JPS62285930A - Production of closed-cell crosslinked polyolefin resin foam - Google Patents

Production of closed-cell crosslinked polyolefin resin foam

Info

Publication number
JPS62285930A
JPS62285930A JP12818186A JP12818186A JPS62285930A JP S62285930 A JPS62285930 A JP S62285930A JP 12818186 A JP12818186 A JP 12818186A JP 12818186 A JP12818186 A JP 12818186A JP S62285930 A JPS62285930 A JP S62285930A
Authority
JP
Japan
Prior art keywords
polyolefin resin
foaming
crosslinking
foamable
closed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12818186A
Other languages
Japanese (ja)
Inventor
Toshiki Horie
堀江 俊樹
Toru Kino
徹 木野
Tetsuji Nagaresugi
流杉 哲司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP12818186A priority Critical patent/JPS62285930A/en
Publication of JPS62285930A publication Critical patent/JPS62285930A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain the title foam having fine cells and excellent surface chromaticity and surface smoothness, by introducing a crosslinkage into a polyolefin resin mixed with a heat-decomposable blowing agent and a polysiloxane oil and expanding the resin by heating. CONSTITUTION:A crosslinkage is introduced into an expandable resin formed by mixing a polyolefin resin with a heat-decomposable blowing agent and a polysiloxane oil, and the resin is expanded by heating. The polysiloxane oil which can be used include those which become oily and show fluidity at the processing temperature in the production of an expandable composition or an expandable molding and those which are oily (liquid) at normal temperature. Especially, when a modified polysiloxane formed by modifying a siloxane with a glycol is used, a closed-cell crosslinked polyolefin resin foam having fine cells and an improved surface whiteness can be produced in a suitable expansion efficiency.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔技術分野〕 本発明は、独立気泡型架橋ポリオレフィン系樹脂発泡体
の製造方法の改良に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field] The present invention relates to an improvement in a method for producing a closed-cell crosslinked polyolefin resin foam.

〔従来技術〕[Prior art]

一般に、熱分解型発泡剤を使用するポリオレフィン系樹
脂架橋発泡体の製造方法としては以下の様な方法が知ら
れている。
Generally, the following methods are known as methods for producing crosslinked polyolefin resin foams using thermally decomposable blowing agents.

(1)常圧化学架橋発泡法 ポリオレフィン系樹脂に熱分解型発泡剤及び加架剤を添
加し、該発泡剤及び該架橋剤を分解する事なしに、発泡
性成形体を得た後、該発泡性成形体を常圧下で加熱し、
架橋剤を分解させてポリオレフィン系樹脂に架橋構造を
導入した後、あるいは、導入しつつ、発泡剤を加熱分解
させて発泡させる方法。
(1) Atmospheric pressure chemical crosslinking foaming method A pyrolyzable blowing agent and a crosslinking agent are added to a polyolefin resin to obtain a foamable molded product without decomposing the blowing agent and the crosslinking agent. Heating the foamable molded product under normal pressure,
After or while introducing a crosslinking structure into a polyolefin resin by decomposing a crosslinking agent, a foaming agent is thermally decomposed and foamed.

(2)常圧電子線架橋発泡法 ポリオレフィン系樹脂に熱分解型発泡剤を添加し、該発
泡剤を分解する事なしに、発泡性成形体を得た後、電子
線を照射してポリオレフィン系樹脂に架橋構造を導入し
、常圧下で発泡剤を加熱分解して発泡させる方法。
(2) Atmospheric pressure electron beam crosslinking foaming method Add a thermally decomposable blowing agent to a polyolefin resin to obtain a foamable molded product without decomposing the foaming agent, and then irradiate the polyolefin resin with an electron beam to obtain a foamable molded product. A method in which a crosslinked structure is introduced into the resin, and the foaming agent is thermally decomposed under normal pressure to foam.

(3)加圧化学架橋発泡法(バッチ法)ポリオレフィン
系樹脂に熱分解型発泡剤及び架橋剤を添加し、該発泡剤
及び該架橋剤を分解する事なしに発泡性組成物を得た後
、該組成物を金型内に導入し、加圧下で加熱して架橋剤
及び発泡剤を分解し、次いで、減圧(金型を開放)して
膨張(発泡)させる方法(一段法)あるいは架橋剤及び
発泡剤を加圧下で加熱分解した後、成形物をそのまま冷
却して金型より取り出し、再加熱して膨張(発泡)させ
る方法(二段法)。
(3) Pressure chemical crosslinking foaming method (batch method) After adding a thermally decomposable blowing agent and a crosslinking agent to a polyolefin resin to obtain a foamable composition without decomposing the blowing agent and the crosslinking agent. , a method in which the composition is introduced into a mold, heated under pressure to decompose the crosslinking agent and foaming agent, and then expanded (foamed) by reducing the pressure (opening the mold) or crosslinking. A method (two-step method) in which after the agent and foaming agent are thermally decomposed under pressure, the molded product is cooled, taken out from the mold, and reheated to expand (foam).

しかしながら、(1)の常圧化学架橋発泡法は。However, the atmospheric pressure chemical crosslinking foaming method (1).

比較的安価な設備費で機械的強度に優れた架橋発体を連
続的に得る事ができるが、該発泡体は気泡が大きく、ま
た、発泡剤の未分解に起因する表面着色も大きいという
欠点がある。また、この表面着色を防止するための方法
として、種々の発泡助剤を添加する方法がいくつか提案
されているが、これらはいずれも発泡剤の分解温度を低
下させて発泡剤の分解を促進するものであって、発泡剤
の熱分解に先がけて架橋剤の熱分解による架橋を行う必
要がある常圧化学架橋発泡法に適用することは適切でな
い。また、これらの発泡助剤は、発泡剤の分解温度をよ
り低下させるので架橋が発泡に対して先行しないため、
発泡時に気泡が連通化し。
Although it is possible to continuously obtain a crosslinked foam with excellent mechanical strength at a relatively low equipment cost, the foam has large bubbles and a large amount of surface discoloration due to undecomposed blowing agent. There is. In addition, as a method to prevent this surface coloration, several methods have been proposed to add various foaming aids, but all of these methods reduce the decomposition temperature of the blowing agent and promote the decomposition of the blowing agent. Therefore, it is not appropriate to apply it to the atmospheric pressure chemical crosslinking and foaming method, which requires crosslinking by thermal decomposition of a crosslinking agent prior to thermal decomposition of the blowing agent. In addition, these foaming aids lower the decomposition temperature of the foaming agent, so crosslinking does not precede foaming.
When foaming, the air bubbles become open.

得られた発泡体は連続気泡発泡体となることから。The resulting foam is an open-cell foam.

圧縮硬さ等の機械的物性が極端に低下してしまうという
欠点を有する。
It has the disadvantage that mechanical properties such as compression hardness are extremely reduced.

また、常圧化学架橋発泡法では、低温維持のため、加工
速度(たとえば押出機による成形加工では吐出量)を小
さくし、かつ低温高粘度のポリオレフィン組成物を高速
又は高圧(高ぜん断速度又は高ぜん断応力)で押し出す
ことなるから、該組成物がメルトフラクチャーを起こし
、得られる発泡性成形物の表面荒れが生じ、これを加熱
発泡して得られる架橋発泡体は1表面荒れが更に拡大さ
れるため商品価値が低下するという問題を生じる。
In addition, in the normal pressure chemical crosslinking foaming method, in order to maintain the low temperature, the processing speed (for example, the discharge amount in molding processing using an extruder) is reduced, and the low temperature and high viscosity polyolefin composition is processed at high speed or under high pressure (high shear rate or Because the composition is extruded under high shear stress (high shear stress), the composition causes melt fracture, resulting in surface roughness of the resulting foamable molded product. This creates the problem that the product value decreases.

また、(2)の常圧電子線架橋発泡法においては、ポリ
オレフィン系樹脂組成物に架橋剤が含有されていないた
め、(1)の常圧化学架橋発泡法はどは発泡性成形体製
造時の加工温度に制約を受けないものの、気泡をより細
かく、かつ表面着色をより少なくするために、亜鉛華の
如き金属酸化物、ステアリン酸亜鉛の如き、金属セッケ
ン、ステアリン酸の如き高級脂肪酸エタノールアミンの
如きアミン化合物等の発泡助剤を添加し、発泡剤の分解
温度を極端に低下させ、その分解を短時間にする必要が
あるため、常圧化学架橋発泡法と同様に発泡剤の分解及
びメルトラフチャーにより表面荒れの問題が生じるとい
う欠点がある。
In addition, in the normal pressure electron beam crosslinking and foaming method (2), since the polyolefin resin composition does not contain a crosslinking agent, the normal pressure chemical crosslinking and foaming method (1) is carried out during the production of the foamable molded product. Although there are no restrictions on the processing temperature, in order to make the bubbles smaller and reduce surface coloration, metal oxides such as zinc white, metal soaps such as zinc stearate, and higher fatty acid ethanolamines such as stearic acid are used. It is necessary to add a blowing aid such as an amine compound such as amine compound to extremely lower the decomposition temperature of the blowing agent and shorten the decomposition time. A drawback is that melt roughing causes surface roughness.

また、(3)の加圧化学架橋発泡法は、低設備費で微細
気泡を有する表面白色度の良好な架橋発泡体を得る事が
できるものの、゛バッチ方式であるため、連続物の発泡
体を得る事ができず、またその生産性も低いという欠点
がある。また、(1)の常圧化学架橋発泡法と同様に、
架橋剤を使用するため、金型内に充てんする発泡性組成
物の製造時の加工温度(混練温度)を低くする必要があ
ることから、発泡剤の分解及びメルトフラクチャーによ
り表面荒れの問題が生じる。
In addition, although the pressurized chemical cross-linking foaming method (3) can produce cross-linked foams with fine bubbles and good surface whiteness at low equipment costs, it is a batch method, It has the disadvantage that it is not possible to obtain the desired results, and the productivity is also low. In addition, similar to the atmospheric pressure chemical crosslinking foaming method in (1),
Because a crosslinking agent is used, it is necessary to lower the processing temperature (kneading temperature) during manufacturing of the foamable composition to be filled into the mold, which causes surface roughness problems due to decomposition of the foaming agent and melt fracture. .

また、最近、エチレン系樹脂100重量部、発泡剤1〜
20重量部、架橋剤の有機過酸化物0.3〜10重量部
からなる架橋発泡組成物に、三官能モノマー0.1〜1
0重量部、シリコーン油またはその誘導体0.1〜5重
量部を添加すること、および有機過酸化物の10分間半
減温度(Tρ)が100〜170℃であり、発泡剤の発
泡温度(Tf)が90〜160℃であって、かつ下記の
式 %式% を満足する事を特色とする連続気泡型架橋エチレン系樹
脂発泡体用組成物をペレット、粉末、またはフィルム、
シートその他の成形品とし、これを加熱することによっ
て連続気泡型架橋エチレン系樹脂発泡体を製造する方法
が提案されているが(特開昭58−67734号公報)
、この方法は、その製造条件が複雑である上、架橋前に
発泡させるため、得られる発泡体は連続気泡となり独立
気泡型の発泡体が得られないという欠点がある。
In addition, recently, 100 parts by weight of ethylene resin, 1 to 100 parts of blowing agent,
20 parts by weight of a crosslinking agent, 0.3 to 10 parts by weight of an organic peroxide as a crosslinking agent, and 0.1 to 1 part of a trifunctional monomer.
0 parts by weight, 0.1 to 5 parts by weight of silicone oil or its derivative, and the 10-minute half-life temperature (Tρ) of the organic peroxide is 100 to 170°C, and the foaming temperature (Tf) of the blowing agent is is 90 to 160°C and satisfies the following formula %.
A method has been proposed in which open-cell crosslinked ethylene resin foam is produced by forming sheets or other molded products and heating them (Japanese Patent Laid-Open No. 58-67734).
However, this method has the disadvantage that the manufacturing conditions are complicated, and since foaming is performed before crosslinking, the resulting foam has open cells and cannot be a closed cell foam.

〔目  的〕〔the purpose〕

本発明の目的は、気泡が細かく、表面白色度及び表面平
滑性に優れた独立気泡型架橋ポリオレフイン系樹脂発泡
体を効率よく製造し得る方法を提供することにある。
An object of the present invention is to provide a method for efficiently producing a closed-cell crosslinked polyolefin resin foam having fine cells and excellent surface whiteness and surface smoothness.

〔構  成〕〔composition〕

本発明によれば、ポリオレフィン系樹脂に熱分解型発泡
剤及びポリシロキサン系オイルを混合した発泡性樹脂に
架橋構造を導入した後、加熱発泡することを特徴とする
独立気泡型架橋ポリオレフィン系樹脂発泡体の製造方法
が提供される。
According to the present invention, closed-cell crosslinked polyolefin resin foaming is performed by introducing a crosslinked structure into a foamable resin obtained by mixing a polyolefin resin with a pyrolytic blowing agent and a polysiloxane oil, and then heating and foaming the foamable resin. A method of manufacturing a body is provided.

本発明においては、発泡性樹脂として、ポリオレフィン
系樹脂及び熱分解型発泡剤と共に、ポリシロキサン系オ
イルを加えたものを用い、これらを架橋させた後、加熱
発泡させる方法を採用したことから、気泡が細かく9表
面臼色度及び表面平滑性に優れた独立気泡型架橋ポリオ
レフィン系樹脂発泡体を、工業的に有利に製造すること
ができる。
In the present invention, a polyolefin resin, a thermally decomposable blowing agent, and a polysiloxane oil are used as the foamable resin, and a method of crosslinking these and then heating and foaming is adopted. Closed-cell crosslinked polyolefin resin foams with fine surface chromaticity and surface smoothness can be advantageously produced industrially.

つぎに、本発明を更に詳細に説明する。Next, the present invention will be explained in more detail.

本発明において用いるポリシロキサン系オイルとしては
、常温において、オイル状(液状)であるもの他、発泡
性組成物又は発泡性成形体製造時の加工温度においてオ
イル状となり流動性を示すものが用いられる。常温にお
いて、オイル状(液状)のポリシロキサン系オイルとし
ては、ジメチルポリシロキサンオイル、メチルフェニル
ポリシロキサンオイル等の通常のシロキサンオイル、あ
るいは、例えば、シロキサンをグライコールで変性させ
た変性ポリシロキサンオイルを挙げることかでき、また
、製造時の加工温度においてオイル状となるポリシロキ
サンとしては、シリコーンコンパウンドあるいはシリコ
ーングリースのように流動点210℃以下のポリシロキ
サンを挙げることかできる。
The polysiloxane oil used in the present invention includes those that are oily (liquid) at room temperature, and those that become oily and exhibit fluidity at processing temperatures during the production of foamable compositions or foamable molded articles. . As polysiloxane oils that are oily (liquid) at room temperature, ordinary siloxane oils such as dimethylpolysiloxane oil and methylphenylpolysiloxane oil, or modified polysiloxane oils obtained by modifying siloxane with glycol, can be used. Examples of polysiloxanes that become oily at the processing temperature during production include polysiloxanes having a pour point of 210° C. or lower, such as silicone compounds or silicone greases.

尚、流動点とは、オイルをかきまぜないで規定 −の方
法で冷却したときのオイルの流動する最低の   一温
度を意味する。
Pour point means the lowest temperature at which the oil will flow when the oil is cooled in the specified manner without stirring.

本発明においては、前記したよう↓こ種々のポリシロキ
サンオイルが使用されるが、特にシロキサンをグライコ
ールで変性した変性ポリシロキサンを用いた場合には、
気泡が微細化し、表面白変が向上された独立気泡型架橋
ポリオレフィン系樹脂発泡体を好適な発泡効率で製造す
ることができる。
In the present invention, as described above, various polysiloxane oils are used, but especially when a modified polysiloxane in which siloxane is modified with glycol is used,
A closed-cell crosslinked polyolefin resin foam with finer cells and improved surface whitening can be produced with suitable foaming efficiency.

この理由は必ずしも定かでないが、該変性ポリシロキサ
ンの界面活性剤作用により、発泡時に生成する発泡膜の
柔軟性が増大し、その表面張力が低下すること、更には
該気泡膜が早期に安定すること等に起因し、気泡膜の破
壊が防止され、気泡融合による気泡の生長を抑制できる
ため気泡が微細化するものと考えられる。
The reason for this is not necessarily clear, but the surfactant action of the modified polysiloxane increases the flexibility of the foamed membrane produced during foaming, lowers its surface tension, and further stabilizes the foamed membrane at an early stage. It is thought that this is because the destruction of the bubble membrane is prevented and the growth of bubbles due to bubble fusion can be suppressed, resulting in the bubbles becoming finer.

また、該重量測定(TG)等の結果によれば、該変性ポ
リシロキサンを添加しても発泡剤の分解温度の低下が認
められないため、気泡の連通化が起こらず、良好な独立
気泡型発泡体が得られるものと考えられる。
In addition, according to the results of the weight measurement (TG), etc., even when the modified polysiloxane is added, there is no decrease in the decomposition temperature of the blowing agent. It is believed that a foam is obtained.

本発明において、該変性ポリシロキサンオイルの使用量
は、ポリオレフィン系樹脂100重量部に対して、0.
01〜1.0重量部、好ましくは0.02〜0.5重量
部とするのが適当である。0.01重量部未満であると
、該変性ポリシロキサンの有する摩擦熱抑制効果、メル
トワラクチャ−防止効果1発泡効率の向上、気泡微細化
及び表面白度向上等の諸効果が充分に発揮されない。ま
た、1.0重量部を超えると過配合による過剰スリップ
現象が生じ、発・泡性組成物の搬送不良及び混線不良を
起こし、その生産性を低下させるので好ましくない。
In the present invention, the amount of the modified polysiloxane oil used is 0.00 parts by weight per 100 parts by weight of the polyolefin resin.
A suitable amount is 0.01 to 1.0 parts by weight, preferably 0.02 to 0.5 parts by weight. If the amount is less than 0.01 part by weight, the various effects of the modified polysiloxane, such as frictional heat suppression effect, melt structure prevention effect 1, improvement in foaming efficiency, cell refinement, and surface whiteness improvement, will not be fully exhibited. . Moreover, if it exceeds 1.0 parts by weight, excessive slip phenomenon occurs due to over-blending, which causes poor conveyance and cross-talk of the expandable/foaming composition, reducing its productivity, which is not preferable.

本発明において1発泡性樹脂に架橋構造を導入する方法
は特に制限はなく、たとえば、各種有機過酸化物を練り
込み等によりポリオレフィン系樹脂に含有せしめた後、
加熱して架橋する化学架橋法、ポリオレフィン系樹脂成
形体に電子線を照射して架橋する電子線架橋法、ポリオ
レフィン系樹脂をシラン変性した後、シラノール縮合触
媒の存在下で水分にさらし架橋するシラン架橋法(水架
橋法)等のいずれの方法であってもよい。
In the present invention, there is no particular restriction on the method of introducing a crosslinked structure into the foamable resin. For example, after incorporating various organic peroxides into the polyolefin resin by kneading, etc.,
Chemical crosslinking method that crosslinks by heating, electron beam crosslinking method that crosslinks polyolefin resin molded bodies by irradiating them with electron beams, and silane crosslinking method that involves modifying polyolefin resin with silane and then exposing it to moisture in the presence of a silanol condensation catalyst for crosslinking. Any method such as a crosslinking method (water crosslinking method) may be used.

化学架橋法において用いられる有機過酸化物としては、
たとえば、2,2−ビス(t−ブチルパーオキシ)オク
タン1、n−ブチル−4,4−ビス(t−ブチルパーオ
キシ)バレレート、ジ−t−ブチルパーオキサイド、t
−ブチルクミルパーオキサイド、ジクミルパーオキサイ
ド、1,3−ビス(t−ブチルパーオキシイソプロピル
)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチ
ルパーオキシ)ヘキサン、2,5−ジメチル−2,5−
ジ(t−ブチルパーオキシ)ヘキシン−3等が挙げられ
る。
Organic peroxides used in chemical crosslinking methods include:
For example, 2,2-bis(t-butylperoxy)octane 1, n-butyl-4,4-bis(t-butylperoxy)valerate, di-t-butylperoxide, t
-Butylcumyl peroxide, dicumyl peroxide, 1,3-bis(t-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, 2,5- dimethyl-2,5-
Examples include di(t-butylperoxy)hexyne-3.

また1本発明において用いられるポリオレフィン系樹脂
としては、例えば、低密度ポリエチレン、線状低密度ポ
リエチレン、中高密度ポリエチレン、エチレン−酢酸ビ
ニル共重合体、エチレン−アクリル酸エチル共重合体、
エチレン−プロピレン共重合体、塩素化ポリエチレン、
ポリプロピレン、ポリブチン等が挙げられ、これらは必
要に応じ、2種以上混合して用いることができる。
In addition, examples of the polyolefin resin used in the present invention include low density polyethylene, linear low density polyethylene, medium and high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer,
Ethylene-propylene copolymer, chlorinated polyethylene,
Examples include polypropylene, polybutyne, etc., and two or more of these can be used as a mixture, if necessary.

また、熱分解型発泡剤としては、例えば、アゾジカルボ
ンアミド、N、N’ −ジニトロソペンタメチレンテト
ラミン、 4.4’ −オキシビスベンゼンスルホニル
ヒドラジド等が挙げられる。
Examples of the thermally decomposable blowing agent include azodicarbonamide, N,N'-dinitrosopentamethylenetetramine, and 4,4'-oxybisbenzenesulfonyl hydrazide.

また、本発明における加熱発泡法としては1例えば熱風
加熱、赤外線ヒータ加熱、ソルトバス等の熱媒浴上ある
いは浴中加熱等のこの種発泡法として公知のものが任意
に適用される。
Further, as the heating foaming method in the present invention, any known foaming method such as hot air heating, infrared heater heating, heating on or in a heat medium bath such as a salt bath, etc., can be arbitrarily applied.

〔効  果〕〔effect〕

本発明の独立気泡型架橋ポリオレフィン系樹脂発泡体の
製造方法は、前記した構成からなり、発泡性組成物とし
てポリシロキサンオイル、特にシロキサンをグライコー
ルで変性した変性ポリシロキサンオイルを含有させたも
のに架橋構造を導入した後、加熱発泡させる方法を採用
した事により、先に述べた従来公知の製造方法に比べて
次の様な利点を有するものであり、工業的に極めて有利
な製造方法ということができる。
The method for producing a closed-cell crosslinked polyolefin resin foam of the present invention has the above-described structure, and contains a polysiloxane oil, particularly a modified polysiloxane oil obtained by modifying siloxane with glycol, as a foamable composition. By adopting a method of heating and foaming after introducing a crosslinked structure, it has the following advantages compared to the conventionally known manufacturing method mentioned above, and is an extremely advantageous manufacturing method from an industrial perspective. Can be done.

(1)架橋剤及び発泡剤を分解させる事なく、かつメル
トフラクチャーによる発泡性成形体の表面荒れを発生さ
せる事なく、発泡性成形体の生産速度を常圧化学架橋発
泡法においては、約55%、常圧電子線架橋発泡法にお
いては、最大で約60%向上させる事ができる。又、加
圧化学架橋発泡法においては、発泡性組成物の生産速度
を30%向上させる事ができる。
(1) Without decomposing the crosslinking agent and foaming agent and without causing surface roughness of the foamable molded product due to melt fracture, the production rate of the foamable molded product can be increased to approximately 55% by the normal pressure chemical crosslinking foaming method. %, and in the normal pressure electron beam crosslinking foaming method, it can be improved by up to about 60%. Furthermore, in the pressurized chemical crosslinking foaming method, the production rate of the foamable composition can be increased by 30%.

(2)架橋発泡方法に関係なく発泡剤効率を約20%向
上させることができる。
(2) The blowing agent efficiency can be improved by about 20% regardless of the crosslinking and foaming method.

(3)気泡の均一性が増し平均気泡径を常圧化学架橋発
泡法においては最大で約40%、常圧電子線架橋発泡法
においては最大で約30%小さくする事ができる。
(3) The uniformity of the cells increases, and the average cell diameter can be reduced by up to about 40% in the normal pressure chemical crosslinking foaming method, and by about 30% in the normal pressure electron beam crosslinking foaming method.

(4)表面白度の目安となるYI(黄色度)は、常圧化
学架橋発泡法及び常圧電子線架橋発泡法で最大40%、
加圧化学架橋発泡法では約15%程度も小さくなり、し
たがって、その表面白度が大巾に向上する。
(4) YI (yellowness), which is a measure of surface whiteness, is up to 40% by normal pressure chemical crosslinking foaming method and normal pressure electron beam crosslinking foaming method.
In the pressure chemical crosslinking foaming method, the size is reduced by about 15%, and the surface whiteness is therefore greatly improved.

〔実施例〕〔Example〕

本発明を更に詳細に説明するために以下に実施例を示す
Examples are shown below to explain the present invention in more detail.

実施例1 密度0.92g/−メルトインデックスIg/10m1
nの低密度ポリエチレン(以下LDPEと称す)100
重量部に発泡剤としてアゾジカルボンアミド(以下AD
CAと称す)15重量部、架橋剤としてジクミルパーオ
キサイド(以下DCPと称す)0.8重量部、更にジメ
チルポリシロキサンオイル(トーレシリコーン5RX3
10)0.1重量部を添加混合した後、DCP、 AD
CAが分解する事のない押出温度130℃でφ90mm
押出機によリメルトフラクチャーによる表面荒れを発生
される事なく厚さ2mm、幅400mmの良好な発泡性
シートを吐出量65kg/Hrで押出した。該発泡性シ
ートを最高温度250℃の加熱炉内に導入し架橋発泡さ
せた。
Example 1 Density 0.92g/-Melt index Ig/10m1
n low density polyethylene (hereinafter referred to as LDPE) 100
Azodicarbonamide (hereinafter referred to as AD) is added to the weight part as a blowing agent.
15 parts by weight of dicumyl peroxide (hereinafter referred to as DCP) as a crosslinking agent, and 15 parts by weight of dicumyl peroxide (hereinafter referred to as DCP) as a crosslinking agent, and dimethyl polysiloxane oil (Toray Silicone 5RX3).
10) After adding and mixing 0.1 part by weight, DCP, AD
φ90mm at extrusion temperature of 130℃ without decomposition of CA
A good foamable sheet having a thickness of 2 mm and a width of 400 mm was extruded by the extruder at a discharge rate of 65 kg/Hr without causing surface roughness due to remelt fracture. The foamable sheet was introduced into a heating furnace at a maximum temperature of 250° C. and crosslinked and foamed.

実施例2 実施例1のジメチルポリシロキサンオイル(トーレシリ
コーンSRX 310)に代えて、シロキサングライコ
ール共重合体変性ポリシロキサンオイル(トーレシリコ
ーンSH193)を0.1重量部添加した混合物を実施
例1と同一押出機にて同一押出温度で同一サイズの発泡
性シートをメルトフラクチャーを発生させる事なく吐出
量63kg/Hrで押出した。つぎに、該発泡性シート
を実施例1と同条件にて発泡させた。
Example 2 A mixture of Example 1 and 0.1 part by weight of siloxane glycol copolymer-modified polysiloxane oil (Toray Silicone SH193) was added in place of the dimethylpolysiloxane oil (Toray Silicone SRX 310) of Example 1. Expandable sheets of the same size were extruded using the same extruder at the same extrusion temperature and at a discharge rate of 63 kg/Hr without causing melt fracture. Next, the foamable sheet was foamed under the same conditions as in Example 1.

比較例1 実施例1において、ジメチルポリシロキサンオイルを添
加せず、実施例1と同一押出機にて同一サイズの発泡性
シートの押出を行なった。実施例1と同一の吐出量65
kg/)Irとしたところ、押出温度は140℃まで上
昇した。押出温度を130’Cとするために、スクリュ
ー回転数、シリンダー等の設定温度を低下させたところ
、吐出量は52kg/Hrとなった。この条件で押出さ
れた発泡性シートはメルトフラクチャーによる表面荒れ
があった。つぎに、該発泡性シートを実施例1と同条件
にて発泡させた。
Comparative Example 1 In Example 1, a foamable sheet of the same size was extruded using the same extruder as in Example 1 without adding dimethylpolysiloxane oil. Same discharge amount as Example 1: 65
kg/)Ir, the extrusion temperature rose to 140°C. In order to set the extrusion temperature to 130'C, the screw rotation speed and the set temperatures of the cylinder, etc. were lowered, and the discharge amount was 52 kg/Hr. The foamable sheet extruded under these conditions had surface roughness due to melt fracture. Next, the foamable sheet was foamed under the same conditions as in Example 1.

比較例2 比較例1の発泡性シート製造条件よりも更にスクリュー
回転数を及び押出圧力を低下させることにより、メルト
フラクチャーを消滅させたところ、吐出量は42kg/
Hrまで低下した。つぎに、該発泡性シートを実施例1
と同条件で発泡させた。
Comparative Example 2 Melt fracture was eliminated by further lowering the screw rotation speed and extrusion pressure than the foamable sheet manufacturing conditions of Comparative Example 1, and the discharge amount was 42 kg/
It decreased to Hr. Next, the foamable sheet was prepared in Example 1.
It was foamed under the same conditions.

実施例3 密度0.918g/cm、メルトインデックス4.5g
/10w1nのLDPE 100重量部にADCA 1
5重量部、シロキサングライコール共重合体変性ポリシ
ロキサン(トーレシリコーン5H193)0.1重量部
を添加混合した後、ADCAが分解する事のない押出温
度160℃でφ90ffin押出機によりメルトフラク
チャーによる表面荒れを発生させる事なく厚さ2mm、
幅400mmの良好な発泡性シートシートを吐出量95
kg/Hrで押出した。該シートを電子線加速機に供給
し、該シートの上下面に電離性放射線を58rad照射
し、発泡性架橋シートとした後、最高温度250℃の加
熱炉内に導入し発泡させた。
Example 3 Density 0.918g/cm, melt index 4.5g
/10w1n LDPE 100 parts by weight ADCA 1
After adding and mixing 5 parts by weight and 0.1 part by weight of siloxane glycol copolymer-modified polysiloxane (Toray Silicone 5H193), the surface was roughened by melt fracture using a φ90ffin extruder at an extrusion temperature of 160°C without decomposing ADCA. 2mm thick without causing
Discharge rate of 95% of good foamable sheet with width of 400mm
It was extruded at kg/Hr. The sheet was supplied to an electron beam accelerator, and the upper and lower surfaces of the sheet were irradiated with 58 rad of ionizing radiation to form a foamable crosslinked sheet, which was then introduced into a heating furnace at a maximum temperature of 250° C. and foamed.

比較例3 実施例3において、トーレシリコーン5H193全添加
せずに、実施例3と同一押出機にて同一サイズの発泡性
未架橋シートを同一押出温度にてメルトフラクチャーに
よる表面荒れが発生しない条件で押出した。この時の吐
出量は63kg/Hrであった。
Comparative Example 3 In Example 3, without adding any Toray Silicone 5H193, a foamable uncrosslinked sheet of the same size was produced in the same extruder as in Example 3 at the same extrusion temperature under conditions that no surface roughness due to melt fracture occurred. Extruded. The discharge amount at this time was 63 kg/Hr.

つぎに該シートを実施例3と同条件にて架橋した後、加
熱炉内に導入して発泡させた。
Next, the sheet was crosslinked under the same conditions as in Example 3, and then introduced into a heating furnace and foamed.

比較例4 実施例3のトーレシリコーン5H1930,1重量部に
代えて亜鉛華(ステアリン酸亜鉛=1=1混合物)を2
.0重量部を添加した混合物を実施例3と同一の押出機
にて同一サイズの発泡性未架橋シートを押出した。亜鉛
華及びステアリン酸亜鉛の添加によりADCAの分解温
度が極度に低下したため、押出温度を125℃以下にす
る必要が生じた。更に、この温度において、メルトフラ
クチャーにより表面荒れを発生させない様にするために
は、吐出量を59kg/l(rまで低下させなければな
らなかった。つぎに、発泡性未架橋シートを実施例3と
同条件にて架橋した後、加熱炉内に導入して発泡させた
Comparative Example 4 In place of 1 part by weight of Toray Silicone 5H1930 in Example 3, 2 parts of zinc white (zinc stearate = 1 = 1 mixture) was added.
.. A foamable uncrosslinked sheet of the same size was extruded from the mixture containing 0 parts by weight using the same extruder as in Example 3. Since the decomposition temperature of ADCA was extremely lowered by the addition of zinc white and zinc stearate, it became necessary to lower the extrusion temperature to 125° C. or lower. Furthermore, at this temperature, in order to prevent surface roughness due to melt fracture, the discharge rate had to be lowered to 59 kg/l (r). After crosslinking under the same conditions as above, it was introduced into a heating furnace and foamed.

実施例4 実施例1と同一配合比の混合物を小型二軸押出機(異方
向回転)に投入し、DCP、ADCAが分解する事のな
い押出温度130℃にて溶融状態の発泡性組成物を得た
。この時の吐出量は54.kg/l(rであった。
Example 4 A mixture with the same blending ratio as in Example 1 was put into a small twin-screw extruder (rotating in different directions), and a foamable composition in a molten state was produced at an extrusion temperature of 130°C without decomposing DCP and ADCA. Obtained. The discharge amount at this time was 54. kg/l (r).

次に押出直後の該組成物を150℃にセットされた30
0W X 600 Q X 20tmmの金型に投入し
、加圧、除圧を数回繰り返し、エアー抜きをしだ後、 
200kg/dまで加圧し、昇温速度で6℃/1Ili
nで200℃まで加熱し、次いで金型をいつき番こ開放
して発泡させた。
Next, the composition immediately after extrusion was heated at 30°C set at 150°C.
After putting it into a 0W x 600 Q x 20tmm mold and repeating pressurization and depressurization several times to bleed out the air,
Pressure is increased to 200 kg/d, and the heating rate is 6°C/1Ili.
The mixture was heated to 200° C. and then the mold was opened for foaming.

比較例5 比較例1と同一配合比の混合物を実施例4と同一の二軸
押出機に投入し、溶融状態の発泡性組成物を得た。ただ
し、実施例4と異なり押出温g130℃を維持するため
には吐出量を42kg/Hrまで低下させなければなら
なかった。該発泡性組成物を実施例4と同一条件にて発
泡させた。
Comparative Example 5 A mixture having the same blending ratio as Comparative Example 1 was put into the same twin-screw extruder as in Example 4 to obtain a foamable composition in a molten state. However, unlike Example 4, in order to maintain the extrusion temperature g of 130° C., the discharge rate had to be reduced to 42 kg/Hr. The foamable composition was foamed under the same conditions as in Example 4.

前記で得られた実施例1〜4及び比較例1〜5の発泡性
シートの発泡倍率、平均気泡径、気泡の均一性、表面着
色度、表面平滑性及び発泡剤効率を調べた。その結果を
表−1に示す。
The foamable sheets of Examples 1 to 4 and Comparative Examples 1 to 5 obtained above were examined for expansion ratio, average cell diameter, cell uniformity, surface coloration, surface smoothness, and blowing agent efficiency. The results are shown in Table-1.

(1)洞定方法は、以下による。(1) The method of determination is as follows.

発泡倍率・・・・・・・自社法(発泡体密度/樹脂密度
)・ 平均気泡径・・・・・ASTM −D3576に
卓する自社法気泡の均一性・・・拡大策にて目視 表面着色度・・・・・JIS K 7103表面平滑性
・・・・・自社法(目視と手ざわりによる)発泡剤効率
・・・・・発泡倍率/ACOA重量部数重量部数1奢泡
効率ンデックスであ って、この値が小さい程少な い発泡剤量でより低密度の発 泡体が得られることを意味す 、るものである。
Foaming ratio: In-house method (foam density/resin density) Average cell diameter: Uniformity of bubbles using in-house method in accordance with ASTM-D3576: Visual surface coloring with expansion measures Degree: JIS K 7103 Surface smoothness: In-house method (by visual inspection and touch) Foaming agent efficiency: Expansion ratio/ACOA parts by weight 1 Delicate foam efficiency index, This means that the smaller this value is, the lower the density of the foam can be obtained with a smaller amount of blowing agent.

(2)略号の意味は、以下のとおりである。(2) The meanings of the abbreviations are as follows.

ADCA・・・アゾジカルボンアミド DCP・・・ジクミルパーオキサイド ◎・・・良  好 0・・・やや悪い Δ・・・悪  い ×・・・非常に悪いADCA...Azodicarbonamide DCP...Dicumyl peroxide ◎・・・Good Good 0...Slightly bad Δ...bad ×...very bad

Claims (3)

【特許請求の範囲】[Claims] (1)ポリオレフィン系樹脂に熱分解型発泡剤及びポリ
シロキサン系オイルを混合した発泡性樹脂に架橋構造を
導入した後、加熱発泡することを特徴とする独立気泡型
架橋ポリオレフィン系樹脂発泡体の製造方法。
(1) Production of a closed-cell crosslinked polyolefin resin foam characterized by introducing a crosslinked structure into a foamable resin obtained by mixing a polyolefin resin with a pyrolytic blowing agent and a polysiloxane oil, and then heating and foaming the foam. Method.
(2)ポリシロキサン系オイルがシロキサンをグライコ
ールで変性させた変性ポリシロキサンである特許請求の
範囲第1項記載の独立気泡型架橋ポリオレフィン系樹脂
発泡体の製造方法。
(2) The method for producing a closed-cell crosslinked polyolefin resin foam according to claim 1, wherein the polysiloxane oil is a modified polysiloxane obtained by modifying siloxane with glycol.
(3)変性ポリシロキサンの使用量がポリオレフィン系
樹脂100重量部に対して0.01〜1.0重量部であ
る特許請求の範囲第2項記載の独立気泡型架橋ポリオレ
フィン系樹脂発泡体の製造方法。
(3) Production of a closed-cell crosslinked polyolefin resin foam according to claim 2, wherein the amount of modified polysiloxane used is 0.01 to 1.0 parts by weight per 100 parts by weight of the polyolefin resin. Method.
JP12818186A 1986-06-04 1986-06-04 Production of closed-cell crosslinked polyolefin resin foam Pending JPS62285930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12818186A JPS62285930A (en) 1986-06-04 1986-06-04 Production of closed-cell crosslinked polyolefin resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12818186A JPS62285930A (en) 1986-06-04 1986-06-04 Production of closed-cell crosslinked polyolefin resin foam

Publications (1)

Publication Number Publication Date
JPS62285930A true JPS62285930A (en) 1987-12-11

Family

ID=14978432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12818186A Pending JPS62285930A (en) 1986-06-04 1986-06-04 Production of closed-cell crosslinked polyolefin resin foam

Country Status (1)

Country Link
JP (1) JPS62285930A (en)

Similar Documents

Publication Publication Date Title
US4435346A (en) Method of producing open-cell foamed articles of cross-linked polyolefins
US3965054A (en) Foamable polyolefin composition and method for manufacturing foamed polyolefin
FI82477C (en) FOER FARING FOR FRAMSTAELLNING AV TVAERBUNDNA POLYOLEFINSKUMPRODUKTER.
EP0210760B1 (en) Method for the preparation of cross-linked polyethylene foams and foams produced by the method
US6197841B1 (en) Crosslinked ethylene-olefin copolymer foams
JP3382499B2 (en) Crosslinked polyethylene resin foam and method for producing the same
JPS6219294B2 (en)
JPS62285930A (en) Production of closed-cell crosslinked polyolefin resin foam
JPS61283633A (en) Production of polyolefin foam
JPS5867734A (en) Production of foamed product of crosslinked ethylenic resin with continuous foam structure
JPH02107643A (en) Heat resistant open-cell type crosslinked ethylene based resin foam composition
JPH11315161A (en) Crosslinked polyethylene-based resin foam with open cells and its production
WO2002012379A1 (en) Process for the preparation of cross linked polymer foam
CA1111200A (en) Process for preparing foamed and crosslinked shaped articles having improved heat-sealability and foamable and crosslinkable polyethylene resin composition used therefor
JPH0735446B2 (en) Composition for open-cell olefin resin foam
JPH0413737A (en) Production of crosslinked polyolefinic resin foam
JPH0511025B2 (en)
JPH10310654A (en) Production of open-celled polyolefin-based resin foam
JPS6264530A (en) Manufacture of open-cell foam of polyethylene or ethylene copolymer
JPH0523297B2 (en)
JPS5898341A (en) Foamable composite resin sheet
JP2002212327A (en) Polypropylene-based resin foamed sheet and container
JP2003206371A (en) Crosslinkable and foamable olefin-based resin composition
JP2003082143A (en) Crosslinked polyethylene resin foam and its manufacturing method
JPS6153015A (en) Manufacture of polyolefin cellular body