JPS62283848A - Method and apparatus for removing volatile contents in cement burning facilities - Google Patents

Method and apparatus for removing volatile contents in cement burning facilities

Info

Publication number
JPS62283848A
JPS62283848A JP12230886A JP12230886A JPS62283848A JP S62283848 A JPS62283848 A JP S62283848A JP 12230886 A JP12230886 A JP 12230886A JP 12230886 A JP12230886 A JP 12230886A JP S62283848 A JPS62283848 A JP S62283848A
Authority
JP
Japan
Prior art keywords
exhaust gas
adsorption tower
volatile matter
kiln
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12230886A
Other languages
Japanese (ja)
Inventor
西山 勝治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP12230886A priority Critical patent/JPS62283848A/en
Publication of JPS62283848A publication Critical patent/JPS62283848A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/60Methods for eliminating alkali metals or compounds thereof, e.g. from the raw materials or during the burning process; methods for eliminating other harmful components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Public Health (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Furnace Details (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 本発明はセメント焼成設備において、原料に含まれるア
ルカリ等の揮発分の除去に関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the removal of volatile components such as alkali contained in raw materials in cement firing equipment.

〈従来の技術〉 従来のセメント焼成設備は、たとえば第2図に示すよう
な構成からなっている。
<Prior Art> A conventional cement firing facility has a configuration as shown in FIG. 2, for example.

第2図において、1はサスペンションプレヒータ、2は
焼成炉で本例ではロータリキルン、3はタリンカクーラ
、4は粉末原料輸送機、5は主排風機、6は仮焼炉であ
る。
In FIG. 2, 1 is a suspension preheater, 2 is a firing furnace, in this example a rotary kiln, 3 is a tarinka cooler, 4 is a powder material transporter, 5 is a main exhaust fan, and 6 is a calciner.

すなわち、粉末原料は該輸送R4によってサスペンショ
ンプレヒータ 1へ投入され、各サイクロンで高温ガス
と熱交換して仮焼炉6に至り、ここで仮焼炉バーナ8で
仮焼され、ロータリキルン2へ投入される。
That is, the powder raw material is introduced into the suspension preheater 1 by the transport R4, exchanges heat with high-temperature gas in each cyclone, reaches the calciner 6, is calcined here in the calciner burner 8, and is input into the rotary kiln 2. be done.

前記ロータリキルン2へ投入された原料は、該キルン2
の回転により徐々に流下し、キルンバーナ9により約1
,450℃まで加熱されて焼成され、セメント用タリン
カとなり、矢印14で示すようにタリンカクーラ3へ投
入され、該クーラ3で冷却されてタリンカ18となる。
The raw material input into the rotary kiln 2 is
It gradually flows down due to the rotation of the kiln burner 9, and the kiln burner 9
, is heated to 450° C. and fired to become tarinka for cement, and is then put into the tarinka cooler 3 as shown by arrow 14, where it is cooled and becomes tarinka 18.

前記クーラ3へ冷却空気送風機10により送入された空
気は、高温タリンカと熱交換し、三分割され、一番高温
の空気は矢印15で示すようにロータリキルン2へ送入
されて該キルン2の燃焼用二次空気となる。次の中温の
空気は矢印7で示すように仮焼炉6の燃焼用二次空気と
なる。
The air sent to the cooler 3 by the cooling air blower 10 exchanges heat with the high-temperature tarinka and is divided into three parts, and the highest temperature air is sent to the rotary kiln 2 as shown by the arrow 15. It becomes secondary air for combustion. The next medium-temperature air becomes secondary air for combustion in the calciner 6 as shown by arrow 7.

残りの低温のクーラ余剰空気は矢印16で示すように集
じん器11に至り、ごこで除じんされて系外に排出され
る。
The remaining low-temperature excess air from the cooler reaches the dust collector 11 as shown by arrow 16, where it is removed with dust and discharged out of the system.

前記ロータリキルン2の排ガスは仮焼炉6およびサスペ
ンションプレヒータ 1で原料と熱交換し、主排風機5
によって誘引される。
The exhaust gas from the rotary kiln 2 exchanges heat with the raw material in the calciner 6 and the suspension preheater 1, and then passes through the main exhaust fan 5.
induced by.

尚以上の説明では仮焼炉6付のセメント焼成設備につい
ても説明したが、仮焼炉6がなくキルンとサスペンショ
ンプレヒータからなるものもある。又焼成炉としてはロ
ータリキルン以外に流動層焼成炉もある。
In the above explanation, a cement firing equipment equipped with a calcining furnace 6 has been described, but there is also a cement firing equipment without the calcining furnace 6 and consisting of a kiln and a suspension preheater. In addition to rotary kilns, there are also fluidized bed kilns.

かかるセメント焼成設備において原料に含まれているN
az○、K2Oなどのアルカリ成分やSO3等は約1,
400℃前後で蒸発する性質があり(以下揮発分という
)ロータリキルン2の運転温度1 、450℃の区域を
通過する際原料より蒸発して、気体となり、ロータリキ
ルンの燃焼ガス中へ入りこむ。このキルンのガスはロー
タリキルンのガス出口側13で約+、000〜+、+0
0℃であるがサスペンションプレヒータ 1で原料と熱
交換されて約350℃に冷却されて主排I!1機5によ
り誘引される。
N contained in raw materials in such cement firing equipment
Alkaline components such as az○, K2O, SO3, etc. are approximately 1,
It has the property of evaporating at around 400°C (hereinafter referred to as volatile content), and when passing through the operating temperature zone of the rotary kiln 2 at 450°C, it evaporates from the raw material, becomes a gas, and enters the combustion gas of the rotary kiln. The gas in this kiln is approximately +,000~+,+0 at the gas outlet side 13 of the rotary kiln.
Although the temperature is 0°C, heat is exchanged with the raw material in the suspension preheater 1, and the temperature is cooled to approximately 350°C, and then the main discharge I! Attracted by 1 aircraft 5.

一方気化した揮発分は800〜850℃で凝縮するので
、この温度帯になっている原料や炉壁に付着する。原料
に付着した揮発分は再び流下しロータリキルン2で上述
の加熱/蒸発されてキルンガス中に入りこむ。
On the other hand, since the vaporized volatile matter condenses at 800 to 850°C, it adheres to the raw materials and furnace walls that are in this temperature range. The volatile matter adhering to the raw material flows down again and is heated/evaporated in the rotary kiln 2 as described above, and enters the kiln gas.

かくして揮発分はロータリキルンとサスペンションプレ
ヒータの間で循環するので、その間では揮発分が濃縮さ
れた状態で運転されることになる。この揮発分が多くな
ると次のような問題がある。
Thus, the volatile matter is circulated between the rotary kiln and the suspension preheater, so that the rotary kiln and the suspension preheater are operated in a concentrated state. When this volatile content increases, the following problems occur.

(1)  揮発分がサスペンションプレヒータ 1や立
ら上りダクト19の内壁に付着し次第に成長して、ガス
流れを阻害し、運転不能に至らしめる。
(1) Volatile matter adheres to the inner walls of the suspension preheater 1 and the riser duct 19 and gradually grows, obstructing the gas flow and making it impossible to operate.

■ サスペンションプレヒータ内の原料中に揮発分が増
加すると、原料が粘着性をおびて相互に付着し、サスペ
ンション方式の運転ができなくなる。
■ When volatile content increases in the raw materials in the suspension preheater, the raw materials become sticky and stick to each other, making suspension system operation impossible.

■ 製品のタリン力中のアルカリ分が増大する。■ Alkaline content in the product's talin content increases.

タリン力中のアルカリは最終的にはセメント中のアルカ
リとなり、現在、アルカリ問題の原因となっているもの
である。尚アメリカではこのアルカリを0.6%以下に
規定している。
The alkali in the talin eventually becomes the alkali in the cement, which is currently the cause of the alkali problem. In the United States, this alkali content is regulated at 0.6% or less.

上述(1)〜■の対策として従来の立ち上りダクト19
よりキルン排ガスの一部分を系外へ取り出して、揮発分
の濃縮を避けることが実用化されている。
As a countermeasure for the above (1) to ■, the conventional rising duct 19
It has been put into practical use to take out a portion of the kiln exhaust gas outside the system to avoid concentration of volatile components.

叩ち第3図に示すように立ち上りダクト19の途中より
ダクト20で +、000〜i 、 100℃のキルン
排ガスの一部を冷却塔21へ誘引し、ポンプ22で昇圧
された水をノズル23から噴霧して高温ガスを約350
℃まで急冷却する。このキルン排ガスは多量のダストを
含むので気流中の揮発分は急冷されたダスト表面に付着
する。冷却塔21を出たガスをさらに電気集塵器25を
通して集塵し、排風機26で誘引して系外へすてている
。冷却塔21で比較的大きな粒子は下部へ落下し、ダス
トとしてコンベア29により糸外へ出される。又電気集
塵器25で集塵されたダストもコンベア30により系外
へ出される。ダクト20へのアルカリ付着を防止する為
送I!18!27で冷風を立ち上りダクト19の取出口
に外周から送風し、高温ガスを冷風が包むようにして冷
却塔21へ導く。水のないアラブの国々では冷却塔21
に水噴射する代りに送風機27の風量を増して350℃
まで冷却している。
As shown in FIG. 3, part of the kiln exhaust gas at +,000 to i, 100°C is drawn into the cooling tower 21 from the middle of the rising duct 19 through the duct 20, and the water pressurized by the pump 22 is sent to the nozzle 23. The high temperature gas is sprayed from about 350℃.
Rapidly cool to ℃. Since this kiln exhaust gas contains a large amount of dust, volatile matter in the airflow adheres to the surface of the rapidly cooled dust. The gas exiting the cooling tower 21 is further collected through an electric precipitator 25, and is drawn out by an exhaust fan 26 and disposed of outside the system. Relatively large particles fall to the bottom of the cooling tower 21 and are taken out of the yarn by a conveyor 29 as dust. Further, the dust collected by the electrostatic precipitator 25 is also taken out of the system by the conveyor 30. To prevent alkali from adhering to the duct 20, send I! At 18 and 27, cold air is blown from the outer periphery to the outlet of the rising duct 19, and the high temperature gas is guided to the cooling tower 21 so as to be surrounded by the cold air. 21 cooling towers in Arab countries without water
Instead of injecting water, the air volume of the blower 27 is increased to 350℃
It is cooled down to.

〈発明が解決しようとする問題点〉 以上述べたような従来の揮発分除去装置については以下
のような問題がある。
<Problems to be Solved by the Invention> The conventional volatile matter removal apparatus as described above has the following problems.

(1)  高温のキルン排気ガスを抜き出して系外に捨
てておりその分はそのまま熱損失となるので熱エネルギ
ーの原単位が悪化する。
(1) High-temperature kiln exhaust gas is extracted and disposed of outside the system, and that amount becomes heat loss, which worsens the unit heat energy consumption.

■ 揮発分をキルン排ガス中のダストに付着させて除去
するやり方なのでダストが大量に発生し、その処理費用
が大きく、粉塵公害のもとになる。又本来キルン排ガス
中のダストはセメント原料なので製品歩留が悪化する。
■ Since volatile matter is removed by attaching it to the dust in the kiln exhaust gas, a large amount of dust is generated, the processing cost is high, and it becomes a source of dust pollution. Furthermore, since the dust in the kiln exhaust gas is originally a raw material for cement, the product yield deteriorates.

■ 電気集塵器は高価であるので揮発分除去装置全体と
して高価になる。
■ Electrostatic precipitators are expensive, so the entire devolatilization device is expensive.

〈発明の目的〉 本発明は従来の揮発分除去装置のかがる問題点に鑑み案
出されたもので、キルン排ガスの一部を抜き出し、該排
ガス中に低温の粗粒を画状に降らせて揮発物を粗粒表面
に蒸着させて除去し、キルン排ガスは再びサスペンショ
ンプレヒータに戻すようにすることにより熱エネルギー
の原単位が低く、集塵の発生量が少なく、安価なセメン
ト焼成装置の揮発分除去方法および装置を提供すること
を目的とする。
<Object of the Invention> The present invention was devised in view of the problems of conventional devolatilization devices. Volatiles are removed by evaporation on the surface of coarse grains, and the kiln exhaust gas is returned to the suspension preheater, resulting in low thermal energy consumption, less dust generation, and less volatile matter in inexpensive cement firing equipment. The object of the present invention is to provide a removal method and apparatus.

く問題点を解決するための手段〉 上記目的を達成するため本願の第1発明のセメント焼成
設備における揮発分除去方法は焼成炉とサスペンション
プレヒータとを備えたセメント焼成設備の焼成炉排ガス
出口付近から焼成炉排ガスの一部を抜き出すことにより
焼成炉とサスペンションプレヒータ間を循環する揮発分
濃度を低下させるセメント焼成設備における揮発分除去
方法において、上記法ぎ出された焼成炉排ガスの一部を
吸着塔に導き、吸着塔内を流れる間に画状に降らせる低
温粗粒に接触させてその表面に揮発分を吸着させ、吸着
塔からの処理後の焼成炉排ガスはサスペンションプレヒ
ータの管系の該排ガス温度にほぼ等しい温度域部分に戻
すようにしたことを特徴とするものである。
Means for Solving the Problems In order to achieve the above object, the method for removing volatile matter in cement firing equipment according to the first invention of the present application is to remove volatile matter from the vicinity of the firing furnace exhaust gas outlet of cement firing equipment equipped with a firing furnace and a suspension preheater. In a method for removing volatile matter in cement firing equipment, which reduces the concentration of volatile matter circulating between the kiln and suspension preheater by extracting a part of the kiln flue gas, a part of the kiln flue gas discharged above is transferred to an adsorption tower. It is brought into contact with low-temperature coarse particles that fall in a pattern while flowing through the adsorption tower, and the volatile matter is adsorbed on its surface. The feature is that the temperature is returned to a portion of the temperature range approximately equal to .

また本願の第2発明のセメント焼成設備における揮発分
除去装置は焼成炉とサスペンションプレヒータとを備え
たセメント焼成設備焼成炉排ガス出口付近から焼成炉排
ガスの一部を抜き出すことにより焼成炉とサスペンショ
ンプレヒータ間を循環する揮発分の濃度を低下させるセ
メント焼成設備における揮発分除去装置において、抜き
出した焼成炉排ガスを受け入れる吸着塔と、吸着塔から
送られる粗粒を冷却または洗浄する冷却手段と、冷却手
段から冷却された粗粒を吸着塔に帰還させる返送手段と
、吸着塔で処理後の焼成炉排ガスをサスペンションプレ
ヒータの管系の該排ガス温度にほぼ等しい温度域部分に
戻すダクトを備えてなり、吸着塔は低温粗粒を画状に降
らせる分散手段を備え、画状に降らせた低温粗粒の表面
に焼成炉排ガス中の揮発分を吸着させるようになってい
ることを特徴とするものである。
Further, the volatile matter removal device for cement firing equipment according to the second invention of the present application is a cement firing equipment equipped with a firing furnace and a suspension preheater. In a volatile matter removal device in a cement firing facility that reduces the concentration of volatile matter circulating in cement, an adsorption tower that receives the extracted firing furnace exhaust gas, a cooling means for cooling or cleaning the coarse particles sent from the adsorption tower, and a device for removing volatile matter from the cooling means. It is equipped with a return means for returning the cooled coarse particles to the adsorption tower, and a duct for returning the calcining furnace exhaust gas treated in the adsorption tower to a part of the suspension preheater pipe system in a temperature range approximately equal to the temperature of the exhaust gas, and the adsorption tower The apparatus is characterized in that it is equipped with a dispersing means for causing low-temperature coarse particles to fall in a pattern, and the volatile matter in the firing furnace exhaust gas is adsorbed onto the surface of the low-temperature coarse particles falling in a pattern.

〈作   用〉 1.000℃程度の高温の焼成炉の排ガスの一部を抜き
出して吸着塔に導き、該塔内をガスが上昇する間に画状
に降らせた低温の粗粒と接触させる。粗粒を接触した揮
発分は温度低下により凝縮し、粗粒表面に吸着される。
<Operation> A part of the exhaust gas from the calcining furnace at a high temperature of about 1,000°C is extracted and guided to an adsorption tower, where it is brought into contact with low-temperature coarse particles that fall in a pattern while the gas rises inside the tower. Volatile matter that comes into contact with the coarse particles condenses as the temperature decreases and is adsorbed on the surface of the coarse particles.

処理後のキルン排ガスは700℃〜850℃程度の温度
を有しておりサスペンションプレヒータの管系のほぼ等
しい温度域部分に戻される。一方揮発分を吸着した粗粒
は500℃程度まで昇温しているので冷却手段により常
温付近まで冷却し再び吸着塔に導く。尚砂等が多量に入
手できる場合は特別な冷加器を設けず、屋外に山積にし
ている間に自然冷却し、一部を補充しつつ循環使用して
もよい。
The treated kiln exhaust gas has a temperature of about 700° C. to 850° C., and is returned to a portion of the suspension preheater pipe system having a substantially equal temperature range. On the other hand, since the temperature of the coarse particles that have adsorbed volatile matter has risen to about 500° C., they are cooled to around room temperature by a cooling means and guided to the adsorption tower again. If sand or the like is available in large quantities, it may be possible to cool it naturally while it is piled up outdoors without installing a special cooler, and recycle some of it while replenishing it.

〈実 施 例〉 以下本発明の一実施例について第1図を参照しつつ説明
する。
<Embodiment> An embodiment of the present invention will be described below with reference to FIG.

第1図は本発明のセメント焼成設備における揮発分除去
装置のフローシートである。第1図において 1はサス
ペンションプレヒータで、第1段サイクロン1c、第2
段サイクロン2c、第3段サイクロン3C1第4段サイ
クロン4Cおよびそれらの間を連結する管系とからなる
。2は焼成炉で本例ではロータリキルン、3はクーラ、
6は仮焼炉、13はロータリキルンの排ガス出口、19
は立ち上りダクトである。40は立ち上りダクト19か
らキルン排ガスの一部を抜き出す央き出しダクト、41
は吸着塔、43は吸着塔41からサスペンションプレヒ
ータに戻す戻しダクト、44はダブルフラップ等のシー
ルダンパ、45は冷却手段、46は返送手段でパケット
エレベータ46a、ホッパ46b1定量供給1146c
、パケットエレベータ46dシールダンパ46eからな
る。48は吸着塔41頂部に設けられ粗粒を吸着塔内で
山状に降らぜる分散手段である。
FIG. 1 is a flow sheet of the devolatilization device in the cement firing equipment of the present invention. In Fig. 1, 1 is a suspension preheater, the first stage cyclone 1c, the second stage cyclone 1c,
It consists of a stage cyclone 2c, a third stage cyclone 3C, a fourth stage cyclone 4C, and a pipe system connecting them. 2 is a firing furnace, in this example a rotary kiln, 3 is a cooler,
6 is a calcining furnace, 13 is a rotary kiln exhaust gas outlet, 19
is a rising duct. 40 is a central outlet duct for extracting part of the kiln exhaust gas from the rising duct 19; 41;
4 is an adsorption tower, 43 is a return duct returning from the adsorption tower 41 to the suspension preheater, 44 is a seal damper such as a double flap, 45 is a cooling means, and 46 is a return means, which includes a packet elevator 46a, a hopper 46b1, and a quantitative supply 1146c.
, a packet elevator 46d, and a seal damper 46e. 48 is a dispersing means provided at the top of the adsorption tower 41 to cause coarse particles to fall in a mountain shape within the adsorption tower.

尚第1図でセメント焼成装置は仮焼炉6付となっている
が仮焼炉6はなくてもよいし、サスペンションプレヒー
タ 1も段数に増減があってもよい。又焼成炉は流1)
316式のものであってもよい。吸着塔は下部にガス入
口41a1上部にガス出口41b、頂部に粗粒入口41
C1底部に粗粒出口41dを有し、頂部の粗粒入口41
c付近に分散手段48を備えている。
Although the cement firing apparatus in FIG. 1 is equipped with a calcining furnace 6, the calcining furnace 6 may not be provided, and the number of stages of the suspension preheater 1 may be increased or decreased. Also, the firing furnace is flow 1)
316 type may be used. The adsorption tower has a gas inlet 41a at the bottom, a gas outlet 41b at the top, and a coarse particle inlet 41 at the top.
C1 has a coarse grain outlet 41d at the bottom, and a coarse grain inlet 41 at the top.
A dispersing means 48 is provided near c.

分散手段48は受入れ粗粒を吸着塔41内で一様に山状
に降らせる手段であり、例えば振動スクリーン等が用い
られる。
The dispersion means 48 is a means for uniformly distributing the received coarse particles in a mountain shape within the adsorption tower 41, and for example, a vibrating screen or the like is used.

吸着塔41内で降らせる粗粒はガスに持ち去られないだ
けの十分な重さ例えば平均径が1+n+n程度の砂、鉄
粉、鉄球などが用いられる。吸着塔41の高さは粗粒が
吸着塔41内を落下する間にキルン排ガス中の揮発分が
粗粒表面に吸着されるのに十分なリテンションタイムを
もつように、粗粒の材質や形状に応じて決められる。
The coarse particles falling in the adsorption tower 41 are made of sand, iron powder, iron balls, etc. having a weight sufficient to prevent them from being carried away by the gas, such as sand, iron powder, or iron balls having an average diameter of about 1+n+n. The height of the adsorption tower 41 is determined by the material and shape of the coarse particles so that while the coarse particles fall through the adsorption tower 41, the volatile matter in the kiln exhaust gas has a sufficient retention time to be adsorbed on the surface of the coarse particles. It can be decided according to.

尚第1図では吸着塔41内ではキルン排ガスが上昇流、
粗粒が下降流の向流式となっているが、キルン排ガスが
下降流となる並流式であってもよい。
In addition, in FIG. 1, the kiln exhaust gas flows upward in the adsorption tower 41,
Although this is a countercurrent type in which the coarse particles flow downward, a parallel flow type in which the kiln exhaust gas flows downward may also be used.

冷却手段45は吸着塔41内で高温になった粗粒を常温
まで冷却する手段で、ロータリドラム内に冷風を流通さ
せるロータリクーラ、ロータリドラム内にシャワーを設
けて冷却とともに粗粒の表面に吸着された揮発分を洗浄
するロータリウオッシャ、水を貯めたボンド底面にドラ
ッグコンベアを走行させ、ポンドに投入される粗粒を掻
き出すようにしたポンドウオッシャ、単に屋外に粗粒を
山積みする自然放冷式などを状況に応じて適宜選択する
。尚洗浄する場合には何回でも循環使用できるが、単に
冷却するだけの場合には粗粒の粒径が揮発分の吸着によ
り次第に大きくなるので一部新しい粗粒と入れかえなが
ら循環使用することになる。
The cooling means 45 is a means for cooling the coarse particles that have become high temperature in the adsorption tower 41 to room temperature, and includes a rotary cooler that circulates cold air in the rotary drum, and a shower provided in the rotary drum to cool the coarse particles and adsorb them onto the surface of the coarse particles. A rotary washer that cleans the volatile matter that is left behind, a pond washer that runs a drag conveyor on the bottom of the bond that stores water and scrapes out the coarse grains that are thrown into the pond, and a natural cooling type that simply piles up the coarse grains outdoors. etc., as appropriate depending on the situation. When cleaning, it can be reused as many times as desired, but when simply cooling, the particle size of the coarse grains gradually increases due to the adsorption of volatile matter, so some of the coarse grains must be replaced with new ones for reuse. Become.

返送手段46は冷却された粗粒を吸着塔41頂部に帰還
させる手段で、図のようにパケットエレベータ46a、
466等が用いられる。尚ホッパ46bは粗粒を一時的
に貯留し揮発分除去装置の運転の安定性を高めるために
設けられているが、なくてもよい。
The return means 46 is a means for returning the cooled coarse particles to the top of the adsorption tower 41, and as shown in the figure, there is a packet elevator 46a,
466 etc. are used. Although the hopper 46b is provided to temporarily store coarse particles and improve the stability of operation of the volatile matter removal device, it may be omitted.

以下作用を説明する。The action will be explained below.

セメント焼成設備ではキルン2から仮焼炉6に1,00
0℃程度の排ガスが送られており、該排ガス中にはアル
カリ分等の揮発分が含まれている。立ち上り管19から
上記排ガスの10〜30%程度をダクト40を通して抜
き出し、吸着塔41のガス人口41aに送る。吸着塔4
1内を上記1,000℃の排ガスが上昇する間に吸着塔
41頂部から雨状に降っている粗粒と対向流状態で接触
する。粗粒は常温またはそれより若干高い温度なので排
ガスと接触すると組粒近傍のガスが冷されその中に含ま
れる揮発分が表面に吸着される。処理後の排ガスは85
0℃程度まで冷却されており、吸着塔41から戻しダク
ト43によりサスペンションプレヒータ 1の管系に戻
される。サスペンションプレヒータ 1の管系の内第4
段サイクロン4C出口では850℃程度になっているの
でここに戻される。一方吸着塔41内を降下した粗粒は
400〜500℃程度まで加熱されて底部の粗粒出口4
1dから外部に排出され、シールダンパ44を経て冷却
手段45に送られる。冷却手段45で粗粒は冷却または
洗浄され、処理後の粗粒は返送手段46により吸着塔4
1頂部に帰還される。帰還した粗粒は分散手段48によ
り吸着塔41内に一様に山状に降らされる。かくして粗
粒は循環使用される。
1,000 from kiln 2 to calciner 6 in cement firing equipment.
Exhaust gas at about 0° C. is sent, and the exhaust gas contains volatile components such as alkali components. Approximately 10 to 30% of the exhaust gas is extracted from the riser 19 through the duct 40 and sent to the gas port 41a of the adsorption tower 41. Adsorption tower 4
While the exhaust gas at 1,000° C. rises inside the adsorption tower 41, it comes into contact with coarse particles raining down from the top of the adsorption tower 41 in a counterflow state. Since the coarse grains are at room temperature or slightly higher than normal temperature, when they come into contact with exhaust gas, the gas near the assembled grains is cooled and the volatile matter contained therein is adsorbed on the surface. Exhaust gas after treatment is 85
It is cooled to about 0° C. and is returned from the adsorption tower 41 to the pipe system of the suspension preheater 1 through a return duct 43. Suspension preheater 4th pipe of 1
At the exit of stage cyclone 4C, the temperature is about 850°C, so it is returned there. On the other hand, the coarse particles that have descended inside the adsorption tower 41 are heated to about 400 to 500°C and are heated to a coarse particle outlet 4 at the bottom.
1d, and is sent to the cooling means 45 via the seal damper 44. The coarse particles are cooled or washed by the cooling means 45, and the coarse particles after treatment are sent to the adsorption tower 4 by the return means 46.
1. Returned to the top. The returned coarse particles are uniformly dropped into the adsorption tower 41 in a mountain shape by the dispersing means 48. The coarse particles are thus recycled.

〈変 形 例〉 第4図は本発明の変形例のフローシートである。第1図
との相違点は吸着塔41内でキルン排ガスが700℃程
度まで冷却されることであり、そのためサスペンション
プレヒータ 1の管系内の第3段サイクロン出口(出口
温度750℃〉に戻されている。
<Modification> FIG. 4 is a flow sheet of a modification of the present invention. The difference from Fig. 1 is that the kiln exhaust gas is cooled to about 700°C in the adsorption tower 41, and is therefore returned to the third stage cyclone outlet (exit temperature 750°C) in the pipe system of the suspension preheater 1. ing.

本発明は上述実施例又は変形例に限られるものではなく
、特許請求の範囲内で種々の変形が可能であることは当
然である。
It goes without saying that the present invention is not limited to the above-described embodiments or modified examples, and that various modifications can be made within the scope of the claims.

〈発明の効果〉 以上の述べたように本発明のセメント焼成設備における
揮発分除去方法および除去装置は以下のような効果があ
る。
<Effects of the Invention> As described above, the method and device for removing volatile matter in cement firing equipment of the present invention has the following effects.

(1)  キルン排ガス中の揮発分を排ガスの温度をあ
まり下げないで除去するので熱エネルギーの損失が少な
く焼成の燃料原単位が向上する。
(1) Volatile matter in the kiln exhaust gas is removed without significantly lowering the temperature of the exhaust gas, resulting in less loss of thermal energy and improved fuel consumption for firing.

■ キルン排ガスのダストを核として、揮発分を吸着さ
せる従来の方法と異なり、粗粒に吸着させる方法なので
、ダストの発生量が少なくて粉塵公害発生のおそれが少
なく、又排ガス中のダストが失われないので製品歩留り
も向上する。
■ Unlike the conventional method in which volatile matter is adsorbed using dust from kiln exhaust gas as a nucleus, this method adsorbs volatile matter into coarse particles, so the amount of dust generated is small and there is less risk of dust pollution, and the dust in the exhaust gas is lost. Product yield is also improved.

(3揮発分除去用の電気集塵器が不要なので設備費が安
価となる。
(3) Equipment costs are low because an electric precipitator for removing volatile matter is not required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のセメント焼成設備における揮発分除去
装置のフローシート、第2図は従来のセメント焼成設備
のフローシート、第3図は従来のセメント焼成設備にお
ける揮発分除去装置のフローシート、第4図は本発明の
変形例のフローシートである。 1・・・・・・サスペンションプレヒータ2・・・・・
・ロータリキルン 41・・・・・・吸 着 塔 45・・・・・・冷却手段 46・・・・・・返送手段 48・・・・・・分散手段 第2図
FIG. 1 is a flow sheet of the volatile matter removal device in the cement firing equipment of the present invention, FIG. 2 is a flow sheet of the conventional cement firing equipment, and FIG. 3 is a flow sheet of the volatile matter removal device in the conventional cement firing equipment. FIG. 4 is a flow sheet of a modification of the present invention. 1... Suspension preheater 2...
・Rotary kiln 41...Adsorption tower 45...Cooling means 46...Returning means 48...Dispersion means Fig. 2

Claims (2)

【特許請求の範囲】[Claims] (1)焼成炉とサスペンションプレヒータとを備えたセ
メント焼成設備の焼成炉排ガス出口付近から焼成炉排ガ
スの一部を抜き出すことにより焼成炉とサスペンション
プレヒータ間を循環する揮発分濃度を低下させるセメン
ト焼成設備における揮発分除去方法において、上記抜き
出された焼成炉排ガスの一部を吸着塔に導き、吸着塔内
を流れる間に雨状に降る低温粗粒に接触させてその表面
に揮発分を吸着させ、吸着塔からの処理後の焼成炉排ガ
スはサスペンションプレヒータの管系の該排ガス温度に
ほぼ等しい温度域部分に戻すようにしたことを特徴とす
るセメント焼成設備における揮発分除去方法。
(1) Cement firing equipment that reduces the concentration of volatile matter circulating between the kiln and the suspension preheater by extracting part of the kiln exhaust gas from the vicinity of the kiln furnace exhaust gas outlet of the cement kiln equipment equipped with a kiln and a suspension preheater. In the volatile matter removal method, a part of the above-mentioned extracted firing furnace exhaust gas is led to an adsorption tower, and while flowing in the adsorption tower, it is brought into contact with low-temperature coarse particles that fall in the form of rain, and the volatile matter is adsorbed on the surface thereof. A method for removing volatile matter in cement firing equipment, characterized in that the treated firing furnace exhaust gas from the adsorption tower is returned to a part of the suspension preheater pipe system in a temperature range approximately equal to the temperature of the exhaust gas.
(2)焼成炉とサスペンションプレヒータとを備えたセ
メント焼成設備の焼成炉排ガス出口付近から焼成炉排ガ
スの一部を抜き出すことにより焼成炉とサスペンション
プレヒータ間を循環する揮発分の濃度を低下させるセメ
ント焼成設備における揮発分除去装置において、抜き出
した焼成炉排ガスを受け入れる吸着塔と、吸着塔から送
られる粗粒を冷却または洗浄する冷却手段と、冷却手段
から冷却された粗粒を吸着塔に帰還させる返送手段と、
吸着塔で処理後の焼成炉排ガスをサスペンションプレヒ
ータの管系の該排ガス温度にほぼ等しい温度域部分に戻
すダクトを備えてなり、吸着塔は低温粗粒を雨状に降ら
せる分散手段を備え、雨状に降らせた低温粗粒の表面に
焼成炉排ガス中の揮発分を吸着させるようになっている
ことを特徴とするセメント焼成設備における揮発分除去
装置。
(2) Cement firing that reduces the concentration of volatile matter circulating between the firing furnace and suspension preheater by extracting a part of the firing furnace exhaust gas from the vicinity of the firing furnace exhaust gas outlet of cement firing equipment equipped with a firing furnace and suspension preheater. In a devolatilization device in a facility, an adsorption tower receives the extracted calciner exhaust gas, a cooling means for cooling or washing the coarse particles sent from the adsorption tower, and a return return for returning the cooled coarse particles from the cooling means to the adsorption tower. means and
It is equipped with a duct that returns the firing furnace exhaust gas after being treated in the adsorption tower to a part of the suspension preheater pipe system in a temperature range that is approximately equal to the exhaust gas temperature. 1. A device for removing volatile matter in cement firing equipment, characterized in that the volatile matter in the exhaust gas of the firing furnace is adsorbed onto the surface of low-temperature coarse grains that are dropped in a continuous manner.
JP12230886A 1986-05-29 1986-05-29 Method and apparatus for removing volatile contents in cement burning facilities Pending JPS62283848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12230886A JPS62283848A (en) 1986-05-29 1986-05-29 Method and apparatus for removing volatile contents in cement burning facilities

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12230886A JPS62283848A (en) 1986-05-29 1986-05-29 Method and apparatus for removing volatile contents in cement burning facilities

Publications (1)

Publication Number Publication Date
JPS62283848A true JPS62283848A (en) 1987-12-09

Family

ID=14832742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12230886A Pending JPS62283848A (en) 1986-05-29 1986-05-29 Method and apparatus for removing volatile contents in cement burning facilities

Country Status (1)

Country Link
JP (1) JPS62283848A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120138A (en) * 2015-12-28 2017-07-06 宇部興産株式会社 Bleeding device and bleeding method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017120138A (en) * 2015-12-28 2017-07-06 宇部興産株式会社 Bleeding device and bleeding method

Similar Documents

Publication Publication Date Title
Van't Land Drying in the process industry
US4225332A (en) Energy efficient pollution abating glass manufacturing process with external recovery of heat from furnace flue gases
US4970803A (en) Method for drying sludge
AU619337B2 (en) Calcining clay
CN103717317A (en) Filter facility and method for operating a filter facility
WO1994006722A1 (en) Method, apparatus and module for batch preheating and pollution abatement in glass manufacture
CN108892349A (en) A kind of sludge drying and incineration system and its treatment process
CN104949537B (en) A kind of pellet calcination rotary kiln product waste heat direct absorbing type recovery system
CN106693594A (en) Waste gas treatment method and system
KR100261721B1 (en) A reactor and method for reducing sulfur oxides emissions in a combustion process
CN106642178A (en) Coal-fired power plant smoke dehumidification system and technology
JPS62283848A (en) Method and apparatus for removing volatile contents in cement burning facilities
US2911061A (en) Apparatus for cooling hot kiln gases
CN206454416U (en) A kind of exhaust treatment system
US4523906A (en) Device for drying gypsum
Jumah et al. Dryer emission control systems
CN109626468A (en) The processing system of desulfurization wastewater
US3653645A (en) Method and furnace for heat treating materials
CN107513395A (en) Coking coal dries the method and apparatus that surface thickening is coaling in a kind of coking industry
JPH09278501A (en) Reduction of alkali and chlorine in apparatus for producing cement
CN207042427U (en) A kind of net gas for ceramic industry is granulated and smoke processing system
CN209039096U (en) The thermal wastewater concentrate fluidized crystallization drying system of hot-air pressure-cycling
JP2928921B1 (en) Fluidized bed cement firing method and apparatus
US5167931A (en) SO2 control using moving granular beds
CN101251329A (en) Method for drying fluorspar