JPS6228699B2 - - Google Patents

Info

Publication number
JPS6228699B2
JPS6228699B2 JP54090971A JP9097179A JPS6228699B2 JP S6228699 B2 JPS6228699 B2 JP S6228699B2 JP 54090971 A JP54090971 A JP 54090971A JP 9097179 A JP9097179 A JP 9097179A JP S6228699 B2 JPS6228699 B2 JP S6228699B2
Authority
JP
Japan
Prior art keywords
resin
acid
calcium
chelate
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54090971A
Other languages
Japanese (ja)
Other versions
JPS5615845A (en
Inventor
Masafumi Morya
Tomio Imachi
Makoto Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP9097179A priority Critical patent/JPS5615845A/en
Publication of JPS5615845A publication Critical patent/JPS5615845A/en
Publication of JPS6228699B2 publication Critical patent/JPS6228699B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、酸型のキレート樹脂を効率良くカル
シウム塩型にするキレート樹脂の再生方法に関す
るものである。 従来、カルシウム塩型で用いられるキレート樹
脂の再生は酸による重金属の溶離工程、樹脂
のNa塩化工程、樹脂のCa塩化工程の順に行な
われているため再生効率が悪く、またNa塩化工
程において、樹脂の体積変化が大きいため、樹脂
の劣化等が問題となつている。そこで本発明者ら
は、キレート樹脂を効率良く再生する方法の検討
を行なつた結果、酸による重金属の溶離工程、
樹脂のCa塩化工程のみにより効率良く樹脂を
再生できるとともに従来の再生方法の問題点であ
つた樹脂のNa塩化工程を省略することが可能と
なり、さらに樹脂の耐久性をも向上せしめ得る再
生方法を見出し、本発明に到つた。 すなわち、本発明のキレート樹脂の再生方法と
は、水銀、金、銀、白金、銅、鉛、クロム、コバ
ルト、鉄、亜鉛、カドミウム、ニツケル、錫等の
重金属を吸着したキレート樹脂から鉱酸により重
金属イオンを溶離して重金属を溶離回収した酸型
樹脂すなわちH型樹脂をアルカリ土類金属塩とア
ルカリ金属の水酸化物との混合水溶液により処理
することにより、直接Ca塩型キレート樹脂にす
ることが出来るものである。 本発明に用いるアルカリ土類金属塩としては、
塩化カルシウム、硝酸カルシウム、酢酸カルシウ
ムより選ばれたるカルシウム塩が適し、これらカ
ルシウム塩の水溶液にNaOH、KOH等のアルカ
リ金属の水酸化物を添加した混合水溶液によりH
型樹脂をCa塩型樹脂に再生するものである。 当該混合水溶液を調整する際に水酸化カルシウ
ムの沈澱が生じることがあるが、沈澱が生じた場
合にはデカンテーシヨン、濾過等により沈澱を除
去して用いることが好ましい。上記混合水溶液
は、0.5〜10重量%のカルシウム塩、並びにアル
カリ金属の水酸化物を0.01〜1重量%の濃度にな
るように調整することが好ましい。 また、アルカリ金属の水酸化物を用いる主な目
的は、鉱酸洗浄によりH型に再生したキレート樹
脂に残留している酸を中和することにあるので、
少なくともその酸の中和当量のアルカリ性化合物
が混合水溶液中に含有されれば、本発明の目的を
達成することが可能である。 本発明に供するキレート樹脂としては、樹脂母
体が、スチレン−ジビニルベンゼン樹脂、エポキ
シ樹脂、フエノール樹脂、塩化ビニル樹脂、塩化
ビニリデン樹脂より選ばれたる1種よりなり、キ
レート形成基として、アミノ酸基、イミノ酢酸
基、イミノジ酢酸基、イミノプロピオン酸基、イ
ミノジプロピオン酸基等のアミノ基およびカルボ
キシル基を有する官能基を少なくとも1種以上有
するキレート樹脂である。 上記キレート樹脂は一般的に知られている方法
により製造することができる。例えばアミノ
酸、イミノ酢酸、イミノジ酢酸、イミノプロピオ
ン酸、イミノジプロピオン酸のうち少なくとも1
種と、フエノールとホルマリンの混合水溶液と
し、この混合水溶液を非水溶性溶剤中に添加して
懸濁重合反応を行ないキレート樹脂を得る方法、
アミノ酸の低級アルキルエステル、イミノ酢酸
の低級アルキルエステル、イミノジ酢酸の低級ア
ルキルエステル、イミノプロピオン酸の低級アル
キルエステル、イミノジ酢酸の低級アルキルエス
テル、ポリアルキレンポリアミンにアクリル酸メ
チルエステル、メタクリル酸メチルエステル又は
アクリロニトリルの付加した化合物で1分子中に
活性水素を2個以上有する化合物のうち少なくと
も1種とビスエポキシ化合物とを水中に添加し懸
濁重合反応を行ない得られた樹脂にケン化反応を
行なつてキレート樹脂を製造する方法、アクリ
ル酸メチルエステル、メタクリル酸メチルエステ
ル、アクリロニトリルの少なくとも1種と塩化ビ
ニル、塩化ビニリデン、スチレン、ジビニルベン
ゼンの少なくとも1種とを混合し、それを水中に
添加し、懸濁重合反応を行ない、得られた樹脂に
ケン化反応を行なつてキレート樹脂を製造する方
法、スチレン−ジビニルベンゼンの球状樹脂に
クロロメチルメチルエーテルでクロロメチル化反
応を行ない、得られるクロロメチル化樹脂、また
は塩化ビニル樹脂、塩化ビニリデン樹脂の少なく
とも1種にアミノ酸、イミノ酢酸、イミノジ酢
酸、イミノプロピオン酸、イミノジプロピオン酸
等を反応してキレート樹脂を製造する方法等が挙
げられる。 H型キレート樹脂と前述混合水溶液の接触方法
としては、バツチ法、カラム法等が挙げられ、さ
らにカラム法においては、循環方式、上向流また
は下向流で行なう一過方式等が挙げられ、カラム
法における通水速度は0.1〜20/hr−−Resin
が好ましい。 本発明はこれらの方法により限定されるもので
はない。 以下、実施例を挙げて本発明を更に詳細に説明
する。 実施例 1 エポキシ樹脂を母体とし、イミノプロピオン酸
基およびイミノジプロピオン酸基を官能基として
有するCa型キレート樹脂を用い、カドミウムイ
オンを上記樹脂1当り10gをバツチ法にて吸着
処理した。この樹脂50mlを内径25mmのカラムに充
填し、0.5NHCl水溶液300mlを通液速度2/hr
−−Resin、下向流にて通液し、カドミウムを
溶離回収した。次に水道水150mlを通液し、カラ
ム内に残留しているHCl水溶液を押し出し、続い
て、CaCl210%、NaOH0.2%を含有する混合水溶
液350mlを通液速度3/hr−−Resin、上向
流にて通液した。 さらにカラム内に残留している混合水溶液をカ
ラムの下部より抜いた後、水道水100mlを通液速
度3/hr−−Resin、下向流にて通液し樹脂
の再生を終了した。 この再生樹脂をカラム内より取り出し樹脂中の
カルシウム含有量を測定した結果、使用前に比較
して97%のカルシウム含有量であつた。 実施例 2 スチレン−ジビニルベンゼン樹脂を母体とし、
イミノプロピオン酸基、およびイミノジプロピオ
ン酸基を官能基として有するCa型キレート樹脂
100mlを1NHCl1とともにビーカー中で3時間撹
拌し、樹脂からカルシウムの溶離を行なつた。回
収したカルシウムの量は、20g/−Resinであ
つた。 次にこの樹脂を充分に水洗した後、塩化カルシ
ウム50g、水酸化ナトリウム1gをイオン交換水
にて500mlに調整した混合水溶液中にて3時間撹
拌した。 この樹脂100mlを2回水洗後、1NHCl1ととも
に3時間撹拌し、カルシウムの溶離を行なつた。
回収したカルシウムの量は、19.9g/−Resin
でほぼ100%の再生率であつた。 実施例 3 フエノール樹脂を母体とし、グルタミン酸基を
官能基として有するCa型キレート樹脂1を内
径80mmのカラムに充填した後2NHCl5を通液速
度2/hr−−Resin下向流にて通液し、カル
シウムの溶離を行なつた。溶離液中のカルシウム
イオンの濃度の測定により、溶離カルシウム量は
16.3g/−Resinであつた。 次にイオン交換水2を同一条件で通液して樹
脂を洗浄した後、塩化カルシウム5%、水酸化カ
リウム0.1%を含有する混合水溶液5を上向
流、通液速度2/hr−−Resinにて3時間循
環した。 カラム内に残存している混合水溶液をカラム下
部より抜いた後、イオン交換水2を通液し洗浄
して再生を終了した。 次に2NHCl5を下向流、通液速度2/hr−
−Resinにて通液し、樹脂よりカルシムウの溶
離を行ない、カルシウムイオンの濃度測定より回
収量を求めた結果15.8g/−Resinであつた。 実施例 4 エポキシ樹脂を母体とし、イミノ酢酸基および
イミノジ酢酸基を官能基として有するCa型キレ
ート樹脂100mlを内径25mmのカラムに充填した
後、2N HCl 400mlを通液速度2/hr−−
Resin下向流にて通液し、カルシウムの溶離を行
なつた。溶離カルシウム量は、18.1g/−
Resinであつた。 次にイオン交換水200mlを同一条件で通液して
樹脂を洗浄した後、塩化カルシウム2%、水酸化
カリウム0.2%を含有する混合水溶液500mlを下向
流、通液速度2/hr−−Resinにて通液し
た。続いてイオン交換水200mlを同一条件で通液
し、再生を終了した。 次に2N HCl 400mlを下向流、通液速度2/
hr−−Resinにて通液し、樹脂よりカルシウム
の溶離を行なつた。カルシウムの回収量は、17.9
g/−Resinで、回収率98.9%であつた。 実施例 5 実施例2と同様のCa塩型キレート樹脂を用い
て、バツチ法にて、前記樹脂1当りの銅イオン
15.4gを吸着させた。この銅イオン吸着樹脂50ml
を内径25mmのカラムに充填し、1N HCl 300mlを
通液速度2/hr−−Resinで下向流にて通液
し、銅イオンを溶離回収した。次に水道水150ml
をSV2で通液し、カラム内に残留している塩酸を
押し出し、次いで、CaCl25%、KOH0.05%を含
有する混合水溶液300mlをSV3で、上向流にて通
液した。さらにカラム内に残留している混合水溶
液をカラムの下部より抜いた後、水道水2000mlを
SV5、上向流にて通水し樹脂の再生を終了した。 この再生樹脂をカラム内より取出し、樹脂中の
カルシウム含有量を測定した結果、銅イオン吸着
前のCa型キレート樹脂と比較して98.7%のカル
シウム含有量であつた。 実施例 6 実施例3と同様のCa塩型キレート樹脂(Ca吸
着量:20.5g/−Resin)を用いて、上記樹脂
1当り12gの亜鉛イオンをバツチ法にて吸着さ
せた。この亜鉛イオン吸着樹脂500mlを1N HCl
5とともにビーカー中で5時間撹拌し、Zn2+
溶離を行なつた。次に、この樹脂を十分に水洗し
た後、塩化カルシウム300gと水酸化ナトリウム
5gをイオン交換水に溶解した混合水溶液2中
に加え、3時間撹拌した。このCa塩型にした樹
脂100mlを2回水洗後、1N HCl 1とともに3
時間撹拌し、カルシウムの溶離を行なつた。回収
したカルシウムの量は19.7g/−Resinで亜鉛
イオン吸着前のCa塩型キレート樹脂に比べ約96
%の再生率であつた。 実施例 7 塩化ビニル樹脂を樹脂母体とし、リジン基を官
能基として有するH型キレート樹脂50mlを内径25
mmのカラムに充填し、次に示す従来法によるCa
塩化方法及び本発明の方法によるCa塩化方法を
行ない、各々体積膨張率及びCaの吸着量を求め
その結果を表−1に示す。 なお体積膨張率は一連のCa塩化工程で示す一
番高い樹脂層の高さA(従来法ではNa塩になつ
た時に最高値を示した)とH型キレート樹脂の樹
脂の高さBから式(A/B)×100により求めた。
またCaの吸着量はカラムに通液する前及び通液
した後の(CH3COO)2Ca水溶液の濃度差からキ
レート樹脂1当りのCa吸着量を求めた。
The present invention relates to a method for regenerating a chelate resin that efficiently converts an acid type chelate resin into a calcium salt type. Conventionally, regeneration of chelate resins used in the calcium salt type has been carried out in the following order: eluting heavy metals with acid, Na chlorination of the resin, and Ca chlorination of the resin, resulting in poor regeneration efficiency. Since the volume change is large, deterioration of the resin has become a problem. Therefore, the present inventors investigated a method for efficiently regenerating chelate resin, and as a result, the elution process of heavy metals with acid,
We have developed a recycling method that allows for efficient resin regeneration using only the Ca chloride process of the resin, makes it possible to omit the resin Na chloride process, which was a problem with conventional recycling methods, and also improves the durability of the resin. This heading led to the present invention. That is, the method for regenerating chelate resin of the present invention is to regenerate heavy metals such as mercury, gold, silver, platinum, copper, lead, chromium, cobalt, iron, zinc, cadmium, nickel, and tin from chelate resin with mineral acid. By treating an acid type resin, that is, an H type resin, in which heavy metal ions have been eluted and recovered, with a mixed aqueous solution of an alkaline earth metal salt and an alkali metal hydroxide, it is directly converted into a Ca salt type chelate resin. This is something that can be done. As the alkaline earth metal salt used in the present invention,
Calcium salts selected from calcium chloride, calcium nitrate, and calcium acetate are suitable, and H
This regenerates mold resin into Ca salt type resin. Calcium hydroxide may precipitate when preparing the mixed aqueous solution, but if a precipitate occurs, it is preferable to remove the precipitate by decantation, filtration, etc. before use. The above mixed aqueous solution preferably contains 0.5 to 10% by weight of calcium salt and alkali metal hydroxide in a concentration of 0.01 to 1% by weight. In addition, the main purpose of using an alkali metal hydroxide is to neutralize the acid remaining in the chelate resin that has been regenerated into H type by mineral acid washing.
The object of the present invention can be achieved if at least the alkaline compound equivalent to neutralizing the acid is contained in the mixed aqueous solution. In the chelate resin used in the present invention, the resin matrix is made of one selected from styrene-divinylbenzene resin, epoxy resin, phenol resin, vinyl chloride resin, and vinylidene chloride resin, and the chelate-forming group is an amino acid group, an imino It is a chelate resin having at least one functional group having an amino group and a carboxyl group, such as an acetate group, an iminodiacetate group, an iminopropionic acid group, and an iminodipropionic acid group. The above chelate resin can be produced by a generally known method. For example, at least one of amino acids, iminoacetic acid, iminodiacetic acid, iminopropionic acid, iminodipropionic acid
A method of obtaining a chelate resin by preparing a mixed aqueous solution of seeds, phenol, and formalin, and adding this mixed aqueous solution to a non-aqueous solvent to carry out a suspension polymerization reaction.
Lower alkyl esters of amino acids, lower alkyl esters of iminoacetic acid, lower alkyl esters of iminodiacetic acid, lower alkyl esters of iminopropionic acid, lower alkyl esters of iminodiacetic acid, methyl acrylate, methyl methacrylate, or acrylonitrile in polyalkylene polyamines. At least one of the compounds having two or more active hydrogens in one molecule and a bisepoxy compound are added to water, a suspension polymerization reaction is carried out, and the resulting resin is subjected to a saponification reaction. A method for producing a chelate resin, in which at least one of acrylic acid methyl ester, methacrylic acid methyl ester, and acrylonitrile is mixed with at least one of vinyl chloride, vinylidene chloride, styrene, and divinylbenzene, and the mixture is added to water and suspended. A method of producing a chelate resin by performing a turbid polymerization reaction and saponifying the resulting resin, and a method of producing a chelate resin by performing a chloromethylation reaction on a spherical resin of styrene-divinylbenzene with chloromethyl methyl ether. Examples include a method of producing a chelate resin by reacting a resin, or at least one of vinyl chloride resin and vinylidene chloride resin with an amino acid, iminoacetic acid, iminodiacetic acid, iminopropionic acid, iminodipropionic acid, and the like. Examples of methods for contacting the H-type chelate resin with the above-mentioned mixed aqueous solution include a batch method, a column method, etc. Further, in the column method, a circulation method, a transient method using an upward flow or a downward flow, etc. are mentioned. The water flow rate in the column method is 0.1 to 20/hr--Resin
is preferred. The present invention is not limited to these methods. Hereinafter, the present invention will be explained in more detail with reference to Examples. Example 1 Using a Ca-type chelate resin having an epoxy resin as a base and an iminopropionic acid group and an iminodipropionic acid group as functional groups, 10 g of cadmium ion was adsorbed per resin by a batch method. Pack 50ml of this resin into a column with an inner diameter of 25mm, and pass 300ml of 0.5NHCl aqueous solution at a flow rate of 2/hr.
--Resin was passed through in a downward flow to elute and recover cadmium. Next, 150 ml of tap water was passed through the column to push out the HCl aqueous solution remaining in the column, and then 350 ml of a mixed aqueous solution containing 10% CaCl 2 and 0.2% NaOH was passed through the column at a flow rate of 3/hr. , the liquid was passed in an upward flow. Furthermore, after removing the mixed aqueous solution remaining in the column from the bottom of the column, 100 ml of tap water was passed through the column at a flow rate of 3/hr--Resin in a downward flow to complete the regeneration of the resin. This recycled resin was removed from the column and the calcium content in the resin was measured, and the calcium content was 97% compared to before use. Example 2 Using styrene-divinylbenzene resin as a matrix,
Ca type chelate resin having iminopropionic acid group and iminodipropionic acid group as functional groups
100ml was stirred with 1NHCl1 in a beaker for 3 hours to elute calcium from the resin. The amount of calcium recovered was 20 g/-Resin. Next, this resin was thoroughly washed with water, and then stirred for 3 hours in a mixed aqueous solution of 50 g of calcium chloride and 1 g of sodium hydroxide adjusted to 500 ml with ion-exchanged water. After washing 100 ml of this resin twice with water, it was stirred with 1NHCl1 for 3 hours to elute calcium.
The amount of calcium recovered was 19.9g/-Resin
The playback rate was almost 100%. Example 3 After filling a column with an inner diameter of 80 mm with a Ca-type chelate resin 1 having a phenolic resin as a base and a glutamic acid group as a functional group, 2NHCl5 was passed through at a flow rate of 2/hr--Resin downward flow, Calcium elution was performed. By measuring the concentration of calcium ions in the eluent, the amount of eluted calcium can be determined.
It was 16.3g/-Resin. Next, after washing the resin by passing ion-exchanged water 2 under the same conditions, a mixed aqueous solution 5 containing 5% calcium chloride and 0.1% potassium hydroxide was flowed upward at a flow rate of 2/hr--Resin. It was circulated for 3 hours. After the mixed aqueous solution remaining in the column was drained from the bottom of the column, ion-exchanged water 2 was passed through the column for washing, and the regeneration was completed. Next, 2NHCl5 was applied in a downward flow at a flow rate of 2/hr-
Calcium was eluted from the resin by passing through -Resin, and the amount recovered was determined by measuring the concentration of calcium ions, which was 15.8 g/-Resin. Example 4 After filling a column with an inner diameter of 25 mm with 100 ml of a Ca-type chelate resin having an epoxy resin as a matrix and iminoacetic acid groups and iminodiacetic acid groups as functional groups, 400 ml of 2N HCl was passed through the column at a flow rate of 2/hr.
Calcium was eluted by flowing resin in a downward flow. The amount of eluted calcium is 18.1g/-
It was warm with resin. Next, 200 ml of ion-exchanged water was passed under the same conditions to wash the resin, and then 500 ml of a mixed aqueous solution containing 2% calcium chloride and 0.2% potassium hydroxide was poured in a downward flow at a flow rate of 2/hr. The liquid was passed through. Subsequently, 200 ml of ion-exchanged water was passed under the same conditions to complete the regeneration. Next, add 400ml of 2N HCl in a downward flow at a flow rate of 2/
A solution of hr--Resin was passed through the resin to elute calcium from the resin. The amount of calcium recovered is 17.9
g/-Resin, the recovery rate was 98.9%. Example 5 Using the same Ca salt type chelate resin as in Example 2, the amount of copper ions per resin was determined by the batch method.
15.4g was adsorbed. This copper ion adsorption resin 50ml
was packed in a column with an inner diameter of 25 mm, and 300 ml of 1N HCl was passed through the column in a downward flow at a flow rate of 2/hr--Resin to elute and recover copper ions. Next, 150ml of tap water
was passed through the column using SV2 to push out hydrochloric acid remaining in the column, and then 300 ml of a mixed aqueous solution containing 5% CaCl 2 and 0.05% KOH was passed through the column using SV3 in an upward flow. Furthermore, after removing the mixed aqueous solution remaining in the column from the bottom of the column, add 2000ml of tap water.
Water was passed through SV5 in an upward flow to complete resin regeneration. This regenerated resin was taken out from inside the column and the calcium content in the resin was measured. As a result, the calcium content was 98.7% compared to the Ca type chelate resin before copper ion adsorption. Example 6 Using the same Ca salt type chelate resin as in Example 3 (Ca adsorption amount: 20.5 g/-Resin), 12 g of zinc ions were adsorbed per resin by the batch method. Add 500ml of this zinc ion adsorption resin to 1N HCl
5 in a beaker for 5 hours to elute Zn 2+ . Next, this resin was sufficiently washed with water, and then added to mixed aqueous solution 2 in which 300 g of calcium chloride and 5 g of sodium hydroxide were dissolved in ion-exchanged water, and stirred for 3 hours. After washing 100ml of this Ca salt type resin twice with water, add 1N HCl 1 and 3
The mixture was stirred for an hour to elute calcium. The amount of calcium recovered was 19.7g/-Resin, which was approximately 96% lower than that of Ca salt type chelate resin before zinc ion adsorption.
% reproduction rate. Example 7 50 ml of H-type chelate resin with vinyl chloride resin as the resin base and lysine group as the functional group was prepared with an inner diameter of 25 mm.
Ca by the conventional method shown below.
The chlorination method and the Ca chlorination method according to the method of the present invention were carried out, and the volumetric expansion coefficient and adsorption amount of Ca were determined for each method, and the results are shown in Table 1. The volumetric expansion coefficient can be calculated using the formula from the height A of the highest resin layer shown in a series of Ca chlorination steps (in the conventional method, the highest value was shown when Na salt was formed) and the resin height B of the H-type chelate resin. It was determined by (A/B)×100.
The amount of Ca adsorbed per chelate resin was determined from the difference in concentration between the (CH 3 COO) 2 Ca aqueous solution before and after passing the solution through the column.

【表】【table】

【表】 実施例 8 表−1に示す樹脂母体及び官能基を有するCa
塩型キレート樹脂各々20mlを2N HCl 200mlとと
もにビーカー中で3時間撹拌し、樹脂からカルシ
ウムの溶離を行ない、カルシウムの吸着量C
(g/−Resin)を求めた。 次にこの樹脂を充分に水洗した後、硝酸カルシ
ウム35g、水酸化ナトリウム0.1gをイオン交換
水にて200mlに調整した混合水溶液中にて4時間
撹拌して各々Ca塩型キレート樹脂を得た。得ら
れたこれらの樹脂20mlを2回水洗後、2N HCl
200mlとともに3時間撹拌し、カルシウムの溶離
を行なつた。回収したカルシウムの量からカルシ
ウムの吸着量D(g/−Resin)を求め、式
(D/C)×100により再生率を求めて、その結果
を表−2に示す。
[Table] Example 8 Ca having the resin matrix and functional groups shown in Table-1
20 ml of each salt-type chelate resin was stirred with 200 ml of 2N HCl in a beaker for 3 hours to elute calcium from the resin, and the adsorption amount of calcium C
(g/-Resin) was determined. Next, this resin was sufficiently washed with water, and then stirred for 4 hours in a mixed aqueous solution containing 35 g of calcium nitrate and 0.1 g of sodium hydroxide adjusted to 200 ml with ion-exchanged water to obtain each Ca salt type chelate resin. After washing 20ml of these resins twice with water, 2N HCl
The mixture was stirred with 200 ml for 3 hours to elute calcium. The adsorption amount D (g/-Resin) of calcium was determined from the amount of recovered calcium, and the regeneration rate was determined using the formula (D/C) x 100. The results are shown in Table 2.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 重金属を吸着したキレート樹脂を鉱酸によ
り、重金属を溶離回収した後、カルシウム塩型キ
レート樹脂に再生する方法において、(1)キレート
樹脂の母体として、スチレン−ジビニルベンゼン
共重合樹脂、エポキシ樹脂、フエノール樹脂、塩
化ビニル樹脂、塩化ビニリデン樹脂の群のいずれ
か1種よりなり、かつ(2)その樹脂母体に結合する
キレート形成基として、アミノ酸、イミド酢酸、
イミノジ酢酸、イミノプロピオン酸、イミノジプ
ロピオン酸より選ばれたる少なくとも1種を有す
る酸型のキレート樹脂を、(3)NaOH、KOHから
選ばれた少なくとも1種のアルカリ金属の水酸化
物0.01〜1重量%並びに塩化カルシウム、硝酸カ
ルシウム、酢酸カルシウムの群のいずれか1種の
カルシウム塩0.5〜10重量%を含む水溶液と接触
せしめ、カルシウム塩型化することを特徴とする
キレート樹脂の再生方法。
1. In a method of regenerating a chelate resin that has adsorbed heavy metals into a calcium salt type chelate resin after eluting and recovering the heavy metals with a mineral acid, (1) as a base material of the chelate resin, a styrene-divinylbenzene copolymer resin, an epoxy resin, It is made of any one of the group consisting of phenolic resin, vinyl chloride resin, and vinylidene chloride resin, and (2) the chelate-forming group bonded to the resin matrix is an amino acid, imidoacetic acid,
An acid-type chelate resin containing at least one selected from iminodiacetic acid, iminopropionic acid, and iminodipropionic acid is combined with (3) 0.01 to 1% of the hydroxide of at least one alkali metal selected from NaOH and KOH. 1. A method for regenerating a chelate resin, which comprises contacting with an aqueous solution containing 0.5 to 10% by weight of a calcium salt of any one of the group consisting of calcium chloride, calcium nitrate, and calcium acetate to form a calcium salt.
JP9097179A 1979-07-19 1979-07-19 Regeneration of chelate resin Granted JPS5615845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9097179A JPS5615845A (en) 1979-07-19 1979-07-19 Regeneration of chelate resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9097179A JPS5615845A (en) 1979-07-19 1979-07-19 Regeneration of chelate resin

Publications (2)

Publication Number Publication Date
JPS5615845A JPS5615845A (en) 1981-02-16
JPS6228699B2 true JPS6228699B2 (en) 1987-06-22

Family

ID=14013381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9097179A Granted JPS5615845A (en) 1979-07-19 1979-07-19 Regeneration of chelate resin

Country Status (1)

Country Link
JP (1) JPS5615845A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848293U (en) * 1981-09-28 1983-04-01 株式会社チェリコ A toy that runs on a rail with an upper body tilt mechanism
JP2625562B2 (en) * 1990-01-22 1997-07-02 三菱電機株式会社 Breeding equipment
JPH0662704A (en) * 1992-08-17 1994-03-08 Zentokumaru Kensetsu:Kk Culturing device
CN103524710B (en) * 2013-09-22 2015-07-29 湖南师范大学 A kind of waste modified method preparing metal chelator of brominated epoxy resin
JP6317964B2 (en) * 2014-03-24 2018-04-25 田中貴金属工業株式会社 Method for separating palladium and platinum

Also Published As

Publication number Publication date
JPS5615845A (en) 1981-02-16

Similar Documents

Publication Publication Date Title
RU2114924C1 (en) Method of recovering precious metal from aqueous alkali cyanide solutions
JPS6228699B2 (en)
JPS60145913A (en) Elution of indium absorbed to chelate resin
MXPA02004285A (en) Process for the preparation of hetero-dispersed chelating resins.
EP0905264A1 (en) Recovery of precious metal
US2962351A (en) Treatment for improving the operation of strong base anion exchange resins
JPS6280237A (en) Method for concentrating and separating gallium in water
JPS6143096B2 (en)
JP2780098B2 (en) How to collect thallium
JPH01108118A (en) Selective separation and recovery of scandium
JPS62228436A (en) Method for separating and recovering cobalt
JPH0623051B2 (en) Recovery method of rhenium
JPH0239452B2 (en) JUKINZOKUNOKAISHUHOHO
JP2692730B2 (en) Gold separation method
JPS6121699B2 (en)
JPH0544957B2 (en)
JPH0346552B2 (en)
JP2017140593A (en) Method for treating selenium-containing water
US5429660A (en) Method for the recovery of gold value
JPS6280238A (en) Method for separating and recovering callium and indium from water containing gallium and indium
JPS5836678B2 (en) Method for producing sebacic acid dimethyl ester
JPS6352101B2 (en)
JPS61215215A (en) Separation of gallium from aqueous solution of aluminate
JPS62182113A (en) Fractionation and recovery of gallium and indium
JPS5983729A (en) Recovery of heavy metal