JPS6228676Y2 - - Google Patents
Info
- Publication number
- JPS6228676Y2 JPS6228676Y2 JP13322080U JP13322080U JPS6228676Y2 JP S6228676 Y2 JPS6228676 Y2 JP S6228676Y2 JP 13322080 U JP13322080 U JP 13322080U JP 13322080 U JP13322080 U JP 13322080U JP S6228676 Y2 JPS6228676 Y2 JP S6228676Y2
- Authority
- JP
- Japan
- Prior art keywords
- oil pan
- layer
- layer coating
- modulus
- young
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011248 coating agent Substances 0.000 claims description 39
- 238000000576 coating method Methods 0.000 claims description 39
- 239000000463 material Substances 0.000 claims description 16
- 239000010410 layer Substances 0.000 description 70
- 239000003921 oil Substances 0.000 description 65
- 238000013016 damping Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 14
- 239000010705 motor oil Substances 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 6
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 230000000452 restraining effect Effects 0.000 description 4
- 239000003190 viscoelastic substance Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000010425 asbestos Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000010454 slate Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 230000002730 additional effect Effects 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000030279 gene silencing Effects 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Vibration Prevention Devices (AREA)
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
Description
本考案は、振動抑制を図つた自動車用エンジン
のオイルパンに関する。
オイルパンは多くのエンジンおよび車両におい
て主要な騒音発生源となつており、従来から、オ
イルパンからの放射音を低減するための努力がは
らわれてきた。このために従来実施されてきた手
段としては、(1)オイルパンの板厚を増大する守
段、(2)オイルパンに補強板を溶接する手段、(3)オ
イルパンのプレス成形時にリブをつける手段など
があつた。更に、今後の課題として試行されてい
る手段として、(4)樹脂層をはさんだ二重鋼板(以
下、制振鋼板という。)によるオイルパン成形、
(5)シリンダブロツクからの振動伝達を防ぐ防振接
続手段、すなわちオイルパンのゴムフローテイン
グなどが提起されている。
一般に、オイルパンからの音は、エンジン内部
の爆発音の透過音よりも、シリンダブロツクを経
由して伝達した振動による固体伝達音の方が支配
的であるといわれる。この点を考慮すれば、上記
(1),(2),(3)の手段はそれぞれオイルパンの剛性を
高め振動レベルを下げるので有効である反面、振
動エネルギー損失を伴う手段ではないために、そ
の効果には限度があつた。
また、上記(4)の手段では、粘弾性体である樹脂
層のずり変形により振動エネルギー損失が図ら
れ、顕著な放射音低減効果が得られる反面、深絞
りを要するオイルパンのプレス成形が極めて困難
になるという問題があつた。とくにオイルシール
面にしわが生じやすいことと、仮にしわを生じな
くても、シリンダブロツクにボルト締めした後
に、中間の樹脂層が押しつぶされてトルクダウン
し、オイル洩れを生じやすいという点が指摘され
る。
更に、上記(5)の手段はオイルパンへの振動伝達
を少なくする手段であつて実験的には最も防振効
果が優れているといわれる反面、温度が最高120
℃前後まで上がつて振動と荷重がかかる状態で
の、長期の耐久性を確保することは極めて困難に
なるという問題があつた。しかも、この手段で
は、取付ボルトの一部分でもシリンダブロツクお
よびオイルパンの両方に接触すれば、オイルパン
への防振効果は極端に低下する点が認められる。
本考案は、制振鋼板と同じく粘弾性材料の振動
エネルギー損失による振動抑制(以下、制振とい
う。)機能によつてエンジンオイルパンの放射音
を低減することを図るとともに、オイルパン本体
の成形加工上の問題点およびオイルパンをシリン
ダブロツクに締付けた後のオイル洩れの問題点を
解消することを狙い、更にはオイルパンの形状や
放射音の発生状況に即した制振構造を安価にした
自動車用エンジンのオイルパンを提供することを
目的とする。
以下、本考案の実施例を図面に従つて説明す
る。
第1図および第2図は本考案に係る自動車用エ
ンジンのオイルパンの第1の実施例を示すもの
で、鋼板プレス製のオイルパン本体1は一部を段
付けしてへこませたオイル溜め用の凹部1aを有
しており、凹部1aの平坦部の面積を広く作製し
たものである。オイルパン本体1の上部にはフラ
ンジ面1bが形成されており、フランジ面1bに
は複数のボルト孔1cが穿設され、フランジ面1
bの裏側のボルト締め付け面1d側からボルト孔
1cに通したボルト(図示略)を介して、図示を
省略したシリンダブロツク側にオイルパン本体1
は取り付けられるようになつている。
オイルパン本体1は、その外側表面に塗装され
た粘弾性の第一層塗膜2と、その上に重ねて塗装
された第二層塗膜3と、更に平坦で比較的広い面
に限つて第二層塗膜3上に、その未硬化時に粘着
性を利用して貼り付けられた高剛性材料からなる
第三層板部材4を保持している。このオイルパン
において、第二層塗膜3は第一層塗膜2のうちボ
ルト締め付け面1dを除いた部分で重ねて塗装さ
れている。
第一層塗膜2は、エンジンの定常作動時にエン
ジン油温の伝熱を受け80〜100℃になつたとき、
この温度範囲で損失係数が0.5以上及びヤング率
が107〜108dyne/cm2となる層である。そしてその
上により一層高いヤング率の層、すなわち第二層
塗膜3及び第三層板部材4を重ね設けることによ
つて、拘束層付き制振材料の粘弾性層としての機
能を有し、エンジンからオイルパン本体1に伝わ
つた振動による振動エネルギーをずり変形によつ
て吸収するようになつている。
第二層塗膜3は拘束層として上記第一層塗膜2
の機能を強化するものであり、80〜100℃の温度
範囲でのヤング率が5.0〜1010dyne/cm2以上とな
る層である。そのヤング率は高いほど好ましい
が、塗装可能で第一層塗膜2および第三層板部材
4との接着性などの要件を考慮すれば、第二層塗
膜3の材料としては後述の材料が使用に適する。
第三層板部材4はそのヤング率が第二層塗膜3
より高くて、第二層塗膜3と同じく拘束層として
の機能を有する。その拘束層としての機能は第二
層塗膜3よりも優れているので、第三層板部材4
を設けうる範囲の第二層塗膜3は第三層板部材4
を貼り付けるのに必要な最小膜厚で足りる。
本考案の好ましい具体例においては、第一層塗
膜2は関西ペイント社のBX−100アンダーコート
(商品名)によつて得ることができ、その膜厚は
自動車用エンジンのオイルパンで一般的な1.2〜
1.6mm厚鋼板上に塗装する場合には0.1〜0.3mmが適
当である。この厚みの範囲外、すなわち0.1mmよ
り下値側では作用時に急激な複合損失係数の低下
をもたらし、また0.3mmより上値側では制振機能
のうえでの制約はないものの厚くしても付加効果
は小さく、ボルト締め付け部への影響、工程上、
コスト上の理由から除外される。
第二層塗膜3は関西ペイント社のBX−100トツ
プコート(商品名)、日本ゴム社のV606(商品
名)および三洋化成工業社のサンフオームIC−
3072(商品名)、を主成分とするウレタンセメン
トなどによつて得ることができ、その膜厚は1.0
〜5.0mmの範囲内、更に好ましくは使用されるオ
イルパン本体の板厚の1〜2倍程度が適当であ
る。制振効果としては膜厚が厚いほど向上する
が、硬化の過程および経時後の体積収縮のために
制約を受ける点や重量、コスト、作業性等を考慮
すれば、上記膜厚範囲が適当である。しかも上記
塗料は体積収縮が小さく、重量、コストや作業性
等に優れている点から使用に適する。
なお、上に第三層板部材4を設ける第二層膜厚
3の部位については、接着に必要な最小膜厚で十
分であるが、厳密な塗り分けは実施困難であり一
般には0.1mm以上の膜厚が適当である。
第三層板部材4はヤング率が高い平板状の金属
板や石綿スレート板などによつて得ることがで
き、その厚さは拘束層としての機能を一定とする
ならヤング率が高い材料ほど薄くてもよく、板厚
0.5〜4.0mmが一般的な厚さの範囲である。例え
ば、第三層板部材4の厚さは、ヤング率2.1×
1012dyne/cm2の鋼板を用いた場合ではオイルパン
本体1の板厚と同等程度(1.2〜1.6mmの範囲)が
好ましく、また石綿スレート板を用いた場合では
オイルパン本体1の板厚の二倍程度が好ましい。
第三層板部材4は、第二層膜厚3より高いヤン
グ率を有し拘束層としての機能が大でありなが
ら、オイルパンの曲面形状に適用するには精密な
成形加工を要し実用的でない点から、平板状のも
のが使用に適する。また、第二層塗膜3が高温で
ヤング率低下の傾向を示すのに対して、実質上ヤ
ング率不変である第三層板部材4は高温になるほ
ど拘束層としての機能を発揮するものである。
次に、この実施例の作用・効果を説明する。
オイルパンは、使用時にはシリンダブロツクに
取り付けられる。エンジンの定常作動時には第一
層塗膜2はエンジン油温の伝熱を受け、80〜100
℃の温度範囲になつたとき、損失係数0.5以上で
ヤング率107〜108dyne/cm2となる層であり、その
上に重ねた高いヤング率を有する第二層塗膜3と
第三層板部材4を重ねることにより一般に拘束層
付き制振材料と呼ばれるものの粘弾性層として働
く。したがつて、オイルパン本体1に伝わつたエ
ンジンからの振動エネルギーをずり変形によつて
吸収する。
ここでいう拘束型制振材とは、基板の片側に粘
弾性層を密着させてその表面にヤング係数の高い
拘束層を設けた制振材で、基板の曲げ振動に伴う
伸縮をその反対側で拘束するために粘弾性層に生
じるせん断変形によつてエネルギー吸収を行うも
のである。
これを本考案についてみると、基板がオイルパ
ン本体1に、粘弾性層が第一層塗膜2に、そして
拘束層が、第二層塗膜3のみの部分(曲面部)と
第二層塗膜3および第三層板部材4の重なる部分
(平面部)とに相当する。また拘束層を、上記の
ようにオイルパン本体1の部位により、二通りと
する理由は、拘束層を構成する材料の特性とオイ
ルパン本体1の形状に基く特性との整合を図るた
めである。すなわち、
拘束層材料の特性としては、第二層塗膜3の場
合は、オイルパン本体1の平面部および曲面部の
いずれにも施工できるが、ヤング率が比較的低
く、したがつて低周波域の放射音を低下させる効
果が小さく、しかもヤング率は温度依存性があ
り、高温になるほど低下するので、エンジンの作
動時に50〜80℃程度まで昇温するオイルパン本体
1に単独に使用しても充分な効果が得られず、他
方、第三層板部材4の場合は、平面部にしか施工
できないが、材料としては、ヤング率が高く、上
記温度範囲ではヤング率を不変とみなし得る材料
を選択できることにあり、またオイルパン本体1
の形状からくる特性としては、曲面部は剛性が高
く、高周波の放射音の発生源となり易く、平面部
は剛性が低く、低周波の放射音の発生源となり易
いことである。
次に、ヤング率および損失係数を数値限定した
理由について述べると、損失係数ηは、次式によ
つて与えられることが知られている。
η=12gη2/1+2g+(1+η2)g2・E3h
3/E1h1・(h31/h1)2
ただし、
E1,E3:基板、拘束材のヤング率(N/cm2)
h1,h3:基板、拘束材の厚さ(m)
h31:等価曲げ剛性 (=〔h2+12(h1+h3)〕/12)
η2:粘弾性材の損失係数
g:shear parameter
g=fS/f,
The present invention relates to an oil pan for an automobile engine that suppresses vibration. Oil pans are a major source of noise in many engines and vehicles, and efforts have been made to reduce the sound radiated from the oil pan. Conventional methods for this purpose include (1) increasing the thickness of the oil pan, (2) welding a reinforcing plate to the oil pan, and (3) adding ribs during press forming of the oil pan. I found a way to attach it. Furthermore, as a method that is being tried as a future issue, (4) oil pan molding using double steel plates (hereinafter referred to as vibration damping steel plates) with a resin layer sandwiched in between;
(5) Anti-vibration connection means for preventing vibration transmission from the cylinder block, such as rubber floating in the oil pan, have been proposed. In general, it is said that the sound from the oil pan is dominated by structure-transmitted sound due to vibrations transmitted via the cylinder block, rather than transmitted sound from the explosion inside the engine. Considering this point, the above
Measures (1), (2), and (3) are effective because they increase the rigidity of the oil pan and reduce the vibration level, but their effectiveness is limited because they do not involve loss of vibration energy. . In addition, with the method (4) above, vibration energy loss is achieved through shear deformation of the resin layer, which is a viscoelastic body, and a remarkable effect of reducing radiated sound can be obtained, but the press forming of the oil pan, which requires deep drawing, is extremely difficult. The problem was that it became difficult. It has been pointed out that wrinkles are particularly likely to form on the oil seal surface, and even if wrinkles do not form, after the bolts are tightened to the cylinder block, the intermediate resin layer is crushed and torque is reduced, causing oil leakage. . Furthermore, although the above method (5) is a means for reducing the transmission of vibration to the oil pan and is said to have the best vibration-proofing effect experimentally, it is
There was a problem in that it was extremely difficult to ensure long-term durability under conditions of vibration and load as temperatures rose to around 30°F. Moreover, with this method, if even a portion of the mounting bolt comes into contact with both the cylinder block and the oil pan, it is recognized that the vibration damping effect on the oil pan will be extremely reduced. This invention aims to reduce the sound radiated from the engine oil pan by using the vibration suppression (hereinafter referred to as vibration damping) function due to the vibration energy loss of the viscoelastic material, similar to the vibration damping steel plate, and also aims to reduce the sound radiated from the engine oil pan. The aim was to solve processing problems and the problem of oil leakage after tightening the oil pan to the cylinder block, and also to create a low-cost vibration damping structure that was tailored to the shape of the oil pan and the situation in which radiated sound was generated. Its purpose is to provide oil pans for automobile engines. Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a first embodiment of an oil pan for an automobile engine according to the present invention, in which an oil pan body 1 made of a pressed steel plate has a partially stepped and recessed oil pan. It has a recess 1a for reservoir, and the flat area of the recess 1a is made wide. A flange surface 1b is formed in the upper part of the oil pan body 1, and a plurality of bolt holes 1c are bored in the flange surface 1b.
The oil pan body 1 is attached to the cylinder block side (not shown) through a bolt (not shown) passed through the bolt hole 1c from the bolt tightening surface 1d side on the back side of b.
is ready to be installed. The oil pan body 1 has a viscoelastic first layer coating 2 coated on its outer surface, a second layer coating 3 coated thereon, and a flat and relatively wide surface. A third layer plate member 4 made of a highly rigid material is held on the second layer coating 3 by utilizing its adhesive properties when uncured. In this oil pan, the second layer coating 3 is overlaid on a portion of the first layer coating 2 excluding the bolt tightening surface 1d. When the first layer coating 2 receives heat transfer from the engine oil temperature during steady engine operation and reaches a temperature of 80 to 100 degrees Celsius,
This layer has a loss coefficient of 0.5 or more and a Young's modulus of 10 7 to 10 8 dyne/cm 2 in this temperature range. Then, by overlapping a layer with a higher Young's modulus, that is, a second layer coating 3 and a third layer plate member 4, it functions as a viscoelastic layer of the vibration damping material with a constraining layer. Vibration energy due to vibrations transmitted from the engine to the oil pan body 1 is absorbed by shear deformation. The second layer coating 3 serves as a constraining layer for the first layer coating 2.
The layer has a Young's modulus of 5.0 to 10 10 dyne/cm 2 or more in the temperature range of 80 to 100°C. The higher the Young's modulus is, the more preferable it is, but considering the requirements such as paintability and adhesion with the first layer coating 2 and the third layer plate member 4, the materials for the second layer coating 3 are as follows. is suitable for use. The third layer plate member 4 has a Young's modulus equal to that of the second layer coating film 3.
It is higher and has a function as a constraining layer like the second layer coating film 3. Since its function as a restraining layer is superior to that of the second layer coating film 3, the third layer plate member 4
The second layer coating film 3 in the range where it can be provided is the third layer plate member 4
The minimum film thickness required for pasting is sufficient. In a preferred embodiment of the present invention, the first coating film 2 can be obtained by using BX-100 Undercoat (trade name) manufactured by Kansai Paint Co., Ltd., and its film thickness is the same as that commonly used in oil pans of automobile engines. Na1.2~
When painting on a 1.6mm thick steel plate, 0.1 to 0.3mm is appropriate. If the thickness is outside this range, that is, if it is lower than 0.1 mm, the composite loss coefficient will drop sharply during operation, and if it is higher than 0.3 mm, there is no restriction on the damping function, but even if it is thick, there will be no additional effect. Small, impact on bolt tightening area, process,
Excluded for cost reasons. The second layer coating 3 is Kansai Paint Co., Ltd.'s BX-100 Top Coat (product name), Nippon Rubber Co., Ltd.'s V606 (product name), and Sanyo Chemical Industries, Ltd.'s Sunform IC-
3072 (trade name), the main component of which is urethane cement, etc., and the film thickness is 1.0
Appropriately, the thickness is within the range of ~5.0 mm, more preferably approximately 1 to 2 times the thickness of the oil pan body used. The damping effect improves as the film thickness increases, but the above film thickness range is appropriate considering the limitations due to the curing process and volumetric shrinkage over time, as well as weight, cost, workability, etc. be. Moreover, the above-mentioned coating material has a small volumetric shrinkage and is suitable for use because it is excellent in weight, cost, workability, etc. In addition, for the part with the second layer thickness 3 on which the third layer plate member 4 is provided, the minimum thickness required for adhesion is sufficient, but it is difficult to apply strict separation, and generally it is 0.1 mm or more. The film thickness is appropriate. The third layer plate member 4 can be obtained from a flat metal plate or asbestos slate plate having a high Young's modulus, and the thickness of the material is thinner as the Young's modulus is higher, assuming that the function as a constraining layer is constant. The plate thickness may be
A common thickness range is 0.5-4.0mm. For example, the thickness of the third layer plate member 4 is Young's modulus 2.1×
When using a 10 12 dyne/cm 2 steel plate, it is preferable to have a thickness similar to that of the oil pan body 1 (in the range of 1.2 to 1.6 mm), and when using an asbestos slate plate, the thickness of the oil pan body 1 should be the same. It is preferably about twice as much. Although the third layer plate member 4 has a higher Young's modulus than the second layer thickness 3 and has a great function as a restraining layer, it requires precise molding to be applied to the curved shape of the oil pan, making it impractical. A flat plate is suitable for use because it is not a target. Furthermore, while the second layer coating film 3 shows a tendency for Young's modulus to decrease at high temperatures, the third layer plate member 4, whose Young's modulus remains essentially unchanged, exhibits its function as a constraining layer as the temperature increases. be. Next, the functions and effects of this embodiment will be explained. The oil pan is attached to the cylinder block when in use. During steady engine operation, the first coating film 2 receives heat transfer from the engine oil temperature, and
It is a layer with a loss coefficient of 0.5 or more and a Young's modulus of 10 7 to 10 8 dyne/cm 2 when the temperature reaches the temperature range of °C. By stacking the layered plate members 4, it acts as a viscoelastic layer of what is generally called a vibration damping material with a constraining layer. Therefore, the vibration energy from the engine transmitted to the oil pan body 1 is absorbed by shear deformation. The constrained vibration damping material referred to here is a vibration damping material in which a viscoelastic layer is closely attached to one side of the substrate, and a constraining layer with a high Young's modulus is provided on the surface. Energy is absorbed by the shear deformation that occurs in the viscoelastic layer due to the restraint. Looking at this in the present invention, the substrate is the oil pan body 1, the viscoelastic layer is the first layer coating 2, and the constraint layer is the part where only the second layer coating 3 (curved surface part) and the second layer This corresponds to the overlapping portion (plane portion) of the coating film 3 and the third layer plate member 4. Furthermore, the reason why there are two types of constraint layers depending on the parts of the oil pan body 1 as described above is to match the characteristics of the material that constitutes the constraint layer with the characteristics based on the shape of the oil pan body 1. . That is, as for the characteristics of the constraining layer material, in the case of the second layer coating film 3, it can be applied to both flat and curved parts of the oil pan body 1, but the Young's modulus is relatively low, and therefore it is difficult to apply low frequency It has a small effect on reducing the radiated sound in the region of On the other hand, in the case of the third layer plate member 4, it can only be applied to flat surfaces, but the material has a high Young's modulus, and the Young's modulus can be considered unchanged in the above temperature range. The material can be selected, and the oil pan body 1
Characteristics resulting from the shape of the curved surface are that the curved portion has high rigidity and is likely to be a source of high-frequency radiated sound, and the flat portion has low rigidity and is likely to be a source of low-frequency radiated sound. Next, the reason why the Young's modulus and the loss coefficient are numerically limited will be described. It is known that the loss coefficient η is given by the following equation. η=12gη 2 /1+2g+(1+η 2 )g 2・E 3 h
3 /E 1 h 1・(h 31 /h 1 ) 2 However, E 1 , E 3 : Young's modulus of the substrate and restraining material (N/cm 2 ) h 1 , h 3 : Thickness of the substrate and restraining material ( m) h 31 : Equivalent bending stiffness (=[h 2 +12 (h 1 + h 3 )]/12) η 2 : Loss coefficient of viscoelastic material g: shear parameter g=f S /f,
【式】
G2:粘弾性材のせん断弾性係数
h2:粘弾性材の厚さ(m)
ρ1:基板の密度(Kg/m3)
損失係数が大きいほど、制振効果が大きく、し
たがつて基板(オイルパン本体1)の振動による
放射音が小さくなるが、一般にはηの値が0.05以
上であるときに有効であるされている。上記数値
限定の意義は、η≧0.05を満足させることを一義
的とし、これに第6頁第16行〜第9頁第4行に記
載した主として施工上の制約を加味して決定され
る。
特に、上記材料および膜厚で構成したオイルパ
ンをシリンダブロツクに取り付けたエンジンで
は、エンジンのオイルパン以外の部位をガラスウ
ールと鉛とにより遮音した状態で、オイルパン近
傍に設けたマイクロホンにてとらえた音圧試験に
よれば、オイルパンからの放射音による音圧は、
オイルパン本体1のみに比べて2デシベル以上低
減することが認められた。
しかも、この実施例でのオイルパンは、外面の
みに塗装等を施して第一層塗膜2に十分な防錆力
を持たせ、かつオイルパン製造後、早期にエンジ
ンブロツクに組付けを実施すれば、オイルパンの
内面には防錆処理を省略できる。したがつて、従
来のオイルパンが一般に内、外面共電着塗装、
APコーテイングなどにより防錆塗装を実施して
いたのに対して、内面にまで塗装した場合に長期
間、高温のエンジンオイルが作用することによる
内面塗膜の剥がれとかオイルフイルタの目詰まり
を生ずるという虞れを解決でき、オイルパンの制
振によるコストアツプの軽減を図れる。
第3図は本考案に係るオイルパンの第二の実施
例を示したもので、本オイルパンは第1図、第2
図のオイルパン本体1の内外面に防錆塗膜層5を
塗装し、その上に第1の実施例と同様な塗装等を
その外面側に施して制振を図つたものである。
この防錆膜層5の厚みは、一般に0.02mm以下で
あり、実質上制振効果への影響は無視しうる。た
だし、長期間、高温のエンジンオイルが作用する
ことによる内面塗膜の剥がれがないことや、第一
層塗膜2、第二層塗膜3、第三層板部材4を外面
側の防錆塗膜層5の上に重層したことによる層間
剥がれを生じないことを十分確認する必要があ
る。
この実施例によれば、上述の第1の実施例の作
用・効果に加え、この実施例のオイルパンを市場
への補給部品として出荷する場合などに、内面か
らの発錆を防ぐために好ましい効用を有する。
第3図は本考案の第3の実施例を示したもの
で、本オイルパンは第1図及び第2図のオイルパ
ン本体1の内外両面に第1の実施例と同様な塗装
等を施したものである。したがつて、第1の実施
例と同一構成要素には同一符号を付し、その説明
を省略する。
この実施例によれば、上述の第1の実施例の作
用効果に加え、オイルパンの制振効果をより高度
に要求される場合とか、オイルパンの平面部が比
較的小面積で第三層板部材4を設けうる範囲が狭
く、片面のみの制振では必要な制振効果が得られ
ない場合とかに、採られるべき好ましい態様を示
し、これらの要望を満足する効果を有する。
したがつて以上のような構成をもつ本考案によ
れば、エンジン作動時に振動がシリンダブロツク
からオイルパンに伝達して、共鳴または強制振動
によつて発生するオイルパンからの放射音の低減
が可能となる。そしてこれによつて、車外騒音規
制への対応を図り、併せて車室内音およびエンジ
ンアイドリング中の車両近傍音の静粛化によつて
自動車の商品価値を高めることができる。特に、
車外騒音規制への対処としてデイーゼルエンジン
の対策が困難な状況の中で本考案に係る自動車用
エンジンオイルパンは車外騒音低減手段として誠
に優れたものといえる。
また、本考案はオイルパンの放射音低減の従来
の手段である制振鋼板を用いたオイルパン適用に
比べ、プレス成形、溶接、塗装の各工程での解決
困難な問題点を回避でき、オイルシール部のボル
ト締め付けトルクダウンによるエンジン油洩れを
生じ難くするという利点も有する。[Formula] G 2 : Shear modulus of elasticity of viscoelastic material h 2 : Thickness of viscoelastic material (m) ρ 1 : Density of substrate (Kg/m 3 ) The larger the loss coefficient, the greater the vibration damping effect. As a result, the radiated sound due to the vibration of the substrate (oil pan main body 1) becomes smaller, but it is generally said to be effective when the value of η is 0.05 or more. The significance of the above-mentioned numerical limitation is primarily determined by satisfying η≧0.05, taking into account the construction constraints described from page 6, line 16 to page 9, line 4. In particular, in an engine in which an oil pan made of the above material and film thickness is attached to the cylinder block, sound is insulated from parts of the engine other than the oil pan with glass wool and lead, and the sound is captured by a microphone installed near the oil pan. According to sound pressure tests, the sound pressure due to the sound radiated from the oil pan is:
It was confirmed that the oil pan body 1 was reduced by more than 2 decibels compared to the oil pan body 1 alone. Furthermore, the oil pan in this embodiment is coated only on the outer surface to give the first layer coating 2 sufficient anti-rust power, and is assembled to the engine block early after the oil pan is manufactured. In this way, it is possible to omit rust prevention treatment on the inner surface of the oil pan. Therefore, conventional oil pans are generally electrodeposited on both the inside and outside surfaces.
Anti-rust coating was applied using AP coating, etc., but if the inner surface is coated, the inner coating may peel off or the oil filter may become clogged due to the action of high-temperature engine oil over a long period of time. It is possible to solve the problem and reduce the cost increase due to damping of oil pan vibration. Figure 3 shows a second embodiment of the oil pan according to the present invention, and this oil pan is shown in Figures 1 and 2.
A rust-preventing coating layer 5 is applied to the inner and outer surfaces of the oil pan main body 1 shown in the figure, and the same coating as in the first embodiment is applied to the outer surface thereof to suppress vibration. The thickness of this anticorrosion film layer 5 is generally 0.02 mm or less, and its influence on the vibration damping effect is substantially negligible. However, the inner coating film should not peel off due to the action of high-temperature engine oil for a long period of time, and the first layer coating film 2, the second layer coating film 3, and the third layer plate member 4 should be protected against rust on the outer surface side. It is necessary to sufficiently confirm that interlayer peeling does not occur due to overlaying on the coating layer 5. According to this embodiment, in addition to the functions and effects of the above-mentioned first embodiment, the oil pan of this embodiment has a preferable effect for preventing rust from forming from the inner surface when shipped as a spare part to the market. has. FIG. 3 shows a third embodiment of the present invention, in which the oil pan body 1 shown in FIGS. This is what I did. Therefore, the same components as those in the first embodiment are given the same reference numerals, and the explanation thereof will be omitted. According to this embodiment, in addition to the effects of the above-mentioned first embodiment, the third layer can be used in cases where a higher vibration damping effect of the oil pan is required, or where the flat area of the oil pan is relatively small. In cases where the range in which the plate member 4 can be provided is narrow and the necessary vibration damping effect cannot be obtained with vibration damping on only one side, a preferred embodiment that should be adopted is shown, and has the effect of satisfying these demands. Therefore, according to the present invention having the above-described configuration, vibrations are transmitted from the cylinder block to the oil pan when the engine is operating, and it is possible to reduce the sound radiated from the oil pan caused by resonance or forced vibration. becomes. As a result, it is possible to comply with vehicle exterior noise regulations, and at the same time, it is possible to increase the commercial value of the automobile by silencing the interior sound of the vehicle and the sound near the vehicle during engine idling. especially,
In a situation where it is difficult to take measures against diesel engines to comply with vehicle exterior noise regulations, the automobile engine oil pan according to the present invention can be said to be truly excellent as a means for reducing vehicle exterior noise. In addition, compared to applying an oil pan using damping steel plates, which is the conventional means of reducing noise radiated from oil pans, this invention avoids problems that are difficult to solve in each process of press forming, welding, and painting. It also has the advantage of making it difficult for engine oil to leak due to a reduction in bolt tightening torque at the seal portion.
第1図は本考案の第1の実施例を示す平面図、
第2図は第1図の−線に沿う縦断面図、第3
図は本考案の第2の実施例の一部を示す縦断面
図、第4図は本考案の第3の実施例の一部を示す
縦断面図である。
1……オイルパン本体、2……第一層塗膜、3
……第二層塗膜、4……第三層板部材。
FIG. 1 is a plan view showing a first embodiment of the present invention;
Figure 2 is a longitudinal sectional view taken along the - line in Figure 1;
The figure is a longitudinal sectional view showing a part of the second embodiment of the present invention, and FIG. 4 is a longitudinal sectional view showing a part of the third embodiment of the invention. 1... Oil pan body, 2... First layer coating film, 3
...Second layer coating film, 4...Third layer plate member.
Claims (1)
のヤング率が107〜108dyne/cm2及び損失係数が
0.5以上の粘弾性の第一層塗膜を設け、該第一層
塗膜の上に80〜100℃の温度範囲でのヤング率が
5.0×1010dyne/cm2以上である第二層塗膜を設
け、オイルパン本体の平面部における該第二層塗
膜上には80〜100℃の温度範囲でのヤング率が該
第二層塗膜より大である高剛性材料からなる第三
層板部材を設けたことを特徴とする自動車用エン
ジンのオイルパン。 On the oil pan body, the Young's modulus in the temperature range of 80 to 100°C is 10 7 to 10 8 dyne/cm 2 and the loss coefficient is
A first layer coating film with a viscoelasticity of 0.5 or more is provided, and a Young's modulus in a temperature range of 80 to 100°C is provided on the first layer coating film.
A second layer coating film having a thickness of 5.0×10 10 dyne/cm 2 or more is provided, and the Young's modulus in the temperature range of 80 to 100°C is the second layer coating film on the flat surface of the oil pan body. An oil pan for an automobile engine, characterized in that a third layer plate member made of a highly rigid material is larger than the layer coating film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13322080U JPS6228676Y2 (en) | 1980-09-19 | 1980-09-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13322080U JPS6228676Y2 (en) | 1980-09-19 | 1980-09-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5757212U JPS5757212U (en) | 1982-04-03 |
JPS6228676Y2 true JPS6228676Y2 (en) | 1987-07-23 |
Family
ID=29493445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13322080U Expired JPS6228676Y2 (en) | 1980-09-19 | 1980-09-19 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6228676Y2 (en) |
-
1980
- 1980-09-19 JP JP13322080U patent/JPS6228676Y2/ja not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS5757212U (en) | 1982-04-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2284421C2 (en) | Engine intake manifold unit glued by binding material | |
US12042884B2 (en) | Laminate including aluminum sheets | |
EP0335642B1 (en) | Vibration damping materials and soundproofing structures using such damping materials | |
US4522165A (en) | Noise reducing cover for an internal combustion engine | |
US9168880B2 (en) | Panel assembly having multi-layer patch for sound damping | |
US5347810A (en) | Damped heat shield | |
EP1916398B1 (en) | Vibration damping member | |
US20090183821A1 (en) | Constrained layer damping system and method of making the same | |
JPS6228676Y2 (en) | ||
CN107073892A (en) | Apparatus and method for the sound of relief member | |
WO2022038842A1 (en) | Collision energy absorption component for automobile, and method for manufacturing said collision energy absorption component for automobile | |
Jenkins et al. | Diesel engine noise reduction hardware for vehicle noise control | |
JP6140062B2 (en) | Rail soundproof structure | |
JPH0349101Y2 (en) | ||
JPH038819Y2 (en) | ||
JPS6010213Y2 (en) | vehicle fuel tank | |
RU2155283C1 (en) | Vibration and noise dampening sheet material | |
JPH0680293B2 (en) | Exhaust pipe manufacturing method | |
RU2333545C2 (en) | Vibration-and-noise damping flat-sheet gasket | |
JPH07774Y2 (en) | Metal gasket for cylinder block | |
JPH0326337Y2 (en) | ||
JPH01316539A (en) | Dynamic damper | |
KR20230105535A (en) | Motor mount structure with improved high-frequency dynamic characteristics | |
JP2567922Y2 (en) | Connecting device for engine and torque converter | |
JP2015230070A (en) | Engine mount manufacturing method |