JPS6228635A - Inspecting method for cut section of optical fiber - Google Patents

Inspecting method for cut section of optical fiber

Info

Publication number
JPS6228635A
JPS6228635A JP16743185A JP16743185A JPS6228635A JP S6228635 A JPS6228635 A JP S6228635A JP 16743185 A JP16743185 A JP 16743185A JP 16743185 A JP16743185 A JP 16743185A JP S6228635 A JPS6228635 A JP S6228635A
Authority
JP
Japan
Prior art keywords
optical fiber
cut
fiber
acoustic emission
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16743185A
Other languages
Japanese (ja)
Other versions
JPH0613998B2 (en
Inventor
Yoshiaki Miyajima
宮島 義昭
Motoyuki Amaike
天池 基之
Hiroshi Ishihara
石原 浩志
Yukiyasu Negishi
根岸 幸康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16743185A priority Critical patent/JPH0613998B2/en
Publication of JPS6228635A publication Critical patent/JPS6228635A/en
Publication of JPH0613998B2 publication Critical patent/JPH0613998B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To easily identify the condition of the cut section and an optical fiber, by detecting the acoustic emission produced when the optical fiber is cut with a sensor. CONSTITUTION:After an optical fiber (not shown in the figure) is set on a plate spring 1 or optical fiber guiding plate 7, a fine streak is formed in the surface of the fiber with an edge 2. Then the optical fiber is cut by giving a bending stration to the fiber by bending the plate sprint 1. Since the stress- strain energy is released at the moment when the optical fiber is cut, an acoustic pulse (acoustic emission) is produced at the time of destruction. The acoustic pulse is detected with a sensor 8 and observed by means of an oscilloscope 10 through an amplifier 9. Since the acoustic emission is continuously observed for a period of about three seconds when the cut section becomes a flat perpendicular face, the cut condition can be identified easily.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は切断した光ファイバの断面形状の良否を識別す
る光ファイバ切断面の検査方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for inspecting a cut surface of an optical fiber for determining whether the cross-sectional shape of a cut optical fiber is acceptable or not.

(従来の技術) 従来の光ファイバ切断方法は、切断すべき光ファイバの
表面に、ダイヤモンドまたは鋼等から成る鋭利な刃によ
り微小傷を与えた後、引張り力と曲げ力を印加すること
によって切断する手法が一般に用いられている。また特
殊な例として、炭酸ガスレーザの光線により、ファイバ
表面の微小な範囲を熔かして微小傷を与えた後、引張り
力と曲げ力を印加する方法または細い金属線をファイバ
に巻き付け、これに電流を流して発熱させた熱でファイ
バ内に温度勾配を生ぜしめ、熱応力を利用して切断する
方法等が提案されている。
(Prior art) In the conventional optical fiber cutting method, the surface of the optical fiber to be cut is made minute scratches with a sharp blade made of diamond or steel, and then the optical fiber is cut by applying tensile force and bending force. This method is commonly used. In addition, as a special example, a method is used in which a carbon dioxide laser beam is used to melt a small area on the fiber surface and cause a small scratch, and then tensile force and bending force are applied, or a thin metal wire is wound around the fiber. A method has been proposed in which a temperature gradient is generated within the fiber using heat generated by passing an electric current through the fiber, and the fiber is cut using thermal stress.

いずれの方法も、ファイバの破壊現象を利用したもので
あり、破壊の起点となる微小な傷をつけた後は、この傷
の部分に応力が作用すると傷が大きく進展し、ファイバ
を切断するに至る。従って破壊の進展がファイバに対し
て直角方向に進めば、切断面は良好な垂直面となる。
Both methods make use of the phenomenon of fiber destruction, and after making a small scratch that becomes the starting point for fracture, when stress is applied to this scratched part, the scratch progresses greatly, making it difficult to cut the fiber. reach. Therefore, if the fracture progresses in a direction perpendicular to the fiber, the cut plane will be a good vertical plane.

しかしながら、従来の技術では、切断時の曲げ応力を手
動で印加するので、切断するごとに条件は必ずしも一致
せず、切断面が斜めになったり、極端な場合にはバック
ルが生じ、平面とならない場合もある。
However, with conventional technology, bending stress is applied manually during cutting, so the conditions do not necessarily match each time the cutting is made, resulting in the cut surface being slanted, or in extreme cases buckling and not being flat. In some cases.

このような切断の失敗があると、光損失の測定、ファイ
バ接続時等に切断をやりなおす必要が生じ、作業能力が
低下するという欠点があった。さらにファイバの外径は
125 μmと小さく、目視では切断の失敗が判別でき
ないので、顕微鏡等で切断面を観測しなければならず、
短時間に識別できないという欠点もあった。
If such a cutting failure occurs, it becomes necessary to re-cut the fiber when measuring optical loss, connecting fibers, etc., and there is a drawback that the working capacity is reduced. Furthermore, the outer diameter of the fiber is as small as 125 μm, and it is not possible to visually determine if the cut has failed, so the cut surface must be observed using a microscope, etc.
Another drawback was that it could not be identified in a short time.

(発明が解決しようとする問題点) 光ファイバを切断した直後、比較的簡単な手法により、
短時間のうちに光ファイバ切断面の良否を識別すること
ができる光ファイバ切断面の検査方法を提供することに
ある。
(Problem to be solved by the invention) Immediately after cutting the optical fiber, by a relatively simple method,
It is an object of the present invention to provide a method for inspecting a cut surface of an optical fiber, which can identify the quality of the cut surface of an optical fiber in a short time.

(問題点を解決するだめの手段) 本発明は、光ファイバ切断点近傍に、光ファイバ切断時
に発生するアコースティックエミッションを検知できる
センサを配置し、これにより切断直後に切断面が良好な
垂直鏡面となっているか否かを識別する。
(Means for Solving the Problem) The present invention places a sensor near the optical fiber cutting point that can detect acoustic emissions generated when cutting the optical fiber, so that the cut surface becomes a good vertical mirror surface immediately after cutting. identify whether it is or not.

第1図は本発明の一実施例の構成図であって、■は板ば
ね、2は刃、3はアーム、4は軸、5は押え板、6はば
ね、7は光ファイバガイド板、8はアコースティックエ
ミッションセンサ、9は増幅器、10はオシロスコープ
である。
FIG. 1 is a configuration diagram of an embodiment of the present invention, where ■ is a leaf spring, 2 is a blade, 3 is an arm, 4 is a shaft, 5 is a holding plate, 6 is a spring, 7 is an optical fiber guide plate, 8 is an acoustic emission sensor, 9 is an amplifier, and 10 is an oscilloscope.

1〜7の部分は従来の光ファイバ切断器と同等であり、
光ファイバを板ばね1または光ファイバガイド板7上に
セットした後、刃2で光ファイバの表面に微小傷を生じ
させ、その後に、板ばね1を曲げることにより、光ファ
イバに曲げ歪みを与えて切断する。光ファイバが破断さ
れる瞬間には、光ファイバに加えられた応力歪みエネル
ギーが開放されるので、破壊時に音響パルスが発生し、
光ファイバ中を伝搬する。
Parts 1 to 7 are equivalent to conventional optical fiber cutters,
After setting the optical fiber on the leaf spring 1 or the optical fiber guide plate 7, a blade 2 is used to create minute scratches on the surface of the optical fiber, and then the leaf spring 1 is bent to give a bending strain to the optical fiber. Cut. At the moment the optical fiber breaks, the stress and strain energy applied to it is released, so an acoustic pulse is generated at the time of breakage.
Propagates through optical fiber.

この音響パルスは、アコースティックエミッションと呼
ハれ、このアコースティックエミッションを観測するこ
とにより、破壊の情況を知ることができる。
This acoustic pulse is called acoustic emission, and by observing this acoustic emission, the state of destruction can be known.

本発明では、光ファイバ切断器にアコースティックエミ
ッションセンサ8を配置し、破断時のアコースティック
エミッションのパルスヲ増幅a9で増幅し、オシロスコ
ープ10で観測することにより、光ファイバ切断面の良
否を識別することとしている。
In the present invention, an acoustic emission sensor 8 is disposed in an optical fiber cutter, and the pulse of acoustic emission at the time of break is amplified by an amplification a9, and observed with an oscilloscope 10 to identify whether the cut surface of the optical fiber is good or bad. .

第2図は観測したパルスを示し、(a)は切断面が良好
な垂直面となった場合のパルスであり、(b)は切断面
が複雑に破壊し平面となっていない場合のパルスである
。切断面がきれいな垂直面となる場合には、アコーステ
ィックエミッションは、約3 m5ecの間続いて観測
される。
Figure 2 shows the observed pulses; (a) is the pulse when the cut surface is a good vertical plane, and (b) is the pulse when the cut surface is broken in a complicated way and is not flat. be. If the cut plane is a clean vertical plane, acoustic emissions are observed to last for about 3 m5ec.

なお個々のパルスの間隔は約2.5μsecであり、こ
れらのパルスが集った形で、第2図(a) 、 (b)
に示すような波形が観測される。切断面が複雑に破壊す
る場合には、第2図(b)に示すように、10m5ec
以上にわたるアコースティックエミッションが観測でき
る。複雑な形状の破断面は、大きな歪みエネルギーが解
放された時に生じ易く、高い荷重で破断した時にしばし
ば観測される。これは解放されるエネルギーが大きいの
で、破断時に傷が成長するためのエネルギーも大きくな
り、破断面が複雑な形状となるためである。
The interval between individual pulses is approximately 2.5 μsec, and the aggregate form of these pulses is shown in Figures 2 (a) and (b).
A waveform like the one shown is observed. If the cut surface is complexly fractured, as shown in Figure 2 (b), 10m5ec.
The acoustic emissions described above can be observed. Fracture surfaces with complex shapes tend to occur when large strain energy is released, and are often observed when fracture occurs under high loads. This is because, since the released energy is large, the energy required for the growth of flaws at the time of fracture is also large, resulting in the fractured surface having a complicated shape.

このため、アコースティックエミッションのパルスも長
時間にわたって観測される。
Therefore, acoustic emission pulses are also observed over a long period of time.

従ってアコースティックエミッションの波形全観測する
ことにより、切断面の良否を判定できる。
Therefore, by observing the entire acoustic emission waveform, it is possible to judge whether the cut surface is good or bad.

さらに前述の特性をうまく利用して、アコースティック
エミッションパルスが10m5ec以上1続したら、ブ
ザーで警報音を発するようにすれば、切断の瞬間に切断
面の良否が識別できる。
Furthermore, by making good use of the above-mentioned characteristics, if an acoustic emission pulse continues for 10 m5ec or more, a buzzer sounds an alarm, so that the quality of the cut surface can be determined at the moment of cutting.

(発明の効果) 以上説明したように、本発明の光ファイノく切断面の検
査方法では、切断直後に切断面の良否を識別できるので
、光ファイバの測定または接続に際して、光ファイバを
きれいに切断する必要がある場合に、切断が不良のため
、切断のやりなおしをするのに短時間ですみ、作業時間
が短縮できるという利点がある。
(Effects of the Invention) As explained above, in the method for inspecting the cut surface of an optical fiber according to the present invention, it is possible to identify the quality of the cut surface immediately after cutting, so that the optical fiber can be cut cleanly when measuring or connecting the optical fiber. If necessary, it only takes a short time to re-cut the cut due to a defect, which has the advantage of shortening the working time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、 第2図(a)、 (b) は光ファイバ切断時のアコー
スティックエミッションパルスを示す図である。 1 板ばね      2−刃 3 アーム      4 軸 5 押え板      6 ばね 7 光ファイバガイド板 8 アコースティックエミッションセンサ9 増幅器 
     10  オシロスコープ特許 出 願人  
 日本電信電話株式会社第1図 、1 5・−一押叉櫃 6−t【ね 7−嵐7フイtC力゛イF、よ更 8−アコ−ステはグエミ、y/aJtン・す・q−増帽
鼻 10−一才シaスコーア
FIG. 1 is a block diagram of an embodiment of the present invention, and FIGS. 2(a) and 2(b) are diagrams showing acoustic emission pulses when cutting an optical fiber. 1 Leaf spring 2-blade 3 Arm 4 Shaft 5 Holding plate 6 Spring 7 Optical fiber guide plate 8 Acoustic emission sensor 9 Amplifier
10 Oscilloscope patent applicant
Nippon Telegraph and Telephone Corporation Figure 1, 1 5. q-added nose 10-1 year old sheas score

Claims (1)

【特許請求の範囲】[Claims] 1、光ファイバ表面に、刃で微小傷を生じせしめた後、
光ファイバに引張り力と曲げ力を印加することによって
光ファイバを切断し、その直後に光ファイバ切断点近傍
に配置した切断時に発生するアコースティックエミッシ
ョンを検知できるセンサの出力信号を、増幅器で増幅し
てオシロスコープで識別することにより、切断面の良否
を検査することを特徴とする光ファイバ切断面の検査方
法。
1. After creating small scratches on the surface of the optical fiber with a blade,
The optical fiber is cut by applying tensile force and bending force to the optical fiber, and immediately after that, an amplifier amplifies the output signal of a sensor that can detect the acoustic emissions generated when the optical fiber is cut, which is placed near the optical fiber cutting point. A method for inspecting a cut surface of an optical fiber, characterized by inspecting the quality of the cut surface by identifying it with an oscilloscope.
JP16743185A 1985-07-31 1985-07-31 Optical fiber cut surface inspection method Expired - Lifetime JPH0613998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16743185A JPH0613998B2 (en) 1985-07-31 1985-07-31 Optical fiber cut surface inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16743185A JPH0613998B2 (en) 1985-07-31 1985-07-31 Optical fiber cut surface inspection method

Publications (2)

Publication Number Publication Date
JPS6228635A true JPS6228635A (en) 1987-02-06
JPH0613998B2 JPH0613998B2 (en) 1994-02-23

Family

ID=15849577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16743185A Expired - Lifetime JPH0613998B2 (en) 1985-07-31 1985-07-31 Optical fiber cut surface inspection method

Country Status (1)

Country Link
JP (1) JPH0613998B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226588B1 (en) 1998-10-16 2001-05-01 Denso Corporation Informing apparatus for cruise control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6226588B1 (en) 1998-10-16 2001-05-01 Denso Corporation Informing apparatus for cruise control system

Also Published As

Publication number Publication date
JPH0613998B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
US5086207A (en) Monitoring of arc welding by analyzing modulation of radiation from carrier signals superimposed on weld current
Roberts et al. Acoustic emission monitoring of fatigue crack propagation
US5045669A (en) Method and apparatus for optically/acoustically monitoring laser materials processing
EP0122076B1 (en) A method of defect evaluation for ceramic products
US5026979A (en) Method and apparatus for optically monitoring laser materials processing
KR20080011202A (en) Acoustic emission system and method for on-line measurement of glass break energy
US20050120803A1 (en) Laser system and method for non-destructive bond detection and evaluation
US4960970A (en) Method and apparatus for acoustic breakthrough detection
JP2002536190A (en) Method and apparatus for crimping and securing a composite electrical insulator
CN106872581A (en) A kind of analysis method based on magnesium alloy electronic beam welded specimen crack Propagation
JPS6228635A (en) Inspecting method for cut section of optical fiber
JP2003053569A (en) System for controlling quality of laser cutting or drilling of metallic sheet in particular
JPS6340854A (en) Apparatus for judging propriety of cut face for optical fiber
US6633706B2 (en) Method for aligning optical fibers with a waveguide element
JPH09304354A (en) Method for detecting disconnection of cable element wire
JPS62214353A (en) Deciding device for cross section of optical fiber
JP4609618B2 (en) Optical fiber fusion splicing method
JP2535417B2 (en) Defective insulator detection method
Rooke Stress intensity factors for cracked holes in the presence of other boundaries
JP2533153B2 (en) Laser processing state monitoring device and laser processing state monitoring method
JPS62114786A (en) Method for monitoring processing condition
McKeighan et al. Sensing crack nucleation and growth in hard alpha defects embedded in Ti-6Al-4V alloy
JPS6067810A (en) Measurement of fractured position of optical fiber
JPS58189541A (en) Breakdown test-piece and breakdown testing method
JPH05332896A (en) Artificial crack test piece