JPS62283831A - Method for molding plate glass - Google Patents

Method for molding plate glass

Info

Publication number
JPS62283831A
JPS62283831A JP12356886A JP12356886A JPS62283831A JP S62283831 A JPS62283831 A JP S62283831A JP 12356886 A JP12356886 A JP 12356886A JP 12356886 A JP12356886 A JP 12356886A JP S62283831 A JPS62283831 A JP S62283831A
Authority
JP
Japan
Prior art keywords
glass
gas
refractory
supplied
porous bodies
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12356886A
Other languages
Japanese (ja)
Inventor
Ii Maisunaa Herumuuto
ヘルムート・イー・マイスナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP12356886A priority Critical patent/JPS62283831A/en
Publication of JPS62283831A publication Critical patent/JPS62283831A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • C03B40/04Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it using gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets

Abstract

PURPOSE:To stably mold the title fire-polished plate glass by passing molten glass between a couple of refractory porous bodies which are supplied with a gas from the rear face. CONSTITUTION:A couple of refractory porous bodies having 20-60% porosity and 2-200mum pore diameter are separated into the high-temp. part A and the low-temp. part B, and opened to the upper part. The interval between the porous refractory bodies 3 and 3' is adjusted to 3-10mm by moving driving rods 6 and 6'. An inert gas is supplied at 1-4 atm pressure into the porous bodies 3 and 3' from gas feed ports 5 and 5' provided on the rear faces of the porous bodies 3 and 3', and injected from the front face to form a gas cushion. Molten glass 2 having 25-1,000 poise viscosity is then supplied between the porous bodies 3 and 3' from a slit feeder 1, passes through the gas cushion, molded, then passed between rollers 7 and 7', and extracted. Fire-polished plate glass 2 is thus obtained.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野1 本発明は、板ガラスの成形方法に係り、特にファイアポ
リッシュされた板ガラスの成形方法に関するものである
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Field of Application 1 The present invention relates to a method for forming sheet glass, and particularly to a method for forming fire-polished sheet glass.

[従来゛の技術1 従来、ファイアポリッシュされた板ガラスの成形方法と
しては耐火物で作られたスリットの間を通した熔融ガラ
スを高温に保持された室中で引き上げ、又は引き下げる
ことによって得ていた。
[Conventional technology 1] Conventionally, fire-polished plate glass was formed by passing molten glass through slits made of refractory material and pulling it up or down in a room kept at a high temperature. .

[発明が解決しようとする問題点コ この方法の欠点としては、第一にファイアポリッシュ面
を得るため、スリットの間を通した熔融ガラスを高温に
保持された室中を通す必要があり、安定な成形条件を得
ることが極めて困難であった。
[Problems to be Solved by the Invention] The disadvantages of this method are that firstly, in order to obtain a fire-polished surface, the molten glass passed through the slits must be passed through a chamber kept at a high temperature; It was extremely difficult to obtain suitable molding conditions.

場合によっては安定な成形条件を得るため、1ケ月も要
し、その間ガラスが全く無駄になってしまうこともあっ
た。第二の欠点としては、板ガラスの厚さを変更するこ
とが困難で、例えば耐火物で作られたスリットを交換し
た後、再度安定な成形条件を得るため、高度な技術と長
時間を要することになる。
In some cases, it took up to a month to obtain stable molding conditions, and during that time, the glass was completely wasted. The second drawback is that it is difficult to change the thickness of sheet glass; for example, after replacing a slit made of refractory material, it requires advanced technology and a long time to obtain stable molding conditions again. become.

ファイポリッシュされた板ガラスの他の成形方法として
は、熔融ガラスを熔融された金属の上に浮かせて成形す
る方法がある。この方法も安定な成形条件を得ることは
必ずしも容易なことではなく、又厚ざを変更することも
前述の方法と同様困難であった。さらにこの方法は、熔
融金属を収容する雰囲気コントロールされた室を必要と
するなど、大規模で複雑な成形装置を要するという欠点
があった。
Another method for forming fi-polished glass sheets is to float molten glass on top of molten metal. In this method, it is not necessarily easy to obtain stable molding conditions, and it is also difficult to change the thickness, as in the above-mentioned method. Furthermore, this method has the disadvantage of requiring large and complex forming equipment, such as requiring an atmosphere-controlled chamber to contain the molten metal.

本発明は上記の従来の板ガラスの成形方法の欠点を解決
するためなされたものであり、第一の目的は、ファイア
ポリッシュされた板ガラスを成形するにあたり、安定な
成形条件を容易に得ることが出来る板ガラスの成形方法
を提供することにあり、第二の目的は、成形すべき板ガ
ラスの厚さを容易に変更することのできる板ガラスの成
形方法を提供することにあり、更に第三の目的は、大規
模で複雑な成形装置を必要としない板ガラスの成形方法
を提供することにある。
The present invention was made to solve the above-mentioned drawbacks of the conventional sheet glass forming method, and the first object is to easily obtain stable molding conditions when molding fire-polished sheet glass. The purpose is to provide a method for forming plate glass, the second objective is to provide a method for forming plate glass that can easily change the thickness of the plate glass to be formed, and the third objective is to: An object of the present invention is to provide a method for forming plate glass that does not require a large-scale and complicated forming device.

し問題点を解決するための手段] 本発明は上記の目的を達成させるためになされたもので
あり、熔融ガラスを裏面よりガスを供給しつつある一対
の耐火性多孔質物体の間を通すことにより、可能となる
。ここで耐火性多孔質体のの材料としては、白金、ニッ
ケル合金、セラミック材料などが挙げられ、気孔率は2
0〜60%気孔の径は2〜200μm程度の多孔質体が
望ましい。気孔率60%以上では熔融ガラスの冷rJI
が著るしくなり、板成形を精度良く行うことが困難とな
り、20%以下では熔融ガラスが耐火性多孔質材料に直
接接触し融着してしまう。又気孔の径が200μm以上
では冷却が著るしくなり精度良く板成形を行うことが出
来ず、2μm以下では上記同様耐火性多孔質材料に直接
熔融ガラスが接触し、融着する。
Means for Solving the Problems] The present invention has been made to achieve the above object, and the present invention is to pass molten glass between a pair of refractory porous bodies to which gas is being supplied from the back side. This becomes possible. Examples of materials for the fire-resistant porous body include platinum, nickel alloys, and ceramic materials, and the porosity is 2.
A porous material having a diameter of 0 to 60% pores of about 2 to 200 μm is desirable. When the porosity is 60% or more, the cooling rJI of the molten glass
If it is less than 20%, the molten glass will come into direct contact with the fire-resistant porous material and will be fused. Further, if the diameter of the pores is 200 μm or more, cooling becomes significant and plate forming cannot be carried out with high precision, and if the pore diameter is 2 μm or less, the molten glass directly contacts the refractory porous material and fuses with it, as described above.

使用されるガスは特に耐火性多孔質体が金属で作られて
いる場合は不活性ガスであることが望ましい。又供給す
るガス圧は1〜4 atmの範囲が好適である。供給さ
れるガス圧が4 atm以上では冷却が著しくなり精度
良く板成形を行うことが出来ず、i atm以下では熔
融ガラスが直接耐火性の多孔質体に接触し融着してしま
う。
The gas used is preferably an inert gas, especially when the refractory porous body is made of metal. Further, the gas pressure to be supplied is preferably in the range of 1 to 4 atm. If the supplied gas pressure is 4 atm or more, the cooling becomes significant and plate forming cannot be performed with high precision, while if the supplied gas pressure is less than 1 atm, the molten glass will come into direct contact with the refractory porous body and will be fused.

また耐火性多孔質体は上下に高温部と低温部に分割する
ことにより、熔融ガラスが流入される部分の温度と成形
されたガラスが引き出されてくる部分の温度を容易にi
ll Ilrすることが可能となる。
In addition, by dividing the fire-resistant porous body into a high-temperature part and a low-temperature part at the top and bottom, it is possible to easily control the temperature of the part where the molten glass flows in and the temperature of the part where the molded glass is drawn out.
It becomes possible to do ll Ilr.

熔融ガラスを耐火性多孔質体から引き出すには、引下げ
る場合には板ガラス自体の重化によっても可能であるが
、引き出す力を調部するには、一対のローラによって成
形されたガラスを挾みローラを回転させることにより可
能となる。
To draw molten glass from a fire-resistant porous body, it is possible to pull it down by weighting the plate glass itself, but in order to adjust the pulling force, it is necessary to sandwich the formed glass between a pair of rollers. This is possible by rotating the rollers.

また成形される板ガラスの厚さは一対の耐火性多孔質体
の間隔を:XAWJすることにより、容易に変更するこ
とが出来る。
Further, the thickness of the formed plate glass can be easily changed by adjusting the distance between the pair of fire-resistant porous bodies to:XAWJ.

熔融ガラスを耐火性多孔質材料に流入するときの熔融ガ
ラスの粘度は25〜1000ポアズ程度が望ましい。こ
の精度が1000ポアズを超えると板ガラスの厚さを制
御することが困難となり、25ポアズ以下になると耐火
性多孔質体から供給されるガスが熔融ガラス中に流入し
ガラス中に泡を発生する他、耐火性多孔質体に熔融ガラ
スが[してしまう。
The viscosity of the molten glass when it flows into the refractory porous material is preferably about 25 to 1000 poise. If this precision exceeds 1000 poise, it will be difficult to control the thickness of the glass plate, and if it falls below 25 poise, the gas supplied from the refractory porous material will flow into the molten glass, causing bubbles to form in the glass. , the molten glass ends up in the refractory porous body.

ガラスが耐火性多孔質体の間から引き出されるときのガ
ラスの粘性は108ポアズ以上になっている必要があり
、この粘度以下であると成形後ガラスが変形されてしま
う場合が生ずる。
The viscosity of the glass when it is pulled out from between the refractory porous bodies must be 108 poise or higher; if the viscosity is lower than this, the glass may be deformed after molding.

[作  用1 本発明の方法によれば、熔融ガラスが成形される場合、
成形に寄与する耐火性多孔質体に直接接することなく、
耐火性多孔質体の央部から供給されるガスクッションに
よって支えられるため、ファイポリッシュされた面を持
つ板ガラスを背ることができる。
[Function 1] According to the method of the present invention, when molten glass is molded,
without coming into direct contact with the refractory porous material that contributes to molding.
Because it is supported by a gas cushion supplied from the center of the refractory porous material, it is possible to turn the glass sheet with a fire-polished surface.

[実施例コ 以下、本発明の実施例を図面に従って説明する。[Example code] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施する成形装置の断面図を示
す。第2図は第1図の成形装置における熔融ガラスの流
入部の拡大斜視図である。本発明の方法に使用される装
aの構成を述べると、熔融ガラスを供給するスリット状
フィーダー1の下に1対の上方に開いた耐火性多孔質体
3.3′を成形すべき板ガラスの厚さに対応した間隔を
あけて設置する。この耐火性多孔質体3.3″は後部を
支持体4.4′により支持され、この支持体にはガス供
給口5.5′、駆動棒6.6′が後部に設けられている
。この支持体4.4′は耐火性多孔質体3.3′を支持
するに当りガス供給口5.5′から供給されるガスが耐
火性多孔質体3.3′からのみ出て行くように内部を密
封するような状態で設けられている。この支持体4.4
′に支持された耐火性多孔質体3.3′は上下に高温部
Aと低温部Bに分割されており、それぞれにガス供給口
5.5′、駆動棒6.6″が設けられている。
FIG. 1 shows a sectional view of a molding apparatus implementing the method of the invention. FIG. 2 is an enlarged perspective view of the molten glass inlet in the molding apparatus of FIG. 1. To describe the structure of the apparatus a used in the method of the present invention, a pair of upwardly open refractory porous bodies 3.3' are placed below the slit-shaped feeder 1 for supplying molten glass. Install at intervals that correspond to the thickness. This refractory porous body 3.3'' is supported at the rear by a support 4.4', which is provided with a gas supply port 5.5' and a drive rod 6.6' at the rear. This support body 4.4' supports the refractory porous body 3.3' so that the gas supplied from the gas supply port 5.5' exits only from the refractory porous body 3.3'. The support body 4.4 is provided in such a manner that the inside is sealed.
The refractory porous body 3.3' supported by There is.

さらに耐火性多孔質体3.3′の下部には、1対のロー
ラ7.7′が設置される。この耐火性多孔質体3.3′
はニッケル合金で作られており、気孔率は57%、気孔
の径は100μmである。その他使用しる材料としては
、白金、セラミックなどが挙げられる。
Furthermore, a pair of rollers 7.7' are installed below the refractory porous body 3.3'. This fire-resistant porous body 3.3'
is made of nickel alloy, has a porosity of 57%, and a pore diameter of 100 μm. Other materials used include platinum and ceramics.

次にこの装置の使用状況を説明する。スリット状フィー
ダ1から供給された熔融ガラス2は、1対の上方に開い
た耐火性多孔質体3.3′の間に流入される。耐火性多
孔質体3.3′の裏面に向ってガス供給口5.5′から
ガスが供給され、このガスは耐火性多孔質体3.3゛を
通して表面に出されガスクッションを形するため、溶融
ガラス2は、直接耐火性多孔質体3.3′に接触するこ
とがなく融着することがない。熔融ガラス2はこ。
Next, the usage status of this device will be explained. Molten glass 2 supplied from the slit-shaped feeder 1 flows between a pair of upwardly open refractory porous bodies 3.3'. Gas is supplied from the gas supply port 5.5' toward the back side of the refractory porous body 3.3', and this gas is brought out to the surface through the refractory porous body 3.3' to form a gas cushion. The molten glass 2 does not directly contact the refractory porous body 3,3' and is not fused. Fused glass 2 is here.

の1対の耐火性多孔質体3.3′の間をガスクッション
を介して通過する間にファイアポリッシュ面を持った板
ガラスが成形される。ローラ7.7′は、成形開始の際
や自重による引き出し力が充分でない場合に使用される
。板ガラス2の厚さは耐火性多孔質体3.3′の間隔を
駆動棒6.6′により移動調節することにより、制御さ
れる。なお駆動部はこの図面では省略されている。
A plate glass with a fire-polished surface is formed while passing through a gas cushion between a pair of refractory porous bodies 3.3'. Roller 7.7' is used at the start of molding or when the pulling force due to its own weight is not sufficient. The thickness of the glass plate 2 is controlled by adjusting the distance between the refractory porous bodies 3.3' by means of a drive rod 6.6'. Note that the drive section is omitted in this drawing.

実施例にあたって使用されたガラスはLHG8(HOY
A製レーザーガラス)であり、耐火性多孔質体3.3′
に流入されるときの粘性は30ポアズに、又耐火性多孔
質体3.3′から引き出されるときの粘性は1010ポ
アズに保持された。耐火性多孔質体3.3′に供給する
ガスはN2が使用され、高温部Aに供給されるガスの圧
力は2atm。
The glass used in the examples was LHG8 (HOY
Laser glass made by A), fire-resistant porous material 3.3'
The viscosity when flowing into the refractory porous body 3.3' was maintained at 30 poise, and the viscosity when withdrawn from the refractory porous body 3.3' was maintained at 1010 poise. N2 is used as the gas supplied to the refractory porous body 3.3', and the pressure of the gas supplied to the high temperature section A is 2 atm.

低温部に供給されるガスの圧力は2 atmであった。The pressure of the gas supplied to the low temperature section was 2 atm.

そして、N2は高温部Aに供給されする場合700℃に
予熱され、低温部Bに供給する場合550℃に予熱され
た。こうして得られた板ガラスは表面はファイアポリッ
シュされた状態で、その厚さは3〜10mmの範囲で変
化させることができた。
When the N2 was supplied to the high temperature section A, it was preheated to 700.degree. C., and when it was supplied to the low temperature section B, it was preheated to 550.degree. The surface of the plate glass thus obtained was fire-polished, and its thickness could be varied within the range of 3 to 10 mm.

[発明の効果] 上記の如く、本発明によれば熔融ガラスを1対の耐火性
の多孔質体の間をガスクッションを介して通過させるだ
けで、ファイアポリッシュされた表面をもつ板ガラスを
成形するための安定な成形条件が容易に得られ、歩留り
の向上に寄与することができる他、1対の耐火性多孔質
体の間隔を調節することにより、極めて容易に成形すべ
き板ガラスの厚さを変化させることが可能である。さら
に装置としては1対の耐火性多孔質体とこれに付随する
ガス供給部、必要に応じてローラとを設けるだけで済み
、成形のための大規模で複雑な装置を必要としない。
[Effects of the Invention] As described above, according to the present invention, a plate glass having a fire-polished surface can be formed by simply passing molten glass between a pair of fire-resistant porous bodies via a gas cushion. In addition to easily obtaining stable molding conditions for molding, which contributes to improved yield, it is also extremely easy to adjust the thickness of the sheet glass to be molded by adjusting the distance between the pair of refractory porous bodies. It is possible to change it. Furthermore, the apparatus only needs to be provided with a pair of refractory porous bodies, an accompanying gas supply section, and rollers as necessary, and a large-scale and complicated apparatus for molding is not required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する成形装置の断面図、第2
図は第1図の成形装置における熔融ガラス流入部の拡大
斜視図である。 1・・・スリット状フィーダー、2・・・ガラス又は熔
融ガラス、3.3′・・・耐火性多孔質体、4.4′・
・・支持体、5.5′・・・ガス供給口、6.6′・・
・駆動棒、7.7゛・・・ローラ、A・・・高温部、B
・・・低温部。 出 願 人  ボーヤ株式会社
Fig. 1 is a sectional view of a molding apparatus for carrying out the method of the present invention;
This figure is an enlarged perspective view of the molten glass inlet in the molding apparatus shown in FIG. 1. 1... Slit-shaped feeder, 2... Glass or molten glass, 3.3'... Fire-resistant porous body, 4.4'.
...Support, 5.5'...Gas supply port, 6.6'...
・Drive rod, 7.7゛...roller, A...high temperature section, B
...Low temperature section. Applicant Boya Co., Ltd.

Claims (1)

【特許請求の範囲】 1 熔融ガラスを裏面よりガスを供給しつつある一対の
耐火性多孔質体の間に通すことからなる板ガラスの成形
方法。 2 耐火性多孔質体が白金、ニッケル合金、セラミック
のうちから選ばれたものであることを特徴とする特許請
求の範囲第1項記載の板ガラスの成形方法。 3 耐火性多孔質体に供給されるガスが不活性ガスであ
ることを特徴とする特許請求の範囲第1項記載の板ガラ
スの成形方法。 4 耐火性多孔質体が上下に高温部と低温部に分割され
ていることを特徴とする特許請求の範囲第1項記載の板
ガラスの成形方法。 5 一対の耐火性多孔質体の間隔を調節することにより
板ガラスの厚さを変更することを特徴とする特許請求の
範囲第1項記載の板ガラスの成形方法。
[Scope of Claims] 1. A method for forming plate glass comprising passing molten glass between a pair of refractory porous bodies to which gas is supplied from the back side. 2. The method for forming a glass plate according to claim 1, wherein the refractory porous material is selected from platinum, nickel alloy, and ceramic. 3. The method for forming a plate glass according to claim 1, wherein the gas supplied to the refractory porous body is an inert gas. 4. The method for forming a glass plate according to claim 1, wherein the refractory porous body is divided into a high temperature section and a low temperature section. 5. The method for forming a glass plate according to claim 1, wherein the thickness of the glass plate is changed by adjusting the distance between the pair of refractory porous bodies.
JP12356886A 1986-05-30 1986-05-30 Method for molding plate glass Pending JPS62283831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12356886A JPS62283831A (en) 1986-05-30 1986-05-30 Method for molding plate glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12356886A JPS62283831A (en) 1986-05-30 1986-05-30 Method for molding plate glass

Publications (1)

Publication Number Publication Date
JPS62283831A true JPS62283831A (en) 1987-12-09

Family

ID=14863798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12356886A Pending JPS62283831A (en) 1986-05-30 1986-05-30 Method for molding plate glass

Country Status (1)

Country Link
JP (1) JPS62283831A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288441A (en) * 1988-09-22 1990-03-28 Toshiba Ceramics Co Ltd Production device for high purity quartz pipe
WO1997031868A1 (en) * 1996-02-29 1997-09-04 Asahi Glass Company Ltd. Process for forming flat glass
EP1710212A1 (en) * 2005-04-06 2006-10-11 Corning Incorporated process and device for manufacturing flat sheets of a glass-based material
JP2008511535A (en) * 2004-08-27 2008-04-17 コーニング インコーポレイテッド Non-contact type plate glass stabilization device used for fusion formation of plate glass
EP2065345A1 (en) 2007-11-29 2009-06-03 Corning Incorporated Apparatus and method for producing sheets of glass presenting at least one face of very high surface quality
EP2933237A3 (en) * 2014-03-12 2015-12-02 Calsitherm Verwaltungs GmbH Device for manufacturing flat glass
JP2017088436A (en) * 2015-11-06 2017-05-25 日本電気硝子株式会社 Sheet glass production device and sheet glass production method
EP3587364A1 (en) * 2018-06-28 2020-01-01 Corning Incorporated Continuous method of making glass ribbon
NL2021322B1 (en) * 2018-06-28 2020-01-06 Corning Inc Continuous methods of making glass ribbon and as-drawn glass articles from the same
US11739018B2 (en) 2019-09-13 2023-08-29 Corning Incorporated Continuous methods of forming glass ribbon using a gyrotron microwave heating device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288441A (en) * 1988-09-22 1990-03-28 Toshiba Ceramics Co Ltd Production device for high purity quartz pipe
WO1997031868A1 (en) * 1996-02-29 1997-09-04 Asahi Glass Company Ltd. Process for forming flat glass
US6101845A (en) * 1996-02-29 2000-08-15 Asahi Glass Company Ltd. Process for forming a glass sheet
JP2008511535A (en) * 2004-08-27 2008-04-17 コーニング インコーポレイテッド Non-contact type plate glass stabilization device used for fusion formation of plate glass
EP1710212A1 (en) * 2005-04-06 2006-10-11 Corning Incorporated process and device for manufacturing flat sheets of a glass-based material
WO2006107505A1 (en) * 2005-04-06 2006-10-12 Corning Incorporated Process and device for manufacturing flat sheets of a glass-based material
JP2009509896A (en) * 2005-04-06 2009-03-12 コーニング インコーポレイテッド Method and apparatus for producing flat sheets of glass-based material
EP2065345A1 (en) 2007-11-29 2009-06-03 Corning Incorporated Apparatus and method for producing sheets of glass presenting at least one face of very high surface quality
EP2933237A3 (en) * 2014-03-12 2015-12-02 Calsitherm Verwaltungs GmbH Device for manufacturing flat glass
JP2017088436A (en) * 2015-11-06 2017-05-25 日本電気硝子株式会社 Sheet glass production device and sheet glass production method
EP3587364A1 (en) * 2018-06-28 2020-01-01 Corning Incorporated Continuous method of making glass ribbon
WO2020005555A1 (en) * 2018-06-28 2020-01-02 Corning Incorporated Continuous methods of making glass ribbon and as-drawn glass articles from the same
NL2021322B1 (en) * 2018-06-28 2020-01-06 Corning Inc Continuous methods of making glass ribbon and as-drawn glass articles from the same
US10906831B2 (en) 2018-06-28 2021-02-02 Corning Incorporated Continuous methods of making glass ribbon and as-drawn glass articles from the same
JP2021529718A (en) * 2018-06-28 2021-11-04 コーニング インコーポレイテッド A method for continuously manufacturing a glass ribbon and a stretched glass article manufactured from the glass ribbon.
US11912605B2 (en) 2018-06-28 2024-02-27 Corning Incorporated Glass articles
US11739018B2 (en) 2019-09-13 2023-08-29 Corning Incorporated Continuous methods of forming glass ribbon using a gyrotron microwave heating device

Similar Documents

Publication Publication Date Title
US4620587A (en) Process for the treatment of a liquid mass
JPS62283831A (en) Method for molding plate glass
CN104193147B (en) Form the glass sheet with improved shape stability
US4670096A (en) Process and apparatus for producing semi-conductor foils
US20100086465A1 (en) Apparatus and method for manufacturing silicon substrate, and silicon substrate
DK150648B (en) PROCEDURE FOR PREPARING A CONTINUOUS GLASS PLATE AND APPARATUS FOR EXERCISING THE PROCEDURE
JP2001080922A (en) Supply method and supply device for molten glass
US5683482A (en) Device and method for shaping rods, especially of glassy material
JP4438226B2 (en) Porous glass base material manufacturing apparatus and manufacturing method
JP2004035381A (en) Manufacturing apparatus of thin sheet glass
TW201925109A (en) Apparatus and methods for producing glass
JP2015074574A (en) Method of manufacturing plate glass
JPH0139998B2 (en)
JP2016088820A (en) Single crystal manufacturing method, and single crystal manufacturing apparatus
US3801309A (en) Production of eutectic bodies by unidirectional solidification
US3584676A (en) Method for the manufacture of single crystals
CN215404656U (en) Metal single crystal preparation device
JP2003504295A (en) Edge meniscus control for crystal ribbon growth
US3617223A (en) Apparatus for forming monocrystalline ribbons of silicon
JP3052158B2 (en) Method of forming polycrystalline silicon sheet by cast ribbon method
JPS596827B2 (en) Platinum-based spinning furnace for remelting glass fiber production
JP3087186B2 (en) Method for producing polycrystalline silicon sheet
JPS60231421A (en) Manufacture and apparatus for quartz glass
JPH11189487A (en) Production apparatus for oxide single crystal
US4516626A (en) Apparatus and method for producing article shapes from a composite material