詳細な説明 〔産業上の利用分野〕 本発明は面付は部品の自動実装技術に係り、特に、面付
は部品の位置を測定する電子部品位置測定方法に関する
[Detailed Description of the Invention] V. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an automatic component mounting technique for imposition, and in particular, an electronic component position measuring method for measuring the position of a component. Regarding.

〔従来の技術〕[Conventional technology]

面付は部品等の電子部品を自動的にプリント基板等に実
装する場合、ロボットハンドに保持した電子部品の位置
とこれを挿着するプリント基板の位置とを測定し、両者
の位置合せを行ないながら電子部品をプリント基板の所
定箇所に挿入する。
When mounting electronic components such as parts on a printed circuit board automatically, imposition measures the position of the electronic component held by the robot hand and the position of the printed circuit board into which it will be inserted, and aligns the two. while inserting electronic components into predetermined locations on the printed circuit board.

従来は、例えば第8図(b)に示すように、プリント基
板10所定箇所に立置決めマーク2を設けておき、プリ
ント基板1をカメラ等の視覚装置3で観察し、第8図(
a)に示すように、測定範囲4の枠内に入った位置決め
マーク2の位置を測定することで、電子部品との位置合
せを行なっている。
Conventionally, as shown in FIG. 8(b), for example, an upright mark 2 is provided at a predetermined location on a printed circuit board 10, and the printed circuit board 1 is observed with a visual device 3 such as a camera.
As shown in a), by measuring the position of the positioning mark 2 within the frame of the measurement range 4, alignment with the electronic component is performed.

尚、従来の電子部品位置測定方法に関するものとして、
例えば特開昭60−1900号公報がある。
Regarding the conventional electronic component position measurement method,
For example, there is Japanese Unexamined Patent Publication No. 1988-1900.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

基板に位置決めマークを付してその位置を測定するとい
う考えは、測定対象の位置が予め大まかに定まっており
、画像の中に固定した測定範囲内に測定対象が必ず入る
という事を前提としている。
The idea of attaching positioning marks to the board and measuring its position assumes that the position of the measurement target is roughly determined in advance, and that the measurement target will always fall within the fixed measurement range in the image. .

しかし、上述した前提は、電子部品の小型化が進むと、
成立が困難になる。また、電子部品や基板の位置を機械
的に規制するには精度的な困難を伴うが、電子部品が小
型化すると益々位置規制を機械的に行なうことが不可能
になる。そこで、小型化が進む電子部品の自動挿着を促
進するにあたって、従来の方法とは別の、つまり、粗位
置決めを必要としない電子部品位置測定方法の開発が望
まれてきている。
However, the above premise is that as electronic components become smaller,
It becomes difficult to establish. Furthermore, mechanically regulating the position of electronic components and circuit boards involves difficulties in terms of precision, but as electronic components become smaller, it becomes increasingly impossible to mechanically regulate the position. Therefore, in order to promote automatic insertion of electronic components, which are becoming increasingly smaller, there is a desire to develop a method for measuring the position of electronic components that is different from conventional methods, that is, does not require rough positioning.

本発明の目的は、粗位置決めが不要な電子部品位置測定
方法を提供することにある。
An object of the present invention is to provide an electronic component position measuring method that does not require rough positioning.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、視覚装置を備え、該視覚装置でとらえた電
子部品のピン列及び基板のランド列の画像に基づいて電
子部品を基板て自動挿着する電子部品自動搭載装置にお
いて、前記視覚装置がとらえた画像の中から電子部品の
ピン列形状に対応する固有パターンを抽出し、該抽出パ
ターン位置に基づいて電子部品と基板の当該挿入箇所と
の位置合せを行なうことで達成される。
The above object is to provide an automatic electronic component mounting device that is equipped with a visual device and automatically inserts electronic components onto a board based on images of pin rows of electronic components and land rows of a board captured by the visual device. This is achieved by extracting a unique pattern corresponding to the pin row shape of the electronic component from the captured image, and aligning the electronic component and the insertion location of the board based on the extracted pattern position.

〔作用〕[Effect]

電子部品の画像を視覚装置でとらえ、該電子部品のピン
列の固有の形状(例えば、フラットパッケージICは、
4周に接点用ピン列かならぶ形状をしている。)を抽出
することで電子部品の位置が測定される。一方、基板の
ランド列を視覚装置でとらえ、画像中から前記電子部品
の形状に対応する形状のパターンを抽出し、該パターン
から基板の位置が測定される。これによシ、電子部品の
基板に対する相対位置が測定され、両者を立置合せする
ことで電子部品が基板の当該箇所にスムースに挿着され
る。
An image of an electronic component is captured by a visual device, and the unique shape of the pin array of the electronic component (for example, a flat package IC is
It has a shape with rows of contact pins lined up on all four circumferences. ), the position of the electronic component is measured. On the other hand, the land array on the board is captured by a visual device, a pattern with a shape corresponding to the shape of the electronic component is extracted from the image, and the position of the board is measured from the pattern. With this, the relative position of the electronic component with respect to the board is measured, and by aligning them vertically, the electronic component can be smoothly inserted into the corresponding location on the board.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図乃至第7図を参照して
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

以下の実施例の説明では、周囲四辺に接続用ビン列が突
設されたフラットパッケージICを基板に自動挿着する
場合について述べる。
In the following description of the embodiment, a case will be described in which a flat package IC having a row of connection bins protruding from its four sides is automatically inserted into a board.

フラットパッケージIC,または基板上のランドの画像
は、第2図に示されるようにピンや接点の部分が明るい
領域11となり、検出し易い。これらの領域11は、単
独では形状に特徴が無く、皆、同じ形をしているため識
別しにくい。また、画像内には図示しない基板配線など
、別のパターンも入るため識別は一層困難である。しか
し、全体として見ると、領域11の規則正しい配置に特
徴がある事がわかる。即ち、直線上に領域110重心(
×印で示す)が並んだ列が平行或いは直交している。そ
こで、本実施例では、第1図に示すように、フラットパ
ッケージIC1Oと基板12とを視覚装置13でとらえ
、フラットパッケージIC10のピン14の列、基板1
2のランド15の列を検出し、得られたピン列あるいは
ランド列から直線i6,17,18.19を求め、位置
合せを行なう。
In an image of a flat package IC or a land on a substrate, pins and contacts are bright areas 11, as shown in FIG. 2, and are easy to detect. These regions 11 have no distinctive shape when used alone, and are difficult to identify because they all have the same shape. Further, since other patterns such as board wiring (not shown) are included in the image, identification is even more difficult. However, when viewed as a whole, it can be seen that the regular arrangement of the regions 11 is characteristic. That is, the center of gravity of the area 110 (
The rows of lines (indicated by x marks) are parallel or orthogonal. Therefore, in this embodiment, as shown in FIG.
The rows of lands 15 of No. 2 are detected, and straight lines i6, 17, 18, 19 are determined from the obtained pin rows or land rows, and alignment is performed.

第3図は電子部品搭載装置の外観図である。本装置は、
架台20.直交形ロボ、7 ) 21 、基板搬送部2
2、部品供給部23、画像処理部24を備えている。直
交形ロボット21はハンド25を有し、該ハンド25に
下向きに基板用カメラ26が、架台20の上部に上向き
にIC用カメラ27が取り付けられている。
FIG. 3 is an external view of the electronic component mounting device. This device is
Frame 20. Orthogonal robot, 7) 21, board transfer unit 2
2, a parts supply section 23, and an image processing section 24. The orthogonal robot 21 has a hand 25, and a substrate camera 26 is attached to the hand 25 facing downward, and an IC camera 27 is attached to the upper part of the pedestal 20 facing upward.

基板搬送部22と部品供給部23は夫々基板とICの入
ったパレットとを供給し、一定位置に固定する。基板は
架台1上に固定され、ICはハンド25に真空吸着され
る。そこで、基板の固定位置を、基板用カメラ26でと
らえた画像から詳細は後述するように画像処理部24で
精密測定する。
The board transport section 22 and the component supply section 23 each supply a pallet containing a board and an IC, and fix the pallet at a fixed position. The substrate is fixed on the pedestal 1, and the IC is vacuum-adsorbed by the hand 25. Therefore, the fixed position of the board is precisely measured by the image processing section 24 from an image captured by the board camera 26, as will be described in detail later.

一方、ハンド25がICをチャックした後、該ハンド2
5をIC用カメラ27上に(i置決めし、ハンド25に
対するrCの相対位置を詳細は後述するようにカメラ2
7からの画像に基づき画像処理部24で精密測定する。
On the other hand, after the hand 25 chucks the IC, the hand 2
5 on the IC camera 27 (i), and the relative position of rC with respect to the hand 25 is determined by the camera 2 as described in detail later.
The image processing unit 24 performs precise measurements based on the images from 7.

この電子部品搭載装置の動作の概要を第4図のフローチ
ャートで説明する。
An overview of the operation of this electronic component mounting apparatus will be explained with reference to the flowchart shown in FIG.

まず、基板が基板搬送部22により送られて来て一定立
置に機械的に固定される。次に、ハンド25が移動し、
基板上のランドを基板用カメラ26で撮ることができる
位置に停止される。次に、基板用カメラ26によりラン
ドを含む基板の画像が撮像され、該画像は後述するよっ
て画像処理部24で処理され、ランドの立置(X)+Y
(、+θL)がロボット座標系において求められる。
First, a substrate is transported by the substrate transport section 22 and mechanically fixed in a fixed vertical position. Next, the hand 25 moves,
It is stopped at a position where the land on the board can be photographed by the board camera 26. Next, an image of the board including the land is captured by the board camera 26, and this image is processed by the image processing unit 24 as will be described later.
(, +θL) are found in the robot coordinate system.

次に、ハンド25をパレット上に移動し、ICをチャッ
クする。次に、ハンド25をIC用カメラ27上に移動
し、ここでICの画像を撮像する。
Next, the hand 25 is moved onto the pallet and chucks the IC. Next, the hand 25 is moved onto the IC camera 27, and an image of the IC is taken here.

この画像は、後述するように画像処理部24で処理され
、ICとハンドの位置ずれ(x、、yx、θr)がロボ
ット座標系において求められる。最後に、ハンド25を
(x、−x工、YL−Yl、θ、−θ1)に移動し、垂
直に降ろすと、ICがランド上に正しく搭載される。
This image is processed by the image processing unit 24 as described later, and the positional deviation (x, yx, θr) between the IC and the hand is determined in the robot coordinate system. Finally, when the hand 25 is moved to (x, -x, YL-Yl, θ, -θ1) and lowered vertically, the IC is correctly mounted on the land.

上述した画像処理部での画像処理の詳細を、第5図のフ
ローチャートを参照して説明する。
The details of the image processing in the image processing section described above will be explained with reference to the flowchart of FIG.

まず、画像を入力し、第2図に示すように領域11が明
瞭となるように領域化を行なう。次に、すべての領域の
重心を求め、重心座標にHough K換をかける。
First, an image is input and regionalized so that the region 11 becomes clear as shown in FIG. Next, find the center of gravity of all regions and apply Hough K transformation to the coordinates of the center of gravity.

平面内の点集合の中に直線上に並ぶ部分集合がある時、
この直線を求める方法にHough変換がある。以下、
これを説明する。第6図に示す直線上の方程式は cosθ−X + sinθ#y−r = o    
 −−(1)で表わされる。この式かられかるように、
直線の方程式はrとθの2つのパラメータで表わす事が
できる。この直線上が点(XI ’yj )を通る条件
はcosθ倶x、+5in19 ly、 −r=o  
    −・・(2)である。これを、X1+ ’f 
lを定数としてr−θ空間に描くと第7図(b)に示す
ようになる。画面内のX−Y座標系を第7図(a)のよ
うに定義した場合−6sx<r< 23X、−180°
〈θく180°と、有限空間に納める事ができる。この
、座標空間からパラメータ空間への変換をHough変
換と呼ぶ。参考文献としては長尾真著「画像認識論」(
コロナ社)p72〜74が挙げられる。パラメータ空間
内の点は、座標空間内の直線に対応する。第7図(C)
のように、座標空間内に直線と見なし得る点列A、B。
When there is a subset of points aligned on a straight line in a plane,
Hough transformation is a method for finding this straight line. below,
Let me explain this. The equation on the straight line shown in Figure 6 is cosθ-X + sinθ#y-r = o
--Represented by (1). As can be seen from this formula,
The equation of a straight line can be expressed by two parameters, r and θ. The condition for this straight line to pass through the point (XI'yj) is cosθx, +5in19ly, -r=o
-...(2). This is X1+'f
When drawn in r-θ space with l as a constant, it becomes as shown in FIG. 7(b). If the X-Y coordinate system in the screen is defined as shown in Figure 7(a) -6sx<r<23X, -180°
〈θ = 180°, it can be contained in a finite space. This transformation from coordinate space to parameter space is called Hough transformation. References include ``Image Recognition Theory'' by Makoto Nagao (
(Corona Inc.) p72-74. Points in parameter space correspond to straight lines in coordinate space. Figure 7 (C)
A sequence of points A and B that can be considered as a straight line in the coordinate space.

C,D  がある時、その各点に対応するパラメータ空
間内の曲線A、B、C,Dは第7図(d)のように1点
Pに交わる。従って、パラメータ空間内で多くの曲線が
交わる点を探す事により、座標空間内の直線状点列と、
その直線の方程式を求める事ができる。曲線の交点を求
めるには、パラメータ空間を細かい格子状に区切ってお
き、各格子区間毎に曲線が通った回数をカウントし、回
数の多い区間が直線状点列に対応すると判定できる。
When there are C and D, the curves A, B, C, and D in the parameter space corresponding to each point intersect at one point P as shown in FIG. 7(d). Therefore, by searching for points where many curves intersect in the parameter space, we can create a linear point sequence in the coordinate space,
You can find the equation of that straight line. To find the intersection of curves, the parameter space is divided into fine grids, the number of times the curve passes through each grid section is counted, and the section with the most number of passes can be determined to correspond to a linear point sequence.

そこで、第5図に戻り、重心座標にRough変換を施
した後、パラメータ空間を細かい格子区間に区切り、曲
線通過回数が所定値より多い区間を抽出する。但し、所
定値は、−列毎のビン数、ランド接点数から予め定めて
おく。求まった区間の中央値(rl、θ、)(1=1.
2.・・・)を直線の・くラメータとする。こうして求
まった多数の直線のうち、ICビン列やランドの接点列
には一定の条件がある。
Therefore, returning to FIG. 5, after Rough transformation is applied to the barycenter coordinates, the parameter space is divided into fine grid sections, and sections in which the number of curve passages is greater than a predetermined value are extracted. However, the predetermined value is predetermined from the number of bins and the number of land contacts for each column. Median value of the determined interval (rl, θ,) (1=1.
2. ...) is a parameter of a straight line. Among the many straight lines thus determined, there are certain conditions for the IC bin rows and land contact rows.

即ち、2本ずつの平行線をなし、かつ平行線の組どうし
は直交する。また平行線間の距離= d !/i一定値
になる等である。これらの条件に従って直線の中からビ
ン列または接点列だけを選別する。これで位置は求まっ
た事になるが、データとして利用するために、代表点の
座標の形で求める必要がある。そこで、ダjえば、平行
線の中線の交点(X。
In other words, there are two parallel lines, and the sets of parallel lines are orthogonal to each other. Also, the distance between parallel lines = d! /i becomes a constant value, etc. According to these conditions, only bin rows or contact rows are selected from among the straight lines. The position has now been determined, but in order to use it as data, it must be determined in the form of coordinates of the representative point. So, for example, the intersection of the median lines of parallel lines (X.

Y)、及び中線の2等分線がX軸と成す角θを全体の座
標として求める。
Y), and the angle θ that the bisector of the median line forms with the X axis is determined as the overall coordinates.

尚、第4図の説明では、ランド及びICの位置はロボッ
ト座標系において求められるが、そのためには、まず視
覚座標系で求めてから、各カメラに固有の位置定数、光
学定数に基づき座標変換を行なう必要がある。
In the explanation of Fig. 4, the positions of the lands and ICs are determined in the robot coordinate system, but in order to do so, they must first be determined in the visual coordinate system, and then coordinate transformation is performed based on the position constants and optical constants specific to each camera. It is necessary to do this.

以上説明したように、本実施例によれば、立置測定対象
であるICまたはランドの像が画面内のどこにあっても
位置測定ができるので、ICやランドの像を画面内の測
定範囲に位置決けるために予め粗位置決めを行なう必要
がなく、また、粗位決めにより測定対象を測定範囲内に
収める事が困難な場合でも位置測定ができるという効果
がある。
As explained above, according to this embodiment, the position can be measured no matter where the image of the IC or land, which is the object of vertical measurement, is located on the screen. There is no need to perform rough positioning in advance for positioning, and the position can be measured even when it is difficult to place the object to be measured within the measurement range by coarse positioning.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電子部品の固有形状に対応するパター
ンを撮影画像中から抽出して位置を測定するため、粗位
置決めが不要となり、また、機械的な固定機構に高精度
が不要となる。
According to the present invention, since the position is measured by extracting a pattern corresponding to the unique shape of the electronic component from the photographed image, rough positioning is not necessary, and high accuracy is not required for the mechanical fixing mechanism.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の説明図、第2図はフラット
パッケージICの撮像画像図、第3図は電子部品搭載装
置の外観図、第4図は部品搭載処理フローチャート、第
5図は画像処理フローチャート、第6図は直線を定義す
るグラフ、第7図(a)。 (b) 、 (c) 、 (d)はハフ(Hough)
変換説明図、第8図(a)。 (b)は従来方式の説明図である。 10・・・フラットパッケージIC,11・・・領域、
12・・・基板、13・・・カメラ、14・・・ビン、
15・・・ランド、16.17,18.19・・・直線
、20・・・架台、21・・・直交形ロボット、22・
・・基板搬送部、23・・・部品供給部、24・・・画
像処理部、25・・・ハンド、26・・・基板用カメラ
、27・・・工C用カメラ。
Fig. 1 is an explanatory diagram of an embodiment of the present invention, Fig. 2 is a captured image of a flat package IC, Fig. 3 is an external view of an electronic component mounting device, Fig. 4 is a flowchart of a component mounting process, and Fig. 5 is an image processing flowchart, FIG. 6 is a graph defining a straight line, and FIG. 7(a). (b), (c), (d) are Hough
Conversion explanatory diagram, FIG. 8(a). (b) is an explanatory diagram of a conventional method. 10... Flat package IC, 11... Area,
12... Board, 13... Camera, 14... Bin,
15... Land, 16.17, 18.19... Straight line, 20... Frame, 21... Cartesian robot, 22.
... Board transport unit, 23... Component supply unit, 24... Image processing unit, 25... Hand, 26... Board camera, 27... Camera for work C.

Claims (1)

【特許請求の範囲】 1、視覚装置を備え、該視覚装置でとらえた電子部品の
ピン列及び基板のランド列の画像に基づいて電子部品を
基板に自動挿入する電子部品自動搭載装置において、前
記視覚装置でとらえた画像の中から、電子部品のピン列
の固有形状に対応する固有パターンを抽出し、該固有パ
ターンの位置により電子部品の基板に対する位置を測定
することを特徴とする電子部品位置測定方法。 2、画像をハフ変換して直線パターンを抽出し、直線パ
ターンの組の中から所定条件を満たす組を前記固有パタ
ーンとして抽出することを特徴とする特許請求の範囲第
1項記載の電子部品位置測定方法。
[Scope of Claims] 1. An electronic component automatic mounting device that includes a visual device and automatically inserts electronic components onto a board based on images of pin rows of the electronic component and land rows of the board captured by the visual device, Electronic component positioning, characterized in that a unique pattern corresponding to the unique shape of a pin row of an electronic component is extracted from an image captured by a visual device, and the position of the electronic component with respect to a board is measured based on the position of the unique pattern. Measuring method. 2. The electronic component position according to claim 1, characterized in that the image is Hough-transformed to extract straight line patterns, and from among the set of straight line patterns, a set that satisfies a predetermined condition is extracted as the unique pattern. Measuring method.
JP61130174A 1986-06-06 1986-06-06 Measuring method for position of electronic parts Pending JPS62287108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61130174A JPS62287108A (en) 1986-06-06 1986-06-06 Measuring method for position of electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61130174A JPS62287108A (en) 1986-06-06 1986-06-06 Measuring method for position of electronic parts

Publications (1)

Publication Number Publication Date
JPS62287108A true JPS62287108A (en) 1987-12-14

Family

ID=15027806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61130174A Pending JPS62287108A (en) 1986-06-06 1986-06-06 Measuring method for position of electronic parts

Country Status (1)

Country Link
JP (1) JPS62287108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315986A (en) * 1988-06-15 1989-12-20 Stanley Electric Co Ltd Manufacture of el element and its device
JPH03104300A (en) * 1989-09-19 1991-05-01 Matsushita Electric Ind Co Ltd Ic mounting apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01315986A (en) * 1988-06-15 1989-12-20 Stanley Electric Co Ltd Manufacture of el element and its device
JPH03104300A (en) * 1989-09-19 1991-05-01 Matsushita Electric Ind Co Ltd Ic mounting apparatus

Similar Documents

Publication Publication Date Title
EP0457843B1 (en) Method and apparatus for measuring registration between layers of a semiconductor wafer
US6151406A (en) Method and apparatus for locating ball grid array packages from two-dimensional image data
KR930002911B1 (en) Ic inserting equipment
CN101117043B (en) Silk screen printing device
US10535157B2 (en) Positioning and measuring system based on image scale
JPH02165699A (en) Mounting method of flat package type ic using industrial robot
KR20190135422A (en) Method for calibrating an apparatus for mounting components
Mese et al. An Automatic Position Recognition Technique for LSI Assembly.
US4966520A (en) Method of positioning objects to be measured
JPH05198662A (en) Probe device and aligning method therefor
JPS62287108A (en) Measuring method for position of electronic parts
JP2633147B2 (en) Component mounting method
JPH067561B2 (en) Positioning method for semiconductor wafer chips
JP2533085B2 (en) Component mounting method
JPS62233746A (en) Checker for chip mounted board
JPH038400A (en) Positional correction of printed substrate
TWI449119B (en) Circuit board placement method
KR100269221B1 (en) Method for alligning integrated circuit chip
JP2694462B2 (en) Positioning method for semiconductor wafer chips
JP3089786B2 (en) Check area setting method for multiple lands
JPH0815240B2 (en) Displacement correction method and imposition component automatic mounting method
JP3511456B2 (en) Pattern inspection method
JP3089787B2 (en) Check area setting method of vertical and horizontal parallel land
TW202220542A (en) Inspection data preparation method, inspection data preparation device, and inspection device
KR920004326B1 (en) Auto detecting system of p.c.b. using camera