JPS62285258A - Recording method for magneto-optical disk - Google Patents

Recording method for magneto-optical disk

Info

Publication number
JPS62285258A
JPS62285258A JP61127587A JP12758786A JPS62285258A JP S62285258 A JPS62285258 A JP S62285258A JP 61127587 A JP61127587 A JP 61127587A JP 12758786 A JP12758786 A JP 12758786A JP S62285258 A JPS62285258 A JP S62285258A
Authority
JP
Japan
Prior art keywords
disk
drive current
recording
laser light
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61127587A
Other languages
Japanese (ja)
Other versions
JPH071562B2 (en
Inventor
Haruki Tokumaru
春樹 徳丸
Tatsuo Nomura
龍男 野村
Katsuya Yokoyama
横山 克哉
Shunichi Onishi
俊一 大西
Koichi Okabe
公一 岡部
Kiyoshi Kimoto
木本 輝代志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Asaka Co Ltd
Japan Broadcasting Corp
Original Assignee
Nikon Corp
Nippon Hoso Kyokai NHK
Asaka Co Ltd
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, Nippon Hoso Kyokai NHK, Asaka Co Ltd, Japan Broadcasting Corp filed Critical Nikon Corp
Priority to JP61127587A priority Critical patent/JPH071562B2/en
Publication of JPS62285258A publication Critical patent/JPS62285258A/en
Publication of JPH071562B2 publication Critical patent/JPH071562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Abstract

PURPOSE:To form a recording pit without secondary distortion on a disk by calculating a laser drive current at an optional radial position and ambient temperature based on a data of a laser drive current at the optimum recording obtained at plural measured positions on the magneto-optical disk. CONSTITUTION:The data for the optimum laser light control by the standard disk and the standard magneto-optical disk device is stored in a standard data ROM1. When a disk is recorded by the disk device at first, the optimum drive current is obtained by repeating the recording/reproduction while the drive current is being changed to obtain an output of optimum laser light at several position with different radio on the disk 12, and the ambient temperature and the disk radius position are stored in a computer 4. The control data is generated from the measurement data and the standard data and stored in a control data NVR16. The control data is used to estimate a required drive current at positions other than the measuring positions and the laser light control is attained depending on the radius position of the disk 12 and the ambient temperature.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は、CAM方式と称する角速度一定力式の光磁気
ディスクの反復記録時における光磁気ディスクの記録方
法に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a recording method for a magneto-optical disk during repeated recording on a magneto-optical disk of a constant angular velocity force type called CAM method. It is.

[従来の技術] 光磁気ディスク装置では、記録すべき信号により半導体
レーザー光出力を変化させて熱記録を行っている6例え
ば、デジタル信号のNRZ(non−return t
o zero change at one)記録を行
う場合に、先ずディスク全面を「0」の状態にしておく
、そして、記録信号の「1」の状態を記録する場合には
、第7図に示す光出力Pa+の状態のように半導体レー
ザー光を強く発光し、ディスク上の照射部分の温度を上
昇し、磁気的な変化を生起して「1」の状態を記録する
。また、記録信号の「0」の状態を記録する場合には、
光出力pbの状態のように半導体レーザー光を弱く発光
させ、照射部分の温度を上げないようにする。このため
、照射部分に磁気的変化が起らず1元のrOJの状態が
保持され、この「0」の状態を記録することになる。
[Prior Art] In a magneto-optical disk device, thermal recording is performed by changing the optical output of a semiconductor laser depending on the signal to be recorded6.For example, NRZ (non-return
o zero change at one) When performing recording, the entire surface of the disk is first set to the "0" state, and when recording the "1" state of the recording signal, the optical output Pa+ shown in FIG. In this state, a semiconductor laser beam is emitted strongly to raise the temperature of the irradiated area on the disk, causing a magnetic change and recording the "1" state. Also, when recording the "0" state of the recording signal,
Semiconductor laser light is emitted weakly as in the state of optical output pb, and the temperature of the irradiated area is not raised. Therefore, no magnetic change occurs in the irradiated portion, and the 1-element rOJ state is maintained, and this "0" state is recorded.

角速度−宝刀式の光磁気ディスク装置においては、ディ
スクの半径位置ごとに線速度が変化するため1例えば1
010・・・と緑り返す一定ビットレートのNRZ信号
を、一定のレーザー光出力により記録する場合に記録ビ
ットの大きざがディスク半径位置により異なる。#ち、
レーザー光出力がP聰の状態の時の記録ビット長夕はデ
ィスク半径位lによって変化し、外周トラックのビット
ff1Nは内周トラックのビット長gよりも長くなる。
Angular velocity - In a magneto-optical disk drive of the Takarato type, the linear velocity changes depending on the radial position of the disk.
When recording an NRZ signal with a constant bit rate that repeats green as 010... with a constant laser light output, the size of the recorded bits differs depending on the radial position of the disk. #Chi,
The recording bit length when the laser light output is P is changed depending on the disk radius l, and the bit ff1N of the outer track is longer than the bit length g of the inner track.

これは内周トラックがレーザー光から受ける単位面Jj
! mりのエネルギ量よりも、外周トラックが受けるエ
ネルギ量の方が小さいためである。このため、半径方向
中間位置の基準トラックで再生信号のデユーティ比が5
0%となるようなレーザー光の出力で、基準トラックよ
りも外側のトラックに記録を行った場合には、その再生
信号のうちビット長夕に対応する期間T!は基準トラッ
クの再生信号の〒1に比べ短くなるし、基準トラックよ
りも内側のトラックでは逆に長くなる。第8図はこの様
子を示し、このように記録レーザー光の出力が一定な状
態では、再生信号のど−、ト期flJI Tに対する期
間T1の比であるデユーティ比が外側或いは内側トラッ
クでは常に50%ではなく二次型を持つ欠点を有してい
る。そこで従来においては、光&i気ディスクに対する
記録時のレーザー光出力の制御方法としては、ディスク
半径位置によって幾つかの記録領域を区分してレーザー
光出力を制御する方法や、レーザー光の出力を一定に保
持したまま占さ込みパルス輻を変化させる方法が提案さ
れている。後者の従来技術としては、例えば特公昭59
−24452公報が知られている。
This is the unit surface Jj that the inner track receives from the laser beam.
! This is because the amount of energy received by the outer track is smaller than the amount of energy received by m. Therefore, the duty ratio of the reproduced signal is 5 at the reference track at the intermediate position in the radial direction.
When recording is performed on a track outside the reference track with a laser beam output of 0%, the period T! of the reproduced signal corresponding to the bit length is 0%. is shorter than 〒1 of the reproduction signal of the reference track, and conversely becomes longer for tracks inside the reference track. FIG. 8 shows this situation. In this state, when the output of the recording laser beam is constant, the duty ratio, which is the ratio of the period T1 to the throat period flJIT of the reproduction signal, is always 50% on the outer or inner track. It has the disadvantage of having a rather secondary type. Conventionally, methods for controlling laser light output during recording on optical discs include methods in which the laser light output is controlled by dividing several recording areas according to the radial position of the disc, and methods in which the laser light output is controlled at a constant level. A method has been proposed in which the interpolated pulse radiation is varied while maintaining the same value. As for the latter conventional technology, for example,
-24452 publication is known.

しかし、この様な従来の方法では上記欠点が軽減はされ
るが、充分に除去することができない。
However, although the above-mentioned drawbacks can be alleviated by such conventional methods, they cannot be completely eliminated.

これを更に詳述すると、半導体レーザー光の特性はばら
つきが多く1例えば悶(a電流は60mA〜80mA、
微分効率は0.5〜1.1と相当に大きな特性分布を有
している。従って、各光la気ディスク装こを予め決め
たrtil WデータでM制御を行っても上方な制御は
不可能である。一方、光磁気ディスクは例えば環境温度
丁0が0℃〜50℃といった状況で使用され、光磁気デ
ィスク装置はレーザー光を収束することによって熱記録
を行う、従って、環境温度TOの僅かな変化でも記録媒
体の配備感度は変化する。また、半導体レーザー光もl
S1度変化でその特性が大きく変化し1例えば閾値電流
は0℃で50mAであるのが50℃では70mAに増加
する1以上のことから、環境温度TOの変化に対しても
きめ細かい半導体レーザー光の制御が必要となる 従って、最適な記録状態を造り出すには温度を無視する
ことはできない0例えば、光磁気ディスク!装置を恒温
#e或いは厳密に室温制御された室内で使用して、環境
温度の影響を受けないようにすることも回部であるが、
装置が大型化すること・使用場所が制限されること・コ
ストが嵩むこと等の欠点を回避できない、つまり、光磁
気ディスク装置では、レーザー光を記録ビット上にオー
トトラッキングやオートフォーカスといったサーボ系を
用いて収束させ、前述したように収束部分の温度を上昇
させることによって記録を行う、第7図に示す光出力p
bの状態は、サーボ系を安定に動作させるために必要最
小限な光出力であり、この状態では記録は行われない、
一方、光出力P■の状態は高い光出力があり記録が行わ
れる。従って、光出力pbは環境温度の変化に対しての
み一定のレーザー光出力に保持するようにすればよいが
、光出力Paは記録ビットの形状に大きく影響を午える
ため、ディスク半径位ごや環境温度の変化に対応してさ
め細かく制御する必要がある。
To explain this in more detail, there are many variations in the characteristics of semiconductor laser light.
The differential efficiency has a considerably large characteristic distribution of 0.5 to 1.1. Therefore, even if M control is performed using predetermined rtil W data for each optical LA disk, it is impossible to perform upward control. On the other hand, magneto-optical disks are used in situations where, for example, the environmental temperature is between 0°C and 50°C, and magneto-optical disk devices perform thermal recording by converging laser light. Therefore, even slight changes in the environmental temperature TO The deployment sensitivity of recording media varies. In addition, semiconductor laser light
Its characteristics change greatly with a change in S1 degree.1 For example, the threshold current is 50 mA at 0°C and increases to 70 mA at 50°C. Therefore, temperature cannot be ignored to create optimal recording conditions.For example, a magneto-optical disk! It is also possible to use the device at a constant temperature #e or in a room with strictly controlled room temperature so that it is not affected by the environmental temperature.
In other words, magneto-optical disk drives cannot avoid drawbacks such as increased device size, limited usage locations, and increased costs. The optical output p shown in FIG.
State b is the minimum optical output necessary to operate the servo system stably, and no recording is performed in this state.
On the other hand, in the state of optical output P■, there is a high optical output and recording is performed. Therefore, the optical output pb can be maintained at a constant laser output only in response to changes in the environmental temperature, but the optical output Pa has a large influence on the shape of the recording bits, so It is necessary to perform fine control in response to changes in environmental temperature.

[発暉1の目的] 本発明の目的は、前述の欠点を解消し1反復記録が可能
な光磁気ディスクにおいて、記録時にディスク半径位置
によって線速度或いはcj境湯温度変化する場合に、デ
ィスク半径位を或いは環境温度に応じて、@適なレーザ
ー光出力が得られるように半導体レーザーを駆動するこ
とにより、二次型のない安定な記録ビットをディスク上
に形成できるようにする光磁気ディスクの記録方法を提
供することにある。
[Object of Development 1] The object of the present invention is to solve the above-mentioned drawbacks and to provide a magneto-optical disk capable of one-time recording, in which the disk radius changes when the linear velocity or CJ temperature changes depending on the disk radial position during recording. Magneto-optical disks enable stable recording bits without secondary formation to be formed on the disk by driving a semiconductor laser to obtain an appropriate laser light output depending on the position or environmental temperature. The goal is to provide a recording method.

[発明の概要] 上述の目的を達成するための本発明の要旨は、反復して
記録が可能な光磁気ディスクにおいて、或る環境温度で
の予備的な記録再生により、該光磁気ディスク上の異な
る半径位置の複数の測定個所で求めた最適な記録時のレ
ーザー駆動電流のデータを記憶しておき、前記データに
基づいて、任意の環境温度の記録時に各半径位置及び前
記任意の環境温度におけるレーザー駆動電流を演算し、
該演算の結果に基づいてレーザー出力を制御することを
特徴とする光磁気ディスクの記録方法である。
[Summary of the Invention] The gist of the present invention to achieve the above-mentioned object is to provide a magneto-optical disk that can be repeatedly recorded by preliminary recording and reproduction at a certain environmental temperature. The data of the optimum laser drive current during recording obtained at a plurality of measurement points at different radial positions is stored, and based on the data, the laser drive current at each radial position and at the arbitrary environmental temperature is determined when recording an arbitrary environmental temperature. Calculate the laser drive current,
A recording method for a magneto-optical disk is characterized in that laser output is controlled based on the result of the calculation.

[発明の実施例] 本発明に係る方法を第1図〜第6図に図示の実施例に基
づいて詳細に説明する。
[Embodiments of the Invention] The method according to the present invention will be explained in detail based on the embodiments illustrated in FIGS. 1 to 6.

光磁気ディスク装置において、例えば記録媒体として直
径30センチのディスクを使用し、記録領域を半径5セ
ンチから15センチの領域゛とし、使用環境温度をO℃
〜50℃とする。このような光磁気ディスク装置におい
て、標準ディスクと標準光磁気ディスク装置を決め、次
のような3つの測定データを取ってみる。
In a magneto-optical disk device, for example, a disk with a diameter of 30 cm is used as a recording medium, the recording area is an area with a radius of 5 cm to 15 cm, and the operating environment temperature is 0°C.
~50°C. In such a magneto-optical disk device, a standard disk and a standard magneto-optical disk device are determined, and the following three measurement data are collected.

(1)半導体レーザー光の駆動″¥f、波対先波力先出
力特性環境温度をパラメータにして測定する。
(1) Semiconductor laser light drive ``¥f'', wave-to-front wave power-to-output characteristics, and environmental temperature are measured as parameters.

(2)ディスク半径位置による最適レーザー光の出力P
mを使用環境温度をパラメータとして測定する。
(2) Optimum laser light output P depending on disk radial position
m is measured using the operating environment temperature as a parameter.

(3)最適レーザー光出力pbを測定する。(3) Measure the optimum laser light output pb.

すると、(1)の測定より例えば第1図に示すような特
性のグラフ図が得られる。また、(2)のJll定によ
り第2図に示すようなグラフ図が得られる。これらの第
1図、第2図は標準ディスクと標準光磁気ディスク装ご
における最適レーザー光出力を享えるデータであり、他
のディスク装置では半導体レーザー光の特性が異なるた
め、同じ半導体レーザー光による駆動電流でも最適なレ
ーザー光出力にはならない。
Then, from the measurement in (1), a graph of characteristics as shown in FIG. 1, for example, can be obtained. Furthermore, a graph as shown in FIG. 2 is obtained by the Jll determination in (2). These figures 1 and 2 are data that allows you to enjoy the optimum laser light output for standard disks and standard magneto-optical disk devices.Since the characteristics of semiconductor laser light differ in other disk devices, the same semiconductor laser light cannot be used. Even the drive current does not result in optimal laser light output.

従って、他のディスク装置で初めて記録するとき、ディ
スク上の異なる半径位置の数個所、例えば簡単な例では
2個所で最適なレーザー光の出力になるように、駆動電
流を変えながら記録、再生を繰り返して自動的に最適駆
動電流11、■2を求め、同時に環境温度TOとディス
ク半径位置r1. r2をコンピュータに記憶しておく
、これだけの作業を行えば、次回の記録時以降はコンビ
、ユータを用いて半導体レーザー光の制御を行うことが
できる。
Therefore, when recording for the first time on another disk device, recording and playback are performed while changing the drive current so that the optimum laser light output is achieved at several different radial positions on the disk, for example, two points in a simple example. Iteratively and automatically determines the optimum drive current 11, (2), and at the same time determines the environmental temperature TO and disk radial position r1. By simply storing r2 in the computer, the semiconductor laser beam can be controlled using a combination or a computer from the next recording onward.

これについて更に詳しく説明すると、或る光ディスク装
置でTO= 25℃、rl= 7 c m、 r2=1
4cmの場合に最適電流値として、Il=130mA、
 I2= 150 mAが得られたとする。第2図から
半径7cmでは12.2mW、半径14cmでは17.
4mWが最適レーザー光の出力であり、この様子を第3
図(a)に示す、従って、半導体レーザー光の駆動電流
が130mAで12.2mwのレーザー光出力を、半導
体レーザー光の駆動111F流が150mAで17.4
mWのレーザー光出力を出力していることになる。
To explain this in more detail, in a certain optical disk device, TO=25°C, rl=7 cm, r2=1
In the case of 4 cm, the optimal current value is Il = 130 mA,
Suppose that I2=150 mA is obtained. From Figure 2, it is 12.2 mW at a radius of 7 cm and 17.0 mW at a radius of 14 cm.
4mW is the optimum laser light output, and this situation is shown in the third section.
As shown in FIG.
This means that a laser light output of mW is output.

一方、半導体レーザー光の駆動電流対光出力特性は或る
閾値電波以上では直線性を有するため。
On the other hand, the drive current vs. light output characteristic of semiconductor laser light has linearity above a certain threshold radio wave.

先の2点が判れば駆動電流対光出力特性が求まる。この
様子を第3図(b)に示し、破線は標準ディスク装置の
半導体レーザー光の特性である。
If the above two points are known, the drive current vs. optical output characteristic can be determined. This situation is shown in FIG. 3(b), where the broken line indicates the characteristics of the semiconductor laser light of the standard disk device.

頌境温度TOが25℃のときのディスク半径位置におけ
るレーザー光出力の制御方法は、第3図(a)のデータ
から各半径位置における最適レーザー光出力を求め、こ
のレーザー光出力を出力する半導体レーザー光駆動71
1i流を第3図(b)のデータから求める。このように
すれば、TO=25℃において所定のディスク半径位置
で最適レーザー光出力を出力するように半導体レーザー
光を制御することができる。
The method for controlling the laser light output at each radial position of the disk when the temperature TO is 25°C is to find the optimal laser light output at each radial position from the data in Figure 3(a), and then select the semiconductor that outputs this laser light output. Laser light drive 71
1i flow is determined from the data in FIG. 3(b). In this way, the semiconductor laser light can be controlled so that the optimum laser light output is output at a predetermined disk radial position at TO=25°C.

さて、環境温度Toが25℃から変化したときは、半導
体レーザー光の特性は、第1図に示すように閾値電流が
増加するだけで、微分効率である傾きは殆ど変化しない
、従って、25℃で得られた第3図(b)の直線を各温
度に対して閾値電流の変化分だけシフトした第4図によ
り、半導体装置デー光の各温度における駆動電流対レー
ザー光出力特性を推測することができる。このようにす
れば、使用環境温度における半導体レーザー光の特性が
求まるので、環境温度TOが25℃の場合と同様な方法
で、他の温度についてもディスク半径位故による最適レ
ーザー光の出力になるように半導体レーザー光を制御す
ることができる。
Now, when the environmental temperature To changes from 25°C, the characteristics of the semiconductor laser light are as shown in Figure 1, only the threshold current increases and the slope, which is the differential efficiency, hardly changes. From FIG. 4, which is obtained by shifting the straight line in FIG. 3(b) obtained in FIG. Can be done. In this way, the characteristics of the semiconductor laser light at the usage environment temperature can be determined, so the optimum laser light output can be determined for other temperatures depending on the disk radius position using the same method as when the environment temperature TO is 25°C. Semiconductor laser light can be controlled in this manner.

次に、第7図における光出力pbの制御方法について述
べると、光出力pbは常に一定値であればよく、第4図
と同じ第5図のグラフ図を用いて半導体レーザー光制御
を行う8例えばPb=3mWとすると、第5図に示すよ
うに環境温度TOが変化した場合でも、駆動電流を25
℃では96mA、50℃では110mAのように制御す
れば、常に一定値の光出力にレーザー光の出力を保持す
ることができる。
Next, we will discuss the method of controlling the optical output pb in FIG. 7. The optical output pb should always be a constant value, and the semiconductor laser light control method is performed using the graph diagram in FIG. 5, which is the same as in FIG. 4. For example, if Pb = 3 mW, even if the environmental temperature TO changes as shown in Figure 5, the drive current will be reduced to 25 mW.
By controlling the output to 96 mA at 0.degree. C. and 110 mA at 50.degree. C., the output of the laser light can always be maintained at a constant value.

第6図に本発明に係るレーザー光の制御を実現するため
の構成図を示す、標準ディスクと標準光磁気ディスク装
置による最適レーザー光制御のための第1図、第2図に
示すデータは、標準データROMIに記憶されている。
FIG. 6 shows a block diagram for realizing laser light control according to the present invention. The data shown in FIGS. 1 and 2 for optimal laser light control using a standard disk and a standard magneto-optical disk device is as follows. It is stored in the standard data ROMI.

最初に、光磁気ディスク装置を使用するとき、次の手順
で半導体レーザー光制御データを得る。先ず、温度セン
サ2により環境温度子0を測定し、A/Dコンバータ3
を介してコンピュータ4に入力する0次に、光へラド5
を半径位置r1に移動し、標準データROMIからコン
ピュータ4により半径「lで環境温度TOの時の駆動電
流値を取り出し、その値を駆動電流とする。このとき、
光出力Pa、 Pbはコンピュータ4からはP履用D/
Aコンバータs、pb用DりAコンバータ7を介して駆
動回路8に入力される。一方、試験信号発生器9でキャ
リア周波数のデユーティ比50%の方形波を発生させ駆
動回路8に入力する。この結果、半導体レーザー光源1
0の光出力は第7図に示したような光パルスとなり、光
へラド5を経てモータ11により回転されるディスク1
2に記録ビットを形成する。1トラツクの記録が終了す
ると、今度は再生し再生信号は光へラド5を介して受光
素子13、二次歪検出回路14に入力する。二次歪検出
回路14は例えば植分回路で構成されており、その出力
はA/Dコンバータ15を介してコンピュータ4に入力
される。コンピュータ4ではデユーティ比が50%より
大きければ1例えば七の出力は正の値として出力し、 
Pa用DりAコンバータ6を介して記録時の駆動電流を
下げるように制御する。また、逆にデユーティ比が50
%より小さければ、その出力は負の値として出力し、駆
動電流を上昇するように制御する。かくして、二次歪検
出回路14の出力が零になるまで、 Prs用D/りコ
ンバータ6を用いて駆動電流を制御しながら記録・再生
を繰り返す、このようにして、環境温度がTOの時のデ
ィスク半径位置「1での最適駆動電流Ifが求まる。同
様にして、ディスク半径位置r2での駆動電流I2が測
定できる。
First, when using a magneto-optical disk device, semiconductor laser light control data is obtained by the following procedure. First, the temperature sensor 2 measures the environmental temperature zero, and the A/D converter 3
The 0th order is input to the computer 4 via the optical herad 5
is moved to the radial position r1, and the computer 4 extracts the drive current value at the radius "l" and the environmental temperature TO from the standard data ROMI, and uses that value as the drive current.At this time,
The optical outputs Pa and Pb are output from the computer 4 as D/
The signal is input to the drive circuit 8 via the A converter s and the D/A converter 7 for pb. On the other hand, the test signal generator 9 generates a square wave with a carrier frequency duty ratio of 50% and inputs it to the drive circuit 8. As a result, the semiconductor laser light source 1
The optical output of 0 becomes an optical pulse as shown in FIG.
2 to form recording bits. When the recording of one track is completed, reproduction is performed this time, and the reproduced signal is inputted to the light receiving element 13 and the secondary distortion detection circuit 14 via the optical radar 5. The secondary distortion detection circuit 14 is composed of, for example, a distribution circuit, and its output is input to the computer 4 via an A/D converter 15. In computer 4, if the duty ratio is greater than 50%, the output of 1, for example 7, is output as a positive value,
The drive current during recording is controlled to be lowered via the Pa D/A converter 6. Also, conversely, the duty ratio is 50
%, the output is output as a negative value and the drive current is controlled to increase. In this way, recording and reproduction are repeated while controlling the drive current using the Prs D/reconverter 6 until the output of the secondary distortion detection circuit 14 becomes zero.In this way, when the environmental temperature is TO, The optimum drive current If at the disk radial position "1" is determined. Similarly, the drive current I2 at the disk radial position r2 can be measured.

これらの測定データと標準データから制御データを作成
し、不揮発性RAMから或る制御データ用NVR16に
記憶しておく、実際の最適駆動電流の求め方は2個所で
はなく、更に多くの個所で求めることが好ましい、制御
データが一度作成されると、この制御データを用いて測
定個所以外の個所では、その近傍の測定個所における最
適駆動電流から所要の駆動電流を一般的な手法によって
推測でき、ディスク12の半径位置及び環境温度に応じ
てレーザー光制御が可能となる。
Control data is created from these measured data and standard data, and stored in a certain control data NVR 16 from non-volatile RAM.The actual optimal drive current is determined not at two locations but at more locations. Preferably, once the control data has been created, it is possible to use this control data to estimate the required drive current at a location other than the measurement location using a general method from the optimum drive current at the measurement location in the vicinity. Laser light control becomes possible according to the radial position of 12 and the environmental temperature.

例えばD/Aコンバータ6.7が8ビツトのものでは2
56段階にきめ細かく制御が可能で、更にビット数の多
いものを利用すれば、更に精度の良い制御が可能である
For example, if the D/A converter 6.7 is 8 bits, 2
Fine control is possible in 56 steps, and if a device with a larger number of bits is used, even more precise control is possible.

本発明のように最初に装置を使用するとき、装ご全体の
固有の性能を含めたデータをとり、そのデータを使用し
てレーザー光出力を制御すれば。
When the device is used for the first time, as in the present invention, data including the inherent performance of the entire device is collected, and that data is used to control the laser light output.

半導体レーザー光の特性のばらつきを充分補正すること
が可能となる。半導体レーザー光の経年変化など特性に
変化が生じた場合は、上述の動作により新しく装置固有
のデータを取り直せば、最適な半導体レーザー光の制御
が可能となる。勿論、データの更新の方法はこれらに限
らず1例えば電源投入時自動的に行われるようにしても
よい。
It becomes possible to sufficiently correct variations in the characteristics of semiconductor laser light. If the characteristics of the semiconductor laser light change due to aging, etc., the semiconductor laser light can be optimally controlled by re-gathering new device-specific data using the above-described operation. Of course, the method of updating data is not limited to these methods, and may be performed automatically, for example, when the power is turned on.

[発明の効果] 以上説明したように本発明に係る光磁気ディスクの記録
方法によれば、装置固有のデータを測定するときに異な
る半径位置の複数個所でデータを測定するだけで済み、
しかも短時間で制御データを作成することができ、反復
記録時に温度条件も含めた最適な駆動電流を得ることが
可能となる。
[Effects of the Invention] As explained above, according to the magneto-optical disk recording method according to the present invention, when measuring device-specific data, it is only necessary to measure data at multiple locations at different radial positions.
Moreover, control data can be created in a short time, and it is possible to obtain an optimal drive current including temperature conditions during repeated recording.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る光磁気ディスクの記録方法の実施例
を示し、第1図は半導体レーザー光出力の温度特性図、
第2図は温度をパラメータとしたディスク半径位置によ
る最適レーザー光出力特性図、第3図は最適レーザー光
出力の求め方の説明図、第4図は温度が変化した場合の
半導体レーザーの特性図、第5図は温度が変化した場合
のレーザー光出力pbの制御方法の説明図、第6図は最
適レーザー光出力制御を実現するための構成図であり、
第7図は書き込み光パルスの波形図、第8図はディスク
半径位置による再生信号の波形図である。 符号1はROM、2は温度センサ、3.15はA/Dコ
ンバータ、4はコンピュータ、5は光ヘッド、6.7は
D/Aコンバータ、8は駆動回路、9は試験信号発生器
、10は半導体レーザー光源、11はモータ、12はデ
ィスク、13は受光素子、14は二次歪検出回路、16
はNVRである。 特許出願人   日 本 放 送 協 会同   アサ
力株式会社 同     日本光学工業株式会社 第1図 、駆動電流(mA) テ゛4スフ半径(am) 第3図 CG) (b) 駈動t:丸(mA ) 第4図 帛5図 8096+10 、駆動室−先(mA)
The drawings show an embodiment of the magneto-optical disk recording method according to the present invention, and FIG. 1 is a temperature characteristic diagram of semiconductor laser light output;
Figure 2 is a diagram of the optimum laser light output characteristics depending on the disk radial position with temperature as a parameter, Figure 3 is an explanatory diagram of how to determine the optimum laser light output, and Figure 4 is a diagram of semiconductor laser characteristics when the temperature changes. , FIG. 5 is an explanatory diagram of a method of controlling the laser light output pb when the temperature changes, and FIG. 6 is a configuration diagram for realizing optimal laser light output control.
FIG. 7 is a waveform diagram of the write light pulse, and FIG. 8 is a waveform diagram of the reproduction signal depending on the disk radial position. 1 is a ROM, 2 is a temperature sensor, 3.15 is an A/D converter, 4 is a computer, 5 is an optical head, 6.7 is a D/A converter, 8 is a drive circuit, 9 is a test signal generator, 10 11 is a semiconductor laser light source, 11 is a motor, 12 is a disk, 13 is a light receiving element, 14 is a secondary distortion detection circuit, 16
is an NVR. Patent applicant: Japan Broadcasting Association Asaiki Co., Ltd. Nippon Kogaku Kogyo Co., Ltd. Figure 1, Drive current (mA) Teeth 4 stroke radius (am) Figure 3 CG) (b) Cantering t: Circle (mA) ) Figure 4 Figure 5 8096+10, drive chamber - tip (mA)

Claims (1)

【特許請求の範囲】 1、反復して記録が可能な光磁気ディスクにおいて、或
る環境温度での予備的な記録再生により、該光磁気ディ
スク上の異なる半径位置の複数の測定個所で求めた最適
な記録時のレーザー駆動電流のデータを記憶しておき、
前記データに基づいて、任意の環境温度の記録時に各半
径位置及び前記任意の環境温度におけるレーザー駆動電
流を演算し、該演算の結果に基づいてレーザー出力を制
御することを特徴とする光磁気ディスクの記録方法。 2、前記最適レーザー駆動電流を求めた測定個所以外の
個所においては、近傍の測定個所による内挿データを基
にレーザー駆動電流を決定するようにした特許請求の範
囲第1項に記載の光磁気ディスクの記録方法。
[Scope of Claims] 1. In a magneto-optical disk that can be repeatedly recorded, it is determined at a plurality of measurement points at different radial positions on the magneto-optical disk by preliminary recording and reproduction at a certain environmental temperature. Store the laser drive current data during optimal recording,
A magneto-optical disk characterized in that, based on the data, a laser drive current is calculated at each radial position and at the arbitrary environmental temperature when recording an arbitrary environmental temperature, and the laser output is controlled based on the result of the calculation. How to record. 2. The magneto-optical device according to claim 1, wherein the laser drive current is determined based on interpolated data from neighboring measurement locations at locations other than the measurement location where the optimum laser drive current was determined. How to record a disc.
JP61127587A 1986-06-02 1986-06-02 Recording method for magneto-optical disk Expired - Lifetime JPH071562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127587A JPH071562B2 (en) 1986-06-02 1986-06-02 Recording method for magneto-optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127587A JPH071562B2 (en) 1986-06-02 1986-06-02 Recording method for magneto-optical disk

Publications (2)

Publication Number Publication Date
JPS62285258A true JPS62285258A (en) 1987-12-11
JPH071562B2 JPH071562B2 (en) 1995-01-11

Family

ID=14963757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127587A Expired - Lifetime JPH071562B2 (en) 1986-06-02 1986-06-02 Recording method for magneto-optical disk

Country Status (1)

Country Link
JP (1) JPH071562B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989012889A1 (en) * 1988-06-24 1989-12-28 Sony Corporation Magnetooptical recording apparatus
JPH03116566A (en) * 1989-09-29 1991-05-17 Nec Corp Method for controlling recording and reproducing of magneto-optical disk
JPH07262638A (en) * 1995-02-03 1995-10-13 Hitachi Ltd Magneto-optical disk device
US7876655B2 (en) 2001-11-29 2011-01-25 Sony Corporation Optical recording medium and recording device for this optical recording medium and recording method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131516U (en) * 1980-03-10 1981-10-06
JPS5984354A (en) * 1982-11-05 1984-05-16 Asahi Chem Ind Co Ltd Recording method of optical disk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56131516U (en) * 1980-03-10 1981-10-06
JPS5984354A (en) * 1982-11-05 1984-05-16 Asahi Chem Ind Co Ltd Recording method of optical disk

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989012889A1 (en) * 1988-06-24 1989-12-28 Sony Corporation Magnetooptical recording apparatus
JPH02126447A (en) * 1988-06-24 1990-05-15 Sony Corp Magneto-optical recorder
US5182734A (en) * 1988-06-24 1993-01-26 Sony Corporation Magneto-optical recording apparatus with pulse driven light beam and variable delay of magnetic field reversals based on recording medium characteristics
EP0569054A2 (en) * 1988-06-24 1993-11-10 Sony Corporation Magneto-optical recording apparatus
JPH03116566A (en) * 1989-09-29 1991-05-17 Nec Corp Method for controlling recording and reproducing of magneto-optical disk
JPH07262638A (en) * 1995-02-03 1995-10-13 Hitachi Ltd Magneto-optical disk device
US7876655B2 (en) 2001-11-29 2011-01-25 Sony Corporation Optical recording medium and recording device for this optical recording medium and recording method

Also Published As

Publication number Publication date
JPH071562B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
US6411592B1 (en) Optical information recording medium having convex and concave portions for recording information and an additional portion for condition data, and recording and reproducing apparatus for using the medium
EP0213623B1 (en) Optical disc recording and reproducing apparatus
JP2999684B2 (en) Optical disk recording control method and optical disk device
JPH07111782B2 (en) Optical disc recording / reproducing device
US5113384A (en) Focus capture method for magneto-optic disk drives
US5410527A (en) Information recording/reproducing apparatus including setting optimum recording condition or reproducing condition
JP2674453B2 (en) Optical disc medium recording method and apparatus
JPS62285258A (en) Recording method for magneto-optical disk
KR100639404B1 (en) Method and device for recording marks in an information layer of an optical record carrier
JPH09219021A (en) Information recording and reproducing method
JP2826108B2 (en) Optical recording / reproducing device
JPH1125538A (en) Recording power control method of magneto-optical disk and magneto-optical disk device
JPH0540974A (en) Magneto-optical recording device
US5581535A (en) Prepulse conditon/heat shut off condition determination method and apparatus for optical recording, and optical recording method and apparatus
JPS61260439A (en) Optical information recording device
KR20010074967A (en) Method and device for recording marks in an information layer of an optical record carrier
JP2007335075A (en) Optical record carrier recording method, and recording device
JP2691900B2 (en) Recording method
JP2603632B2 (en) Optical information recording / reproducing device
JP4321684B2 (en) Magneto-optical recording medium and reproducing light quantity control device in optical storage device
JPH01169735A (en) Optical memory write circuit
JP2000163748A (en) Information recording system and information recording and reproducing device
JPH0229941A (en) Optical information recording and reproducing device
JP2002050046A (en) Information recording/reproducing device and information recording method
EP0595625A2 (en) Prepulse condition/heat shut off condition determination method and apparatus for optical recording, and optical recording method and apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term