JPS62285480A - Light pulse train generator - Google Patents

Light pulse train generator

Info

Publication number
JPS62285480A
JPS62285480A JP12812486A JP12812486A JPS62285480A JP S62285480 A JPS62285480 A JP S62285480A JP 12812486 A JP12812486 A JP 12812486A JP 12812486 A JP12812486 A JP 12812486A JP S62285480 A JPS62285480 A JP S62285480A
Authority
JP
Japan
Prior art keywords
mode
semiconductor laser
light
pulse train
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12812486A
Other languages
Japanese (ja)
Inventor
Tomoaki Uno
智昭 宇野
Yoshikazu Hori
義和 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12812486A priority Critical patent/JPS62285480A/en
Publication of JPS62285480A publication Critical patent/JPS62285480A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the pulse output lights of laser lights, in which a TE mode and a TM mode are changed alternately, by using a semiconductor laser and a resonator having a collimation lens function, a function turning the direction of polarized light at 90 deg. and a reflection function of lights. CONSTITUTION:The direction of polarized light is rotated at 90 deg. by an external resonator consisting of a collimation lens 2, a lambda/4 plate 3 and a mirror 4 in a TE mode emitted from a semiconductor laser 1, and beams are fed back to a TM mode in the laser 1. Accordingly, the TE mode and the TM mode are excited alternately at every round trip time of the external resonator.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、直流電流駆動の光パルス列発生装置に関する
ものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a direct current driven optical pulse train generator.

(従来の技術) 半導体レーザのパルス動作は、光通信分野でのクロック
信号として用いる目的や、瞬間的に大出力を得る目的で
、広く研究開発されている。
(Prior Art) Pulse operation of semiconductor lasers has been widely researched and developed for the purpose of using them as clock signals in the field of optical communications and for instantaneously obtaining large outputs.

後者の大出力パルスは第2次高調波発生用の光源として
用いられる。
The latter high output pulse is used as a light source for second harmonic generation.

従来、このようなパルス列は、 ■直接電流変調による方法。Conventionally, such a pulse train is ■Direct current modulation method.

■半導体レーザの外部に形成した外部共振器のQ値を変
化するQスイッチ法。
■Q switch method that changes the Q value of an external resonator formed outside the semiconductor laser.

■半導体レーザの外部に形成した外部共振器中に過飽和
吸収体を挿入する受動モードロック法。
■Passive mode-locking method in which a supersaturated absorber is inserted into an external resonator formed outside the semiconductor laser.

■半導体レーザの外部に形成した外部共振器のラウンド
・トリップ周波数で半導体レーザを変調する能動モード
ロツタ法。
■Active mode rotator method that modulates a semiconductor laser using the round trip frequency of an external resonator formed outside the semiconductor laser.

によって行なわれていた。It was carried out by

(発明が解決しようとする問題点) 前述した従来の方法において、 ■、■の方法は電流変調や変調同期が必要であり装置が
複雑になるし。
(Problems to be Solved by the Invention) Among the conventional methods described above, methods (1) and (3) require current modulation and modulation synchronization, making the device complex.

■の方法では光スィッチが必要で装置が複雑になるし、 ■の方法では過飽和吸収体の信頼性が低いとか、本質的
に吸収があるため効率が低い等の問題点があり、簡単な
構成で容易に光パルス列を発生することが困難であった
Method (2) requires an optical switch, making the device complex, and method (2) has problems such as low reliability of the supersaturated absorber and low efficiency due to inherent absorption, and requires a simple configuration. It was difficult to easily generate an optical pulse train.

(問題点を解決するための手段) すなわち、本発明は上記問題点を解決するため、少なく
とも半導体レーザとコリメーションレンズ機能、光の偏
光方向を90°回転する機能、光の反射機能を有する構
成からなる共振器により、前記半導体レーザへの直流電
流注入条件下において、レーザ光の偏光方向が交互に替
わる光パルス列を得ることができる。
(Means for Solving the Problems) That is, in order to solve the above-mentioned problems, the present invention provides a structure having at least a semiconductor laser, a collimation lens function, a function of rotating the polarization direction of light by 90 degrees, and a light reflection function. With this resonator, it is possible to obtain an optical pulse train in which the polarization direction of laser light alternates under conditions of direct current injection into the semiconductor laser.

さらに、前記構成からなる共振器の光学共振器長りを光
が往復する時間(2L/C: Cは光の速度)が、前記
半導体レーザのキャリア緩粕時間(τR)と同程度とす
ることにより、TEモードの大きなパルス列を得ること
ができる。
Furthermore, the time for light to travel back and forth along the optical resonator length of the resonator having the above configuration (2L/C: C is the speed of light) is approximately the same as the carrier slowing time (τR) of the semiconductor laser. As a result, a large pulse train in TE mode can be obtained.

(作用) 本発明は、上記構成において、直流電流注入条件下にお
いてTEモードとTMモードが交互に替わる半導体レー
ザ光のパルス出力光が得られる。
(Function) In the present invention, in the above configuration, pulsed output light of a semiconductor laser light in which the TE mode and the TM mode are alternately switched under DC current injection conditions can be obtained.

すなわち、半導体レーザから出たー偏光成分は、コリメ
ーションレンズで平行にされた後、λ/4板で偏光方向
が45m回転し、ミラーで反射され、再びλ/4板を通
過すると、さらに偏光方向が45@回転してコリメーシ
ョンレンズを経て、再び半導体レーザに帰還する。
In other words, the polarized light component emitted from the semiconductor laser is made parallel by a collimation lens, the polarization direction is rotated by 45 m by a λ/4 plate, reflected by a mirror, and then passes through the λ/4 plate again, where the polarization direction is further changed. rotates 45@, passes through the collimation lens, and returns to the semiconductor laser again.

この時、例えばTEモードで出た光にはTMモードの光
が、TMモードで出た光にはTEモードの□光が帰還す
るため、各々のモードに対するミラー損失が2L/Cで
決まる時間で変化する効果がある。
At this time, for example, the TM mode light returns to the light emitted in the TE mode, and the TE mode □ light returns to the light emitted in the TM mode, so the mirror loss for each mode is determined by the time determined by 2L/C. It has a changing effect.

外部共振器のラウンド・トリップ時間2L/Cと、半導
体レーザのキャリアの緩和時間τ□が等しくなってくる
と、TMモードでは出力側の半導体レーザのミラー損失
が大きいために、半導体レーザ内部のキャリア密度は高
くなっており、これがTEモードに移る時にTEモード
のミラー損失が小さいことから、低いキャリア密度に移
行するので、過剰のキャリアがTEモードの強い光を発
生する。
When the round trip time 2L/C of the external cavity and the carrier relaxation time τ□ of the semiconductor laser become equal, in TM mode, the mirror loss of the semiconductor laser on the output side is large, so that the carriers inside the semiconductor laser The density is high, and when it shifts to the TE mode, the mirror loss in the TE mode is small, so the carrier density shifts to a low carrier density, and the excess carriers generate strong light in the TE mode.

この効果は、半導体レーザのTEモードのミラー損失差
が大きい程顕著になる。
This effect becomes more pronounced as the mirror loss difference in the TE mode of the semiconductor laser increases.

(実施例) 第1図は本発明の一実施例のレーザ装置の構成図であり
、1は半導体レーザ、2はコリメーションレンズ、3は
λ/4板、4はミラー、5はレンズ、6はレーザ出力光
、7は無反射コーティングである。
(Embodiment) FIG. 1 is a configuration diagram of a laser device according to an embodiment of the present invention, in which 1 is a semiconductor laser, 2 is a collimation lens, 3 is a λ/4 plate, 4 is a mirror, 5 is a lens, and 6 is a Laser output light, 7 is anti-reflection coating.

第1図において、半導体レーザ1から出射するTEモー
ドは、コリメーションレンズ2.λ/4板3およびミラ
ー4からなる外部共振器により、偏光方向が90°回転
して半導体レーザ1の内部のTMモードに対して光が帰
還されるために、外部共振器のラウンドトリップ時間(
2L/C)毎に、TEモードとTMモードとが交互に励
振する。
In FIG. 1, the TE mode emitted from a semiconductor laser 1 is transmitted through a collimation lens 2. The external resonator consisting of the λ/4 plate 3 and the mirror 4 rotates the polarization direction by 90 degrees and returns the light to the TM mode inside the semiconductor laser 1, so that the round trip time of the external resonator (
TE mode and TM mode are alternately excited every 2L/C).

第2図は本発明の一実施例の光パルス列の説明図である
FIG. 2 is an explanatory diagram of an optical pulse train according to an embodiment of the present invention.

図中、横軸は時間を示し、縦軸はレーザ出力光6の強度
を示している。
In the figure, the horizontal axis shows time, and the vertical axis shows the intensity of the laser output light 6.

第2図(a)は2L/C>τ9、 第2図(b)は2L/C〜τR。Figure 2(a) shows 2L/C>τ9, FIG. 2(b) shows 2L/C to τR.

の場合を示す。The case is shown below.

通常の半導体レーザでは、結晶の臂開面を光の反射器と
して用いており、その反射率は、TMモードの場合より
TEモードの方が大きくなる。
In a normal semiconductor laser, the open face of the crystal is used as a light reflector, and the reflectance is larger in the TE mode than in the TM mode.

このため、TEモードに対する閾値電流(あるいは閾値
キャリア密度)がTEモードに対するより小さくなるた
めに、そのレーザ出力光6の強度はTEモードの方が大
きくなる。
Therefore, the threshold current (or threshold carrier density) for the TE mode is smaller than that for the TE mode, so the intensity of the laser output light 6 becomes greater in the TE mode.

この傾向は、外部共振器長しが短くなり、ラウンドトリ
フ4間(2L/C)が半導体レーザ1のキャリアの緩和
時間τRと同程度になると、より強くなり、大きなTE
モードパルスが得られる。
This tendency becomes stronger when the external cavity length becomes shorter and the round trip interval (2L/C) becomes comparable to the relaxation time τR of the carriers in the semiconductor laser 1, and a large TE
A modal pulse is obtained.

なお、本発明に用いる半導体レーザ1は、ファプリーベ
ロー型のものであれば、その材料、発振波長を問わず同
様の効果が得られる。
Note that, as long as the semiconductor laser 1 used in the present invention is of the Fapley-Bello type, the same effect can be obtained regardless of its material and oscillation wavelength.

また、実施例に示した無反射コーティング7は、誘電体
膜で形成されるが、TEモードとTMモードのパルスの
強度比を小さくする場合には無くても良い。
Further, although the anti-reflection coating 7 shown in the embodiment is formed of a dielectric film, it may be omitted if the intensity ratio of the pulses in the TE mode and the TM mode is to be reduced.

(発明の効果) 以上説明したように、本発明によれば、直流電流注入下
において、TEモードとTMモードが交互に替わる半導
体レーザ光のパルス出力光を得ることが可能となる。
(Effects of the Invention) As described above, according to the present invention, it is possible to obtain pulsed output light of a semiconductor laser light in which the TE mode and the TM mode are alternately switched under DC current injection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のレーザ装置の構成図、第2
図は本発明の一実施例の光パルス列の説明図である。 1 ・・・半導体レーザ、 2 ・・・ コリメーションレンズ、 3 ・・・ λ/4板、   4 ・・・ ミラー、5
 ・・・ レンズ、    6 ・・・ レーザ出力光
。 7 ・・・無反射コーティング。 第1図 1 ・謬早捧レーデ 2  コリメーションレンズ″ 3・・ ゝ/4穣 4・ミラー 5・・ レンだ 6・・ レーデ狐力丸
FIG. 1 is a configuration diagram of a laser device according to an embodiment of the present invention, and FIG.
The figure is an explanatory diagram of an optical pulse train according to an embodiment of the present invention. 1...Semiconductor laser, 2...Collimation lens, 3...λ/4 plate, 4...Mirror, 5
... Lens, 6 ... Laser output light. 7...Non-reflective coating. Figure 1 1 ・Rade 2 Collimation Lens 3... ゝ/4穣4 ・Mirror 5... Lenda 6... Rede Kitsune Rikimaru

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも半導体レーザとコリメーションレンズ
機能、光の偏光方向を90°回転する機能、光の反射機
能を有する機構から成る共振器により、前記半導体レー
ザへの直流電流注入条件下において、レーザ光の偏光方
向が交互に替わる光パルス列を得ることを特徴とする光
パルス列発生装置。
(1) A resonator consisting of a semiconductor laser and a mechanism having at least a collimation lens function, a function to rotate the polarization direction of light by 90 degrees, and a mechanism having a light reflection function allows the laser beam to be An optical pulse train generation device characterized in that it obtains an optical pulse train in which the polarization direction alternates.
(2)共振器の光学共振器長Lを光が往復する時間(2
L/C:Cは光の速度)が、半導体レーザのキャリア緩
和時間(τ_R)と、ほぼ同程度であることを特徴とす
る特許請求の範囲第(1)項記載の光パルス列発生装置
(2) Time for light to travel back and forth along the optical resonator length L of the resonator (2
The optical pulse train generator according to claim 1, wherein L/C (C is the speed of light) is approximately the same as the carrier relaxation time (τ_R) of a semiconductor laser.
JP12812486A 1986-06-04 1986-06-04 Light pulse train generator Pending JPS62285480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12812486A JPS62285480A (en) 1986-06-04 1986-06-04 Light pulse train generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12812486A JPS62285480A (en) 1986-06-04 1986-06-04 Light pulse train generator

Publications (1)

Publication Number Publication Date
JPS62285480A true JPS62285480A (en) 1987-12-11

Family

ID=14976985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12812486A Pending JPS62285480A (en) 1986-06-04 1986-06-04 Light pulse train generator

Country Status (1)

Country Link
JP (1) JPS62285480A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515132A (en) * 2012-03-29 2015-05-21 ソーラス テクノロジーズ リミテッドSolus Technologies Limited Self-mode-locked semiconductor disk laser (SDL)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515132A (en) * 2012-03-29 2015-05-21 ソーラス テクノロジーズ リミテッドSolus Technologies Limited Self-mode-locked semiconductor disk laser (SDL)

Similar Documents

Publication Publication Date Title
US5189676A (en) Broadband laser source
JP2941855B2 (en) Ring laser resonator
JP2597845B2 (en) High repetition pulse laser equipment
US3766393A (en) Optical data transmission system employing polarization-shift, multiple-cavity laser
US4546477A (en) Pulse transmission or reflection mode laser
US3725817A (en) High power laser system
US4233569A (en) High power laser with tuning and line narrowing capability
JPH04233290A (en) Solid state laser
US3820038A (en) Method and apparatus for producing isolated laser pulses having a fast rise time
KR100863199B1 (en) Laser Apparatus and Method for Harmonic Beam Generation
US3465358A (en) Q-switched molecular laser
US4760577A (en) CPM pulse laser device having a feedback means
JPS62285480A (en) Light pulse train generator
US4390991A (en) Adaptive laser output coupler
US4326175A (en) Multi-color, multi-pulse laser system
US3575670A (en) Apparatus for synchronously mode locking a plurality of lasers
KR19990080729A (en) Unidirectional Oscillation Laser Apparatus Using Semi-Integrated Ring Resonator
US4517675A (en) Dye laser medium for subpicosecond laser pulse generation
JPH08321652A (en) High-speed repetition optical pulse train generator and generation of high-speed repetition optical pulse train
RU2799662C2 (en) Q-switched solid-state laser with combined mode locking
US3539939A (en) Laser pulse generator using a rotating prism alternately as a reflective and as a transmissive element
US3628044A (en) Second harmonic laser
JP2006216923A (en) Mode-locked semiconductor laser equipment
GB2230895A (en) Mode-locked solid-state laser
JP2518179B2 (en) Laser light source