JPS62283167A - Underwater antifouling coating agent - Google Patents

Underwater antifouling coating agent

Info

Publication number
JPS62283167A
JPS62283167A JP12698886A JP12698886A JPS62283167A JP S62283167 A JPS62283167 A JP S62283167A JP 12698886 A JP12698886 A JP 12698886A JP 12698886 A JP12698886 A JP 12698886A JP S62283167 A JPS62283167 A JP S62283167A
Authority
JP
Japan
Prior art keywords
antifouling coating
underwater antifouling
coating according
surface lubricant
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12698886A
Other languages
Japanese (ja)
Other versions
JPH0558464B2 (en
Inventor
Shigeru Masuoka
舛岡 茂
Hiroshi Doi
浩 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP12698886A priority Critical patent/JPS62283167A/en
Priority to CA000526215A priority patent/CA1274649A/en
Priority to NO865269A priority patent/NO177464C/en
Priority to GB8630822A priority patent/GB2188938B/en
Publication of JPS62283167A publication Critical patent/JPS62283167A/en
Priority to US07/209,813 priority patent/US4883852A/en
Publication of JPH0558464B2 publication Critical patent/JPH0558464B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PURPOSE:The titled coating agent, consisting essentially of a polymer having polydimethylsiloxane and trimethylsilyl groups in the side chain and further specific surface lubricating agent and having excellent storage stability to moisture and heat and remarkably improved antifouling property. CONSTITUTION:A coating agent consisting essentially of one or more polymers of (A) monomers expressed by the formula (X is H or CH3 n is 2-4; m is the average polymerization and 0-70), e.g. trimethylsilylethyl (meth)acrylate, etc., and/or a copolymer consisting of one or more of the above-mentioned monomers (A) and vinyl polymerizable monomers (B) copolymerizable therewith, e.g. methyl methacrylate, etc., and or or more surface lubricating agents capable of substantially sustaining a low surface tension held by coats formed from the polymers and/or copolymers. The surface lubricating agents are preferably petroleum wax, preferably paraffin wax, etc., specified by JIS K2235.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は側鎖にポリジメチルシロキサン基および/また
はトリメチルシリル基を有する重合体を含む水中、防汚
被覆剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to an underwater antifouling coating agent containing a polymer having a polydimethylsiloxane group and/or a trimethylsilyl group in its side chain.

〔従来の技術] 海水に浸漬されている船底、ブイ、漁網、冷却のための
各種吸排水管などの海中物体の表面には、フジッボ、セ
ルプラ、イガイ、藻類などの付着によって種々の支障が
起こる。それらの生物による汚損を防止するために、海
水浸漬物の表面には水中防汚被覆剤が塗布されることは
よ(知られている。
[Prior Art] Various problems occur on the surfaces of underwater objects immersed in seawater, such as ship bottoms, buoys, fishing nets, and various intake and drainage pipes for cooling, due to adhesion of Fujibo, Serpura, mussels, algae, and the like. It is well known that underwater antifouling coatings are often applied to the surfaces of objects immersed in seawater to prevent staining by these organisms.

水中防汚被覆剤としては、゛生物に対し′て防汚効果を
持ち、かつ海水中で微溶解性のある有機錫共重合体、亜
酸化銅などの防汚剤を用いたものが多く使用されている
。しかしながら、それらの場合には、海水中に有害物質
が溶出し、海水の汚染の一因となり、魚貝類への影響も
無視し得ないものとなる場合がある。
Many underwater antifouling coatings use antifouling agents such as organic tin copolymers and cuprous oxide, which have an antifouling effect on living organisms and are slightly soluble in seawater. has been done. However, in these cases, harmful substances may be eluted into the seawater, contributing to seawater pollution, and the effects on fish and shellfish may not be negligible.

そこで、このような防汚剤を用いず、かつ海水へ溶解し
ない水中防汚被覆剤が要望されるようになったっこのよ
うな無毒型の水中防汚被覆剤としては、触媒または水分
の作用で加硫し、あるいは触媒と水分の両方の作用で加
硫して三次元架橋し、膜形成するシリコーンゴムを使っ
たものがあげられるっ 例えば特公昭53−359’7’4号公報には加硫/リ
コーンゴムを被筺剤として用いているものが開示されて
おり、また特開昭51’−96830号公報にはヒドロ
キシル末端基を有するオリゴマー状シリコーンゴム′と
シリコーン浦との混合物を使ったものが示されている。
Therefore, there has been a demand for an underwater antifouling coating that does not use such antifouling agents and does not dissolve in seawater. Examples include silicone rubber that is vulcanized or vulcanized by the action of both a catalyst and moisture to three-dimensionally crosslink and form a film. For example, Japanese Patent Publication No. 53-359'7'4 describes A method using sulfur/licone rubber as a coating agent is disclosed, and JP-A-51-96830 discloses a method using a mixture of an oligomeric silicone rubber having a hydroxyl end group and a silicone rubber. It is shown.

さらに、特開昭53−79980号公報には加硫シリコ
ーンゴムと金属を含まずかつシリコンを含まない流動性
の有機化合物との混合物か示されているっさらにまた、
特公昭60−3433号公報にはオリゴマー状常温硬化
形ンリコーンゴム(例えば信越化学工業株式会社の1君
品名KE45TS、KE44RTVなど)と、流動パラ
フィンまたはペトロラタムとを混合した尚、羊生吻寸看
方土用塗料か示されている。
Furthermore, JP-A-53-79980 discloses a mixture of vulcanized silicone rubber and a fluid organic compound that does not contain metal or silicone.
Japanese Patent Publication No. 60-3433 describes a mixture of oligomeric room-temperature curing silicone rubber (for example, Shin-Etsu Chemical Co., Ltd.'s product names KE45TS, KE44RTV, etc.) and liquid paraffin or petrolatum. The paint used is indicated.

′発明か解決巳ようとする問題] −れらジ゛を来公11の水中防汚被覆剤は、いずれらノ
リツー/ゴム彼覆に面の、骨θ性を利用して、上記表面
への水中生物の付着をj方正下るよう:こしたものであ
るか、上記被膜を形成するためのシリコーンゴムは使用
時に三次元架橋して膜形成を行う点で以下の問題を有し
ている。
``Problem to be solved by the invention'' - These 11 underwater antifouling coatings have been applied to the surface by utilizing the bone θ properties of Noritsu/rubber coatings. The silicone rubber used to form the film has the following problem in that it is three-dimensionally crosslinked to form a film during use.

第一には、塗装後の硬化性があげられる。すなわち、大
気中の水分による架橋剤の加水分解、または温度の影響
を受は易い触媒が架橋剤へ作用することによって始まる
縮合反応によりシリコーンゴムの硬化が起こるため、大
気の湿度、温度により硬化速度ならびに硬化強度に違い
がでてきて、膜の均一性が得られにくくなる。例えば特
公昭60−3433号公報に示され・ている空気中の湿
分の作用で硬化し皮膜を形成するオリゴマー状常温硬化
形シリコーンゴムなどを用いた水中防汚被覆剤を被塗面
に塗布したとき、湿気を含む大気と接しそいる被覆表面
より硬化か起こり、順次内部へ進行していくことになる
から、はじめに表面が硬化することによりその後の水分
の透過が押さえられ、内部の水分不足により深部の硬化
か起こりにくく、または架橋密度が低くなる結果、膜の
均一性を得ることが難しくなると考えられるっこのこと
より膜全抹として被塗物からの剥離、ふくれなどの密着
不良が起こることになる。また、水分の内部への浸透が
遅いため硬化に要する時間も長くなる。
The first is curing properties after painting. In other words, curing of silicone rubber occurs through hydrolysis of the crosslinking agent due to atmospheric moisture, or through a condensation reaction initiated by the action of a temperature-sensitive catalyst on the crosslinking agent, so the curing rate varies depending on atmospheric humidity and temperature. In addition, differences in curing strength occur, making it difficult to obtain uniformity of the film. For example, as shown in Japanese Patent Publication No. 60-3433, an underwater antifouling coating agent using an oligomeric cold-curing silicone rubber that hardens under the action of moisture in the air to form a film is applied to the surface to be coated. When this occurs, hardening occurs from the surface of the coating that is about to come into contact with the humid atmosphere, and it progresses to the inside one after another.As the surface hardens first, subsequent moisture permeation is suppressed, resulting in a lack of moisture inside. As a result, deep curing is less likely to occur or the crosslinking density is lowered, making it difficult to obtain uniformity of the film.As a result, the film may peel off from the object to be coated or cause poor adhesion such as blistering. It turns out. Furthermore, since moisture penetrates into the interior slowly, the time required for curing becomes longer.

例えば高温、高湿な場所でこのような水中防汚被覆剤が
使用されたとき硬化は速いが、架橋剤の加水分解だけが
優先し、架橋密度があがらず、物性の低下をきたすこと
になる。また、乾燥地では大気中の水分が少ないため架
橋剤の加水分解が起こりにくく膜の硬化か非常に遅くな
る。そのため塗装済の物体を短時間には動かせないとい
った問題が起きる。それを防ぐために硬化促進剤として
錫化合物、白金などの触媒が用いられる場合があるが、
低湿地ではそれらの触媒作用が低下するため架橋剤によ
る縮合反応が起こりにくく膜の硬化が必常に遅くなる。
For example, when such an underwater antifouling coating is used in a high temperature and high humidity location, curing is fast, but only the hydrolysis of the crosslinking agent takes priority, and the crosslinking density does not increase, resulting in a decrease in physical properties. . Furthermore, in dry areas, since there is little moisture in the atmosphere, hydrolysis of the crosslinking agent is difficult to occur and the curing of the film is extremely slow. Therefore, a problem arises in that painted objects cannot be moved in a short period of time. In order to prevent this, catalysts such as tin compounds and platinum are sometimes used as curing accelerators.
In low-lying wetlands, their catalytic activity decreases, making it difficult for the condensation reaction by the crosslinking agent to occur, which inevitably slows down the curing of the film.

第二に、上塗り性の問題がある。通常上塗りされる被覆
剤の溶媒が下塗り塗面を若干浸して界面で相混じること
により層間密着性が良くなるが、シリコーンゴムへの上
塗り性は下地のシリコーンゴムが三次元架橋して硬化す
るため、再塗装された上塗りの被覆剤がシリコーンゴム
表面を浸すことがなく、そのため密着性が劣る。
Second, there is the problem of overcoatability. Normally, the solvent of the topcoat coating material slightly soaks the undercoat surface and mixes at the interface, which improves interlayer adhesion. However, overcoatability to silicone rubber is improved because the base silicone rubber undergoes three-dimensional crosslinking and hardening. , the reapplied top coat does not soak the silicone rubber surface, resulting in poor adhesion.

第三に、可使時間の問題があげられる。実際の塗装作業
は、被塗物の大きさや構造の複雑さによって作業時間が
予定より長くなったり、時には塗装開始後に雨が降って
被塗面が濡れたり、大気が高湿度になって塗装が中断さ
れ、既に開缶されて撹拌された塗料を予定より長時間置
かなければならないような状況になってくる場合がある
。このような場合に可使時間のある被覆剤は塗装作業上
はなはだ不便である。
Thirdly, there is the issue of pot life. Actual painting work can take longer than planned due to the size and complexity of the object to be painted, and sometimes it rains after painting has begun and the surface to be painted gets wet, or the atmosphere becomes too humid and the painting process is delayed. This may lead to a situation where the paint, which has already been opened and stirred, has to sit for a longer time than planned. In such cases, coating materials with a pot life are extremely inconvenient in painting operations.

第四に、貯蔵安定性の問題かあげられる。水中防汚被覆
剤は製造されてから使用されるまで長期保存されること
があるが、湿気などで硬化するものは製造時に乾燥窒素
ガスを封入しなければ貯蔵安定性が短いものとなる。ま
た、−変倍の蓋を開けると大気中の湿気が入って被覆剤
表面の硬化や増粘を起こし再使用することが難しくなる
というような問題がある。
Fourth, there is the issue of storage stability. Underwater antifouling coatings may be stored for a long period of time from the time they are manufactured until they are used, but those that harden due to moisture have short storage stability unless dry nitrogen gas is sealed during manufacture. Another problem is that when the lid of the magnification variable lens is opened, moisture from the atmosphere enters and hardens and thickens the surface of the coating material, making it difficult to reuse it.

そこで、本発明者らは、上記従来公知の水中防汚被覆剤
が有する種々の問題点を回避できるとともに、防汚性能
にすぐれた水中防汚被覆剤を得るべく鋭意検討した結果
、分子内にポリジメチルシロキサン基および/またはト
リメチルシリル基を有する溶剤揮発形の特定の重合体を
用いた水中防汚被覆剤を得ることに成功し、すでに特願
昭60−298918号として提案した。
Therefore, the present inventors have made intensive studies to obtain an underwater antifouling coating agent that can avoid the various problems of the conventionally known underwater antifouling coating agents and have excellent antifouling performance. We have succeeded in obtaining an underwater antifouling coating using a specific solvent-volatile polymer having polydimethylsiloxane groups and/or trimethylsilyl groups, and have already proposed it in Japanese Patent Application No. 1983-298918.

この提案に係る上記特定の重合体は前記従来公知のシリ
コーンゴム系のものとは異なって溶剤揮発形であるため
に前述した硬化性、上塗り性、可使時間、貯蔵安定性な
どの問題が本質的になく、しかもこの重合体より形成さ
れる被服はその表面張力か従来公知のシリコーンゴム系
のものより低くなり、すぐれた表面滑り性を発揮するた
めに防汚性能の改善も認められることが判明した。
The above-mentioned specific polymer according to this proposal differs from the conventionally known silicone rubber-based ones in that it is a solvent-volatile type, so it essentially suffers from the aforementioned problems such as curability, overcoatability, pot life, and storage stability. Moreover, the surface tension of clothing formed from this polymer is lower than that of conventionally known silicone rubber-based clothing, and because it exhibits excellent surface slipperiness, improved antifouling performance has also been observed. found.

本発明は、上記の先行発明をベースとしてこの先行発明
をさらに改良すること、すなわち先行発明と同様に前記
従来公知の水中防汚被覆剤の問題点を解消できるととも
に先行発明よりもさらに一段と改善された防汚性能が得
られる工業的により有用な水中防汚被覆剤を提供するこ
とを目的としている。
The present invention is based on the above-mentioned prior invention and further improves this prior invention, that is, it can solve the problems of the above-mentioned conventionally known underwater antifouling coatings as well as the prior invention, and is further improved over the prior invention. The purpose of the present invention is to provide an industrially useful underwater antifouling coating material that can provide excellent antifouling performance.

[問題点を解決するための手段] 本発明者らは、上記目的を達成するために鋭意検討した
結果、先行発明に係る特定の重合体とともにさらに特定
の表面滑性剤を用いることにより、上記重合体に基づく
既述した利点を失うことなく防汚性能を一段と改善でき
ることを知り、本発明を完成するに至った。
[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have found that by using a specific surface lubricant together with the specific polymer according to the prior invention, the above object can be solved. The present invention was completed based on the knowledge that the antifouling performance can be further improved without losing the above-mentioned advantages based on polymers.

すなわち、本発明の水中防汚被覆剤は、つぎの一般式; %式% (ただし、式中、Xは水素原子またはメチル基、nは2
〜4の整数、mは平均重合度てO〜70を表わす) で示される単量体Aの一種または二種以上の重合体、お
よび/または上記単量体Aの一種または二皿以上とこれ
らと共重合し得るビニル重合性単量体Bの一種または二
種以上とからなる共重合体と、この重合体および/また
は共重合体から形成される被膜が有する低表面張力を実
質的に維持しうる一種または二種以上の表面滑性剤とを
必須成分として含有するものである。
That is, the underwater antifouling coating agent of the present invention has the following general formula;
An integer of ~4, m represents an average degree of polymerization of O~70) and/or one or more of the above monomers A and these Substantially maintains the low surface tension of a copolymer consisting of one or more vinyl polymerizable monomers B that can be copolymerized with It contains one or more surface lubricants as an essential component.

〔発明の構成・作用〕[Structure and operation of the invention]

本発明の水中防汚被覆剤においては、その必須成分とし
て、上記の一般式+11にて表わされる単量体Aの一種
または二種以上の重合体つまり単独重合体または共重合
体(以下、これらを重合体Aという)と前記特定の表面
滑性剤とを併用するか、あるいは上記単量体Aの一種ま
たは二種以上とこれらと共重合可能なビニル重合性単量
体Bの一種または二種以上との共重合体(以下、これ−
らを共重合体ABという)と前記特定の表面滑性剤とを
併用する。また、上記の重合体Aと共重合体ABを必要
に応じて併用しこれと前記特定の表面滑性剤とを併用す
るようにしてもよい。
In the underwater antifouling coating of the present invention, as an essential component, one or more polymers of monomer A represented by the above general formula +11, that is, a homopolymer or a copolymer (hereinafter, these (referred to as polymer A) and the specific surface lubricant, or one or more of the monomers A and one or two of the vinyl polymerizable monomers B copolymerizable therewith. copolymer with more than one species (hereinafter referred to as this)
(referred to as copolymer AB) and the above-mentioned specific surface lubricant are used together. Further, the above-mentioned polymer A and copolymer AB may be used in combination with the above-mentioned specific surface lubricant, if necessary.

このような重合体Aおよび共重合体ABは、いずれも側
鎖に単量体Aに由来するポリジメチルシロキサン基およ
び/またはトリメチルシリル基を有するため、これより
形成される被膜の表面張力が低くなり良好な滑り性を付
与し、この被膜により水中生物の付着を効果的に防止す
るが、この付着防止効果つまり防汚性能は上記重合体A
や共重合体ABとともに前記特定の表面滑性剤を併用す
ることによって一段と助長され、防汚性能の長期的持続
化が図られることになる。
Since both Polymer A and Copolymer AB have polydimethylsiloxane groups and/or trimethylsilyl groups derived from Monomer A in their side chains, the surface tension of the coating formed therefrom is low. This coating provides good slipperiness and effectively prevents the adhesion of aquatic organisms, but this adhesion prevention effect, that is, the antifouling performance, is not as good as the above polymer A.
By using the above-mentioned specific surface lubricating agent in combination with copolymer AB, the antifouling performance is further promoted, and the antifouling performance is maintained over a long period of time.

なお、本発明では、上記の表面滑性剤の使用によって被
膜の表面張力が必ずしも一段と低下するというものでは
ない。すなわち、表面張力の程度を表わす被膜表面の滑
り角を後記の実施例にて示す方法で測定した結果、上記
の表面滑性剤を使用する場合と使用しない場合とで大き
な相違はほとんど認められなかった。にもかかわらず、
上記の表面滑性剤を使用することによって防汚性能の長
期的持続化を図れるという事実は、前記従来公知の防汚
被覆剤からは全く予期せざることであり、また驚くべき
ことである。
In addition, in the present invention, the use of the above-mentioned surface lubricant does not necessarily reduce the surface tension of the coating further. In other words, as a result of measuring the sliding angle of the coating surface, which indicates the degree of surface tension, using the method shown in the examples below, there was almost no major difference between when the above-mentioned surface lubricant was used and when it was not used. Ta. in spite of,
The fact that antifouling performance can be maintained over a long period of time by using the above-mentioned surface lubricating agent is completely unexpected and surprising from the above-mentioned conventionally known antifouling coatings.

本発明者らの推測では、上記の事実が、上記表面1骨性
剤の使用に基つく表面滑性化効果と重合体Aおよび共重
合体ABとの相互作用に基づく被膜表面の劣化防止効果
などとにより、重合体Aおよび共重合体ABの低表面張
力が長期にわたって補強維持されることに起因するもの
ではないかと思われる。
The present inventors speculate that the above facts are due to the surface smoothing effect based on the use of the bone agent in Surface 1 and the deterioration prevention effect on the coating surface based on the interaction with polymer A and copolymer AB. This is thought to be due to the fact that the low surface tension of Polymer A and Copolymer AB is maintained under reinforcement over a long period of time.

このように、本発明においては、前記の重合体Aおよび
/または共重合体ABと前記特定の表面滑性剤とを組み
合わせ使用することにより、その相乗的作用によって防
汚性能の長期的持続化を図れるという効果が奏し得られ
るが、これと同時に前記先行発明の場合と同様に従来公
知の水中防汚被覆剤の諸種の問題点をことごとく解決で
きるものである。
Thus, in the present invention, by using the above-mentioned polymer A and/or copolymer AB in combination with the above-mentioned specific surface lubricant, the antifouling performance can be maintained for a long time due to their synergistic action. At the same time, as in the case of the prior invention, it is possible to solve all the problems of the conventionally known underwater antifouling coatings.

すなわち、上記の重合体Aおよび共重合体ABと上記の
表面滑性剤は、いずれも有機溶剤に溶解性であるため、
これの溶剤S=を海水にWmされるへき物体の表面に塗
布し乾燥することによって容易に均一に被膜化すること
ができる。しかも、上記の重合体Aおよび共重合体AB
は、前記従来の如き反応硬化型のものとは異って本質的
に非反応性のものであるため、これに上記表面滑性剤を
加えた水中防汚被覆剤もまた安定であり、したがって上
記の被膜化が大気中の湿気や温度によって左右されるこ
とはなく、また溶液としての可使時間や貯蔵安定性にす
ぐれている。さらに、この被膜上に同種ないし他の塗膜
を上塗りする際には、上記被膜が上塗り塗料の溶剤によ
って浸されるため、上塗り塗膜との眉間密着性にすぐれ
たものとなる。
That is, since the above-mentioned polymer A and copolymer AB and the above-mentioned surface lubricant are all soluble in organic solvents,
A uniform film can be easily formed by applying this solvent S= to the surface of a cracked object soaked in seawater and drying it. Moreover, the above polymer A and copolymer AB
is essentially non-reactive, unlike the conventional reaction-curing type, so the underwater antifouling coating prepared by adding the above-mentioned surface lubricant is also stable, and therefore The above film formation is not affected by atmospheric humidity or temperature, and has excellent pot life and storage stability as a solution. Furthermore, when a similar or other coating is applied over this coating, the coating is immersed in the solvent of the topcoat, resulting in excellent glabellar adhesion with the topcoat.

本発明において使用する重合体Aおよび共重合体ABを
得るための単量体Aは、前記の式(1)にて表わされる
分子内にポリジメチルシロキサン基(m=1以上)また
はトリメチルシリル基(m =O)を有する不飽和酸モ
ノエステルである。式+11中、m=o〜70としてい
るのは、mが70より大きくなると、単量体Aの重合性
ないし共重合性が低下し、均一に被膜化しうる重合体A
または共重合体ABを得にくくなるためである。また、
式(+)中、n = 2〜4としているのは、nが2未
満となると単量体Aのエステル形成部の結合性が弱くな
り、重合段階あるいは被覆剤としての使用時にエステル
結合が解離して防汚性能およびその持続性が低下するた
めであり、またnが4を超えると重合体が軟化するため
、粘着感のない表面張力の小さい被膜を形成しにくくな
るためである。
Monomer A for obtaining polymer A and copolymer AB used in the present invention has a polydimethylsiloxane group (m=1 or more) or a trimethylsilyl group ( m = O). In formula +11, m = o to 70 because when m is larger than 70, the polymerizability or copolymerizability of monomer A decreases, and polymer A can be uniformly formed into a film.
Alternatively, this is because it becomes difficult to obtain copolymer AB. Also,
In the formula (+), n = 2 to 4 because when n is less than 2, the bonding property of the ester forming part of monomer A becomes weak, and the ester bond dissociates during the polymerization stage or when used as a coating material. This is because when n exceeds 4, the antifouling performance and its sustainability deteriorate, and when n exceeds 4, the polymer becomes soft, making it difficult to form a film with a low surface tension and no sticky feeling.

上記の一般式(1)にて示される単量体Aの具体的化合
物基を挙げれば、トリメチルシリル基を有するものとし
て(メタ)アクリル酸トリノチルシリルエチル、(メタ
)アクリル酸トリメチルシリルプロピル、(メタ)アク
リル酸トリメチルシリルブチルが、またポリジメチルシ
ロキサン基を有するものとしてm=70までの(メタ)
アクリル酸ポリジメチルシロキサンエチル、(メタ)、
アクリル酸ポリジメチルシロキサンプロピル、(メタ)
アクリル酸ポリジメチルンロキサンブチルが、ある。な
お、上記の(メタ)とはアクリル酸またはメタクリル酸
のいずれであってもよいことを意味する。
Specific compound groups of monomer A represented by the above general formula (1) include trinotylsilylethyl (meth)acrylate, trimethylsilylpropyl (meth)acrylate, and trimethylsilylpropyl (meth)acrylate as those having a trimethylsilyl group. ) Trimethylsilylbutyl acrylate containing polydimethylsiloxane groups (meta) up to m=70
Polydimethylsiloxane ethyl acrylate, (meth),
Polydimethylsiloxanepropyl acrylate, (meth)
There is polydimethylronoxanebutyl acrylate. Note that the above (meth) means that it may be either acrylic acid or methacrylic acid.

このような単量体Aは市販品として容易に入手可能なも
のであるが、その合成例を挙げれば、(メタ)アクリル
酸とアルキレングリコールとのエステルを得、これにト
リメチルシリル化合物ないしポリジメチルシロキサン化
合物を縮合反応させる方法、(メタ)アクリル酸とアリ
ルアルコールなトドのエステルを得、これにトリメチル
シリル化合物ないしポリジメチルシロキサン化合物を付
加反応させる方法などがある。
Such monomer A is easily available as a commercial product, but to give an example of its synthesis, an ester of (meth)acrylic acid and alkylene glycol is obtained, and a trimethylsilyl compound or polydimethylsiloxane is added to this. Examples include a method of subjecting compounds to a condensation reaction, and a method of obtaining an ester of sea lion (meth)acrylic acid and allyl alcohol and subjecting it to an addition reaction with a trimethylsilyl compound or a polydimethylsiloxane compound.

また、共重合体ABを得るために上記の単量体Aととも
に用いられるビニル重合性単量体Bとしては、例えばメ
タクリル酸メチル、メタクリル酸エチル、メタクリル酸
ブチル、メタクリル酸2−エチルヘキシル、メタクリル
酸2−ヒドロキシエチルなどのメタクリル酸エステル類
、アクリル酸エチル、アクリル酸ブチル、アクリル酸2
−エチルヘキシル、アクリル酸2−ヒドロキシエチルな
どのアクリル酸エステル類、マレイン酸ジメチ火マレイ
ン酸ジエチルなどのマレイン酸エステル類、フマール酸
ジメチル、フマール酸ジエチルなどのフラール酸エステ
ル類、スチレン、ビニルトルエン、α−メチルスチレン
、塩化ビニル、酢酸ビニル、ブタジェン、アクリルアミ
ド、アクリロニトリノへメタクリル酸、アクリル酸、マ
レイン酸などがあげられる。
Examples of the vinyl polymerizable monomer B used together with the monomer A to obtain the copolymer AB include methyl methacrylate, ethyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, and methacrylic acid. Methacrylic acid esters such as 2-hydroxyethyl, ethyl acrylate, butyl acrylate, acrylic acid 2
- Acrylic esters such as ethylhexyl and 2-hydroxyethyl acrylate, maleic esters such as dimethyl maleate, diethyl maleate, fulleric esters such as dimethyl fumarate and diethyl fumarate, styrene, vinyltoluene, α -Methylstyrene, vinyl chloride, vinyl acetate, butadiene, acrylamide, acrylonitrino, methacrylic acid, acrylic acid, maleic acid, etc.

このようなビニル重合性単量体Bは、防汚被膜に用途目
的に応じた種々の性能を付与するための改質成分として
作用し、また単量KA単独に比しより高分子スの重合体
を得るのにも好都合な成分である。この単量体Bの使用
量は、上記性能と単量体Aに基つく防汚効果とを勘案し
て、適宜の範囲に設定される。一般的には、単量体Aと
の合計量中に占める単量体Bの割合が90重量%以下、
特に70重量%以下であるのがよい。すなわち、共重合
体ABを構成する単量体Aの割合が少なくとも10重量
%、特に少なくとも30重量%であれば、この単量体A
に基づく防汚効果を充分に発揮できるから、上記範囲内
で単量体Bの使用量を適宜設定すればよい。
Such vinyl polymerizable monomer B acts as a modifying component to impart various performances to the antifouling film depending on the purpose of use, and also has a higher weight of the polymer than monomer KA alone. It is also a convenient component for obtaining coalescence. The amount of monomer B used is set within an appropriate range, taking into consideration the above-mentioned performance and the antifouling effect based on monomer A. Generally, the proportion of monomer B in the total amount of monomer A is 90% by weight or less,
In particular, it is preferably 70% by weight or less. That is, if the proportion of monomer A constituting the copolymer AB is at least 10% by weight, in particular at least 30% by weight, then this monomer A
Since the antifouling effect based on the above can be sufficiently exhibited, the amount of monomer B to be used may be appropriately set within the above range.

重合体Aおよび共重合体ABは、上述の如き単量体Aま
たはこれと単量体Bとを、ビニル重合開始剤の存在下、
常法に準じて溶液重合、塊状重合、乳化重合、懸濁重合
などの各種方法で重合させることにより、得ることがで
きる。上記のビニル重合開始剤としては、アゾビスイソ
ブチロニトリル、トリフェニルメチルアゾベンゼンのよ
うなアゾ化合物、ベンゾイルパーオキサイド、ジter
L−ブチルパーオキサイドなとの過酸化物なとかあけら
れる。
Polymer A and copolymer AB are produced by combining monomer A as described above or monomer B together with monomer A in the presence of a vinyl polymerization initiator.
It can be obtained by polymerization using various methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization according to conventional methods. Examples of the vinyl polymerization initiator include azo compounds such as azobisisobutyronitrile and triphenylmethylazobenzene, benzoyl peroxide, diter
Peroxides such as L-butyl peroxide can be used.

上記の方法にて得られる重合体Aおよび共重合体ABの
重量平均分子電は、一般に 1,000〜150.00
0の範囲にあるのが望ましい。分子量が低すきては、使
用に耐える被膜の形成か難しく、またあまりに高くなり
すきると被覆剤用ワニスとしたとき粘度が高く、樹脂固
型分が低いため1回の塗装によって薄い被膜しか得られ
ず、−窓以上の乾燥被膜厚を得るには数回の塗装を要す
るという不具合が出てくる。
The weight average molecular charge of Polymer A and Copolymer AB obtained by the above method is generally 1,000 to 150.00.
It is desirable that it be in the range of 0. If the molecular weight is too low, it will be difficult to form a film that can withstand use, and if the molecular weight is too high, the viscosity will be high when used as a coating varnish, and the resin solid content will be low, so only a thin film can be obtained with one application. First, there is the problem that several coats of paint are required to obtain a dry coating thickness greater than that of a window.

本発明において上述の重合体Aおよび/または共重合体
ABと併用する表面滑性剤は、重合体Aおよび/または
共重合体ABから形成される被膜が有する低表面張力を
実質的に維持しうるものであればよい。ここで、実質的
とは表面滑性剤の使用によって表面張力のある程度の増
大が認められたとしても、増大後の表面張力が防汚性低
下の原因となることなく、本発明の前記持続性向上効果
を依然として保てる範囲内であれば、上記ある程度の増
大を許容できるものであることを意味する。
In the present invention, the surface lubricant used in combination with the above-mentioned polymer A and/or copolymer AB substantially maintains the low surface tension of the coating formed from polymer A and/or copolymer AB. Anything that can be used is fine. Here, "substantially" means that even if a certain degree of increase in surface tension is observed due to the use of a surface lubricant, the surface tension after the increase does not cause a decrease in antifouling properties, and the above-mentioned sustainability of the present invention is maintained. This means that the above-mentioned increase to some extent is acceptable as long as the improvement effect can still be maintained.

たとえば後記の方法で測定される被膜表面の滑り角が1
度以下の小さい増大であれば本発明の表面滑性剤として
充分に使用可能である。
For example, the sliding angle of the coating surface measured by the method described below is 1
If the increase is as small as 100% or less, it can be used satisfactorily as the surface lubricant of the present invention.

一方、上記維持とは表面滑性剤の使用によって被膜の表
面張力がさらに低下する場合をあえて除くという意味で
はない。このような場合でも添加後の表面張力が低表面
張力であるということに変わりはなく、また本発明の前
記持続性向上効果はやはり期待できるからである。結局
、本発明の表面滑性剤における”低表面張力を実質的に
維持しつる”とは、それの使用によって被膜の表面張力
がかなり増大して防汚性の低下をきたすような表面滑性
剤を排除しようという意味であり、したがってこれ以外
の表面滑性剤であれば本発明の表面滑性剤として広く使
用可能なのである。
On the other hand, the above-mentioned maintenance does not mean intentionally eliminating cases where the surface tension of the coating is further reduced by the use of a surface lubricant. Even in such a case, the surface tension after addition remains low, and the above-mentioned sustainability improvement effect of the present invention can still be expected. After all, in the surface lubricant of the present invention, "substantially maintaining a low surface tension" means that the surface lubricant of the present invention does not have such a smooth surface that its use considerably increases the surface tension of the coating and causes a decrease in antifouling properties. Therefore, other surface lubricants can be widely used as the surface lubricant of the present invention.

このような本発明に使用可能な表面滑性剤としては、被
膜表面に滑り性を付与するものとして知られる種々の物
質があり、その代表的な例を挙げれば、JISK  2
235で規定される石油ワックス、−5〜60’Cの融
点を有する油脂、30〜95°Cの融点を有するろう、
JIS  K 2231で規定される流動パラフィン、
25°Cにおいて55. OOOセンナストークス以下
の動粘度を有するシリコーンオイル、炭素数8以上の脂
肪族モノカルボン酸またはそのエステル、炭素数8以上
の脂肪族モノカルボン酸からなるエステル結合を少なく
とも1個有するグリセライドなどがある。
As such surface lubricating agents that can be used in the present invention, there are various substances known to impart slipperiness to the coating surface, and representative examples thereof include JISK 2
Petroleum waxes defined in 235, fats and oils with a melting point of -5 to 60°C, waxes with a melting point of 30 to 95°C,
Liquid paraffin specified in JIS K 2231,
55 at 25°C. Examples include silicone oil having a kinematic viscosity of OOO Senna Stokes or less, aliphatic monocarboxylic acids having 8 or more carbon atoms or esters thereof, and glycerides having at least one ester bond formed from aliphatic monocarboxylic acids having 8 or more carbon atoms.

上記のJIS K 2235に規定される石油ワックス
としては、パラフィンワックス、マイクロクリスタリン
ワックス、ペトロラタムがあげられる。
Examples of petroleum waxes specified in JIS K 2235 include paraffin wax, microcrystalline wax, and petrolatum.

パラフィンワックスとしてはJIS K  2235の
120P% 12SP、130P、135P、140P
1145P、150P、1’55Pの各相当品があげら
れる。また、マイクロクリスタリンワックスとしてはJ
IS K 2235の150M1.160M。
As paraffin wax, JIS K 2235 120P% 12SP, 130P, 135P, 140P
Examples include products equivalent to 1145P, 150P, and 1'55P. Also, as a microcrystalline wax, J
IS K 2235 150M1.160M.

170M、180M、190Mの各相当品があげられる
。また、ペトロラタムとしては JISK2235の1
号、2号、3号、4号の各相当品があけられる。
Examples include products equivalent to 170M, 180M, and 190M. Also, as petrolatum, JISK2235 1
Items corresponding to No., No. 2, No. 3, and No. 4 can be opened.

一5〜60°Cの融点を有する油脂としては、牛脂、豚
腸、焉脂、羊脂、鱈肝油、ヤシ浦、パーム油、木ろう、
カポック油、カカオ脂、支那脂、イリツペ脂などがあげ
られる。なお、融点が一5℃未満の油脂では、水中防汚
剤塗膜の密着性を低下させ、さらに防汚性能も低下させ
るといった欠点がある。また、融点が60℃を超える油
脂はもろいため、得られる水中防汚剤塗膜をもろくし、
ちょっとした衝撃についていけず、剥離の原因となる欠
点がある。
Examples of fats and oils having a melting point of -5 to 60°C include beef tallow, pig intestine, tallow, mutton tallow, cod liver oil, coconut oil, palm oil, wood wax,
Examples include kapok oil, cacao butter, China butter, and iritzpe butter. Note that oils and fats with a melting point of less than 15° C. have the drawback of reducing the adhesion of the underwater antifouling agent coating and further reducing the antifouling performance. In addition, since oils and fats with melting points exceeding 60°C are brittle, they make the resulting underwater antifouling agent coating brittle.
It has the disadvantage that it cannot keep up with slight shocks and may cause peeling.

30〜95°Cの融点を有するろうとしては、鯨ろう、
密ろう、カルバウナろう、モンタンろう、蟲白ろうなと
があげられる。なお、融点が30°C未満のろうは水中
防汚剤塗膜の密着性ならびに防汚性能が悪いといった欠
点があり、また融点が95°Cを超えるろうはもろくな
るため、得られる水中防汚剤塗膜をもろ<シ、ちょっと
した衝撃についていけず、剥順の原因となる欠点がある
Waxes having a melting point of 30 to 95°C include spermaceti;
Examples include mitsuro, carbaunaro, montanro, and mushiroro. Note that waxes with a melting point of less than 30°C have the disadvantage of poor adhesion and antifouling performance of the underwater antifouling agent coating, and waxes with a melting point of more than 95°C become brittle, so the resulting underwater antifouling It has the disadvantage that the agent coating film is fragile and cannot withstand slight shocks, causing peeling.

JISK223Fで規定される流動パラフィンとしては
、l5OVGIO1I 5OVG 15、l5OVG3
2、l5OVG68、tsovc、tooの各相当品が
あげられる。
Liquid paraffin specified by JISK223F is l5OVGIO1I 5OVG 15, l5OVG3
2, 15OVG68, tsovc, and too equivalent products.

25°Cにおいて55,000センチストークス以下の
動粘度を有するシリコーンオイルとしては、たとえば信
越化学工業株式会社製の商品名KF96L−0,65、
KF96L−2,,01KF96−30、KF96)I
−,50,000、KF96’5、KF50、KF54
、KF69などがあげられる。このシリコーンオイルは
ジメチルシリコーンオイルが最も一般的であるが、その
他メチルフェニルシリコーンオイルなどの他のものであ
ってもよい。なお、25°Cにおける動粘度が55,0
00センチストークスを超えるシリコーンオイルは流動
性が小さく水中防汚剤の製造上不便であり、また被膜の
乾燥性も悪くする欠点がある。
Examples of silicone oils having a kinematic viscosity of 55,000 centistokes or less at 25°C include, for example, KF96L-0,65, manufactured by Shin-Etsu Chemical Co., Ltd.;
KF96L-2,,01KF96-30,KF96)I
-, 50,000, KF96'5, KF50, KF54
, KF69, etc. This silicone oil is most commonly dimethyl silicone oil, but other types such as methylphenyl silicone oil may also be used. In addition, the kinematic viscosity at 25°C is 55.0
Silicone oils exceeding 0.00 centistokes have low fluidity and are inconvenient in the production of underwater antifouling agents, and also have the drawback of poor drying properties of coatings.

炭素数8以上の脂肪族モノカルボン酸としては、カプリ
ル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミ
チン酸、ステアリン酸、セロチン酸、モンタン酸、メリ
シン酸、ラウロレイン酸、オレイン酸、バクセン酸、ガ
ドレイン酸、鯨油酸、散油酸、ジュニペリン酸などがあ
げられる。また、これらカルボン酸のエステルとしては
、ステアリルステアレート、ブチルラウレート、オクチ
ルパルミテート、ブチルステアレート、イソプロピルス
テアレート、セチルパルミテート、セリルセロテート、
ミリシルパルミテート、メリシルメリセートなどがあげ
られる。なお、上記カルボン酸の炭素数が8未満となる
と、この酸およびそ、のエステル共に水中防汚被覆剤の
防汚性能を低下させる欠点かある。
Examples of aliphatic monocarboxylic acids having 8 or more carbon atoms include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, cerotic acid, montanic acid, melisic acid, lauroleic acid, oleic acid, vaccenic acid, and gadolein. Examples include whale oil acid, oil acid, and juniperic acid. In addition, esters of these carboxylic acids include stearyl stearate, butyl laurate, octyl palmitate, butyl stearate, isopropyl stearate, cetyl palmitate, ceryl cerotate,
Examples include myricyl palmitate and merisyl merisate. When the number of carbon atoms in the carboxylic acid is less than 8, both this acid and its ester have the disadvantage of lowering the antifouling performance of the underwater antifouling coating.

炭素数8以上の脂肪族モノカルボン酸からなるエステル
結合を少なくとも1個有するグリセライドとしては、ト
リステアリン、トリパルミチン、トリオレイン、ミリス
トジラウリン、カプリロラウロミリスチン、ステアロパ
ルミトオレインなどがあげられる。なお、このグリセラ
イドにはモノ、ジ、トリグリセライドが包含され、要は
グリセリンの3個の水酸基のうちの少なくとも1個に上
記炭素数の脂肪族モノカルボン酸がエステル結合された
ものであればよい。炭素数8未満の脂肪族モノカルボン
酸のみがエステル結合したグリセライドは、水中防汚被
覆剤の防汚性能を低下させる欠点がある。
Examples of the glyceride having at least one ester bond consisting of an aliphatic monocarboxylic acid having 8 or more carbon atoms include tristearin, tripalmitin, triolein, myristodilaurin, caprylolauromyristin, and stearopalmitolein. It will be done. Incidentally, this glyceride includes mono-, di-, and triglycerides, and in short, it may be one in which an aliphatic monocarboxylic acid having the above carbon number is ester-bonded to at least one of the three hydroxyl groups of glycerin. Glycerides in which only aliphatic monocarboxylic acids having less than 8 carbon atoms are ester-bonded have the disadvantage of lowering the antifouling performance of underwater antifouling coatings.

本発明において上記した如き特定の表面滑性剤の使用量
は、前記の重合体Aおよび/または共重合体ABに基つ
く乾燥性、密着性などの性能とさらに防汚性能とを勘案
して、適宜の範囲に設定される。一般的には、重合体A
および/または共重合体ABと表面滑性剤との合計量中
に占める表面滑性剤の割合が1〜70重量%、特に5〜
50重量%であるのか好ましい。
In the present invention, the amount of the above-mentioned specific surface lubricant to be used is determined by taking into consideration the properties such as drying properties and adhesion properties based on the above-mentioned polymer A and/or copolymer AB, as well as the antifouling performance. , is set to an appropriate range. Generally, polymer A
and/or the proportion of the surface lubricant in the total amount of the copolymer AB and the surface lubricant is 1 to 70% by weight, especially 5 to 70% by weight.
Preferably, it is 50% by weight.

本発明の水中防汚被覆剤は、既述の説明からも明らかな
ように、通常重合体Aおよび/または共重合体ABと上
記特定の表面滑性剤とを有機溶剤に溶解させた溶液とし
て使用に供される。このため、重合体Aおよび/または
共重合体ABを得るにあたっての重合法として特に溶液
重合法または塊状重合法を採用するのが望ましい。溶液
重合法では重合後の反応溶液をそのままあるいは溶剤で
希釈して使用に供すことができ、また塊状重合法では重
合後の反応物に溶剤を加えて使用に供しつる。
As is clear from the above description, the underwater antifouling coating of the present invention is usually prepared as a solution in which polymer A and/or copolymer AB and the above-mentioned specific surface lubricant are dissolved in an organic solvent. put to use. For this reason, it is particularly desirable to employ a solution polymerization method or a bulk polymerization method as the polymerization method for obtaining the polymer A and/or the copolymer AB. In the solution polymerization method, the reaction solution after polymerization can be used as it is or after being diluted with a solvent, and in the bulk polymerization method, the reaction product after polymerization can be used after adding a solvent.

使用する有機溶剤としては、キシレン、トルエンなどの
芳香族炭化水素系溶剤、ヘキサン、ヘプタンなどの脂肪
族炭化水素系溶剤、酢酸エチル、酢酸ブチルなどのエス
テル系溶剤、イソプロヒルアルコーノヘ  ブチルアル
コールなどのアルコール系溶剤、ジオキサン、ジエチル
エーテルなどのエーテル系溶剤、メチルエチルケトン、
メチルイソブチルケトンなとのケトン系溶剤の単独もし
くはこれらの混合溶剤があげられる。
Organic solvents to be used include aromatic hydrocarbon solvents such as xylene and toluene, aliphatic hydrocarbon solvents such as hexane and heptane, ester solvents such as ethyl acetate and butyl acetate, and isoprohylalkonohbutyl alcohol. Alcohol solvents, dioxane, ether solvents such as diethyl ether, methyl ethyl ketone,
Examples include ketone solvents such as methyl isobutyl ketone alone or a mixture thereof.

有機溶剤の使用量は、溶成中の重合体Aおよび/または
共重合体ABの濃度か通常5〜80重量%、特に30〜
70重量%の範囲となるようにするのが望ましい。この
ときの溶液の粘度は、被膜化が容易となる一般に1〜1
0ボイズ/25°Cの範囲にあるのがよい。
The amount of organic solvent used is usually 5 to 80% by weight, especially 30 to 80% by weight, depending on the concentration of polymer A and/or copolymer AB during melting.
It is desirable that the content be in the range of 70% by weight. The viscosity of the solution at this time is generally 1 to 1, which facilitates the formation of a film.
It is preferable that the temperature be within the range of 0 voices/25°C.

このように構成される本発明の水中防汚被覆剤には、必
要に応じて無毒性で海水に溶1界しない弁柄、二酸化チ
タンなどの顔料や染料などの着色剤を配合してもよい。
The underwater antifouling coating of the present invention thus constructed may contain colorants such as pigments and dyes such as titanium dioxide, which is non-toxic and does not dissolve in seawater, if necessary. .

また、通常のタレ止め剤、色分れ防止剤、沈降防止剤、
消泡剤などを加えても差し支えない。
In addition, regular anti-sagging agents, anti-color separation agents, anti-settling agents,
It is okay to add antifoaming agents, etc.

本発明の水中防汚被覆剤を用いて海水に浸漬されるべき
物体の表面に防汚被膜を形成するには、たとえば溶液と
しての上記mi剤を上記物体表面に適宜の手段で塗布し
たのち、常温下ないし加熱下で乾燥して溶剤を揮散除去
するだけでよい。これにより表面張力の小さい滑り性の
良好な防汚被膜が均一に形成される。
In order to form an antifouling film on the surface of an object to be immersed in seawater using the underwater antifouling coating agent of the present invention, for example, after applying the mi agent as a solution to the surface of the object by an appropriate means, Simply dry at room temperature or under heat to volatilize and remove the solvent. As a result, an antifouling film with low surface tension and good slip properties is uniformly formed.

以上のように、本発明の水中防汚被覆剤により、従来公
知の水中防汚被覆剤の第一の問題点である硬化性につい
ては、化学的な硬化反応を必要とせず、溶剤揮発のみに
よって強靭な被膜が得られることで解決され、第二の問
題点である上塗り性も、本被覆剤は溶剤揮発乾燥型であ
るために、被膜形成後上塗りされる被覆剤の溶剤により
表面が再溶解されて層間密着性が向上することで解決さ
れる。
As described above, the underwater antifouling coating of the present invention solves the curability, which is the first problem with conventionally known underwater antifouling coatings, by eliminating the need for a chemical curing reaction and only by evaporating the solvent. The second problem, overcoatability, is solved by obtaining a tough coating, and since this coating is a solvent-volatilized drying type, the surface is re-dissolved by the solvent of the coating that is applied after the coating is formed. This problem is solved by improving interlayer adhesion.

さらに第三の問題点である可使時間、および第四の問題
点である貯蔵安定性も、本被覆剤が一液型非反応性のた
め、可使時間の制限を受けず、安定性が良いものとして
解決される。
Furthermore, the third problem, pot life, and the fourth problem, storage stability, are not limited by the pot life and are stable because this coating is one-component and non-reactive. resolved as a good thing.

さらに驚くべきことに、本発明の水中防汚被覆剤の乾燥
被膜の表面張力を、後述する第1図(5)。
More surprisingly, the surface tension of the dry film of the underwater antifouling coating of the present invention is shown in FIG. 1 (5), which will be described later.

■)に示す装置を用いて海水滴下による滑り角を測定す
る方法で調べたところ、シリコーンゴム単独ないしはこ
のゴムとシリコーン油、流動パラフィン、ペトロラタム
などを併用した従来の水中防汚被覆剤の乾燥被膜が平均
13〜15度の範囲にあるのに対して、本発明による水
中防汚被覆剤は平均79〜9.5度の範囲にあり、最小
でも30%程度小さかった。このことは、本発明の水中
防汚被覆剤の乾燥被膜が従来技術によるものより小さい
表面張力を持ち、生物付着に対してより優れた効力を期
待できることを示している。
When examining the slip angle by measuring the sliding angle by dripping seawater using the device shown in (2) above, it was found that the dry coatings of conventional underwater antifouling coatings using silicone rubber alone or in combination with silicone oil, liquid paraffin, petrolatum, etc. was in the range of 13 to 15 degrees on average, whereas the underwater antifouling coating according to the present invention had an average temperature in the range of 79 to 9.5 degrees, which was about 30% smaller at the minimum. This indicates that the dry film of the underwater antifouling coating of the present invention has a lower surface tension than that of the prior art and can be expected to have better efficacy against biofouling.

また、本発明の水中防汚被覆剤は、上記した滑り角にみ
られる表面張力の低下効果が長期的に持続するためか、
生物付着防止効果の持続性にすぐれ、前記した先行発明
つまり本発明に係る特定の表面滑性剤を使用しない水中
防汚被覆剤に比しさらに一段と防汚性能の改善を図れる
という利点がある。
In addition, the underwater antifouling coating of the present invention may be because the effect of reducing the surface tension seen in the sliding angle as described above is sustained over a long period of time.
It has the advantage of having excellent sustainability of the bioadhesion prevention effect and further improving the antifouling performance compared to the above-mentioned previous invention, that is, the underwater antifouling coating material according to the present invention which does not use a specific surface lubricant.

[発明の効果] 以上のように、本発明においては、前記した特定の重合
体とともに特定の表面滑性剤2を組み合わせ使用したこ
とにより、上記の表面滑性剤を用いなかった本発明者ら
の先行発明よりもさらに一段と防汚性能の改善された水
中防汚被覆剤を提供することができる。
[Effects of the Invention] As described above, in the present invention, by using the specific surface lubricant 2 in combination with the above-mentioned specific polymer, the present inventors, who did not use the above-mentioned surface lubricant, It is possible to provide an underwater antifouling coating agent that has even more improved antifouling performance than the previous invention.

また、この水中防汚被覆剤は先行発明の水中防汚被覆剤
と同様に被膜形成時に架橋反応する型ではないので、湿
度、温度などによって硬化乾燥の影響を受けにくい。し
たがって、被膜の硬化不良からくる剥離、ふくれなどに
よる防汚性の低下が認められない。また、塗布したとき
溶剤の揮発のみで被塗面上で造膜するので乾燥が速く、
重ね塗り時間の短縮が可能となり、被塗物を短時間で使
用することが望める。さらに塗装作業が可使時間によっ
て制約されないといった扱い易さがあり、また上塗り塗
膜を設ける際の上塗り塗膜との層間密着性の改善を図れ
る。
Furthermore, like the underwater antifouling coating of the prior invention, this underwater antifouling coating is not of the type that undergoes a crosslinking reaction during film formation, and therefore is less susceptible to curing and drying due to humidity, temperature, etc. Therefore, no deterioration in antifouling properties due to peeling, blistering, etc. due to insufficient curing of the coating is observed. In addition, since a film is formed on the surface to be coated by only the volatilization of the solvent when applied, it dries quickly.
It is possible to shorten the time for recoating, and it is hoped that the coated object can be used in a short time. Furthermore, it is easy to handle because the coating work is not restricted by pot life, and it is possible to improve the interlayer adhesion with the top coat when applying the top coat.

また、湿気、熱に対する貯蔵安定性が良いので、製造時
乾燥窒素ガスの充填という操作は必要でなく、原価の軽
減に役立つ。さらに、塗装時使い残しがでても栓をする
だけといった通常の方法で保存でき、再使用できる簡便
さがある。
In addition, since it has good storage stability against humidity and heat, it is not necessary to fill it with dry nitrogen gas during production, which helps reduce costs. Furthermore, even if there is leftover paint left over from painting, it can be stored in the usual way, such as simply plugging it, and it can be reused easily.

〔実施例〕〔Example〕

以下に、本発明の実施例を比較例と対比してより具体的
に説明する。なお、以下の実施例1〜22および比較例
1〜5で使用した重合体溶液(I)−(Vll)並びに
比較例6〜8で使用した重合体溶液(Vllf)−(X
)は、下記の製造例1〜10により調製したものである
。各製造例中の部は重量部、粘度は25°Cにおけるガ
ードナー粘度測定値、分子量はGPC法による重量平均
分子量を表わす。
Examples of the present invention will be described in more detail below in comparison with comparative examples. In addition, the polymer solutions (I)-(Vll) used in Examples 1 to 22 and Comparative Examples 1 to 5 below and the polymer solutions (Vllf)-(X
) were prepared according to Production Examples 1 to 10 below. In each production example, parts represent parts by weight, viscosity represents a Gardner viscosity measurement value at 25°C, and molecular weight represents a weight average molecular weight determined by GPC method.

製造例1 撹拌機付きのフラスコに酢酸ブチル120部を仕込み、
100℃に昇温し、撹拌しながらメタクリル酸メチル1
20部、メタクリル酸ポリジメチルシロキサンプロピル
〔単量体Aとして、一般式(1)中、Xがメチル基、n
が3、平均重合度mが10のもの]120部、アゾビス
イソブチロニトリル1.2部の混合溶液を2時間で滴下
し、滴下終了後同温度で30分保持した。ついで、酢酸
ブチル40部、アゾビスイソブチロニトリル0.6部の
混合溶液を15分で滴下し、滴下終了後同温度で3時間
撹拌を継続して重合反応を完結させた。最後にトルエン
80部を加えて冷却し、重合体溶液は)を得た。
Production Example 1 120 parts of butyl acetate was placed in a flask equipped with a stirrer,
Raise the temperature to 100°C and add methyl methacrylate 1 while stirring.
20 parts, polydimethylsiloxanepropyl methacrylate [as monomer A, in general formula (1), X is a methyl group, n
3, average degree of polymerization m is 10], and 1.2 parts of azobisisobutyronitrile were added dropwise over 2 hours, and after the addition was completed, the mixture was maintained at the same temperature for 30 minutes. Then, a mixed solution of 40 parts of butyl acetate and 0.6 parts of azobisisobutyronitrile was added dropwise over 15 minutes, and after the addition was completed, stirring was continued at the same temperature for 3 hours to complete the polymerization reaction. Finally, 80 parts of toluene was added and cooled to obtain a polymer solution.

得られた重合体溶液(I)は透明で粘度がU11部合体
の分子量が89,000であった。
The obtained polymer solution (I) was transparent, had a viscosity, and had a molecular weight of 89,000 for the U11 portion.

製造例2 撹拌機付きのフラスコに酢酸ブチル180部を仕込み、
115°Cに昇温し、撹拌しながらメタクリル酸メチル
169.2部、アクリル酸エチル10.8部、メタクリ
ル酸ポリジメチルシロキサンプロピル〔単量体Aとして
、一般式fil中、Xがメチル基、nが3、平均重合度
mが3のもの〕180部、アゾビスイソブチロニトリル
3.6部の混合溶液を2時間で滴下した。滴下終了30
分後に酢酸ブチル60部、アゾビスインブチロニトリル
1゜8部の混合溶液を15分で滴下し、この滴下終了後
同温度で3時間撹拌を継続して重合反応を完結させた。
Production Example 2 180 parts of butyl acetate was placed in a flask equipped with a stirrer,
The temperature was raised to 115°C, and while stirring, 169.2 parts of methyl methacrylate, 10.8 parts of ethyl acrylate, and polydimethylsiloxanepropyl methacrylate [as monomer A, in the general formula fil, X is a methyl group, A mixed solution of 180 parts of polymer with n = 3 and average degree of polymerization m of 3 and 3.6 parts of azobisisobutyronitrile was added dropwise over 2 hours. Dripping completed 30
After 15 minutes, a mixed solution of 60 parts of butyl acetate and 1.8 parts of azobisinbutyronitrile was added dropwise over 15 minutes, and after the addition was completed, stirring was continued at the same temperature for 3 hours to complete the polymerization reaction.

最後にキシレン120部を加えて冷却し、重合体溶液(
IDを得た。
Finally, 120 parts of xylene was added, cooled, and the polymer solution (
I got an ID.

得られた重合体格M(IDは透明で粘度がH11部合体
の分子量が54,000であった。
The obtained polymer body size M (ID was transparent, viscosity was H11, and the molecular weight of the polymer was 54,000.

製造例3 耐熱耐圧の容器中にメタクリル酸メチル;45部、メタ
クリル酸ポリジメチルシロキサンプロピル(単量体Aと
して、一般式中、Xがメチル基、nが3、平均重合度m
が10のもの]55部、アゾビスイソブチロニトリル5
部を仕込み、完全密封して振蕩しながら130°Cに昇
温し、同温度で2時間継続振蕩して重合反応を完結させ
て塊状の固化物を得た。次いで、酢酸ブチル100部を
加え、130’Cに保ちながら3時間振蕩を続けて固化
物を溶解し、冷却したのち重合体溶液(皿を得た。
Production Example 3 In a heat-resistant and pressure-resistant container, 45 parts of methyl methacrylate, polydimethylsiloxane propyl methacrylate (as monomer A, in the general formula, X is a methyl group, n is 3, average degree of polymerization m
is 10] 55 parts, azobisisobutyronitrile 5
The reactor was completely sealed and heated to 130°C while shaking, and continued shaking at the same temperature for 2 hours to complete the polymerization reaction and obtain a solidified mass. Next, 100 parts of butyl acetate was added, and stirring was continued for 3 hours while maintaining the temperature at 130'C to dissolve the solidified material. After cooling, a polymer solution (a dish) was obtained.

得られた重合体溶液q0は透明で粘度がA、共重合体の
分子量が9,000であった。
The obtained polymer solution q0 was transparent, had a viscosity of A, and had a copolymer molecular weight of 9,000.

製造例4 撹拌機付きのフラスコにキシレン50部を仕込み、11
0°Cに昇温し、撹拌しながらメタクリル酸メチル85
部、アクリル酸ポリジメチルシロキサンエチル〔単量体
Aとして、一般式(1)中、Xが水素原子、nが2、平
均重合度mが70のもの〕15部、ベンゾイルパーオキ
サイド3部の混合溶液を3時間で滴下した。滴下終了3
0分後にキシレン20部、ベンゾイルパーオキサイド1
5部の混合溶液を20分で滴下し、この滴下終了後同温
度で5時間撹拌を継続して重合反応を完結させた。
Production Example 4 50 parts of xylene was placed in a flask equipped with a stirrer, and 11
Raise the temperature to 0°C and add methyl methacrylate 85 while stirring.
15 parts of polydimethylsiloxane ethyl acrylate [monomer A, in the general formula (1), where X is a hydrogen atom, n is 2, and the average degree of polymerization m is 70], a mixture of 3 parts of benzoyl peroxide The solution was added dropwise over 3 hours. Dripping completed 3
After 0 minutes, add 20 parts of xylene and 1 part of benzoyl peroxide.
5 parts of the mixed solution was added dropwise over 20 minutes, and after the completion of the addition, stirring was continued for 5 hours at the same temperature to complete the polymerization reaction.

最後にメチルイソブチルケトン30部を加えて冷却し、
重合体溶液■を得た。
Finally, 30 parts of methyl isobutyl ketone was added and cooled.
A polymer solution (■) was obtained.

得られた重合体溶液潤は半透明で粘度がP、共重合体の
分子量が43,000であった。
The resulting polymer solution was translucent, had a viscosity of P, and a copolymer molecular weight of 43,000.

製造例5 撹拌機付きのフラスコにキシレン15部、エチレングリ
コールモノエチルエーテル45部を仕込み、120°C
に昇温し、撹拌しながらメタクリル酸メチル58部、メ
タクリル酸2部、アクリル酸ブチル5部、スチレン10
部、メタクリル酸ポリジメチルシロキサンブチル[単量
体Aとして、一般式ill中、Xがメチル基、nが4、
平均重合度mが30のもの]25部、アゾビスイソブチ
ロニトリル06部の混合溶液を3時間で滴下した。滴下
終了30分Hcエチレングリコールモ/エチルエーテル
208、アゾビスイソブチロニトリル06部の混合溶液
を20分で滴下し、この滴下終了後同温度で4時間撹拌
を継続して重合反応を完結させた。最後にブチルアルコ
ール10部、メチルエチルケトン35部を加えて冷却し
、重合体溶液(V)を得た。
Production Example 5 15 parts of xylene and 45 parts of ethylene glycol monoethyl ether were placed in a flask equipped with a stirrer, and heated to 120°C.
58 parts of methyl methacrylate, 2 parts of methacrylic acid, 5 parts of butyl acrylate, and 10 parts of styrene while stirring.
part, polydimethylsiloxane butyl methacrylate [as monomer A, in the general formula ill, X is a methyl group, n is 4,
A mixed solution of 25 parts of polymer having an average degree of polymerization m of 30 and 06 parts of azobisisobutyronitrile was added dropwise over 3 hours. 30 minutes after completion of the dropwise addition A mixed solution of 208 parts of Hc ethylene glycol mo/ethyl ether and 06 parts of azobisisobutyronitrile was added dropwise over 20 minutes. After the completion of the dropwise addition, stirring was continued at the same temperature for 4 hours to complete the polymerization reaction. Ta. Finally, 10 parts of butyl alcohol and 35 parts of methyl ethyl ketone were added and cooled to obtain a polymer solution (V).

得られた重合体溶液(V)は透明で粘度かに1共重合体
の分子量が27,000であった。
The obtained polymer solution (V) was transparent, had a viscosity, and had a molecular weight of 27,000.

製造例6 撹拌a付きのフラスコにキシレン100f14、メタク
リル酸トリメチルシリルプロピル〔単量体Aとして、一
般式m中、Xがメチル基、nが3、平均重合度mがOの
もの〕100部、ベンゾイルパーオキサイド15部を仕
込み、撹拌しながら140°Cに昇温し、還流状態で3
時間撹拌を継続して重合反応を完結させ、重合体溶液(
至)を得た。
Production Example 6 In a flask with stirring a, 100f14 xylene, 100 parts of trimethylsilylpropyl methacrylate [as monomer A, in the general formula m, X is a methyl group, n is 3, and the average degree of polymerization m is O], benzoyl 15 parts of peroxide was charged, the temperature was raised to 140°C with stirring, and the temperature was raised to 140°C under reflux.
Continuing stirring for a certain period of time to complete the polymerization reaction, the polymer solution (
) was obtained.

得られた重合体溶液(資)は透明で粘度がA3、重合体
の分子量が1,000であった。
The obtained polymer solution (material) was transparent, had a viscosity of A3, and a polymer molecular weight of 1,000.

製造例7 撹拌機付きのフラスコに酢酸ブチル30部を仕込み、8
0’Cに昇温し、撹拌しながらメタクリル酸メチル72
部、メタクリル酸ブチル12部、メタクリル酸ポリジメ
チルシロキサンプロピル[単量体Aとして、一般式(1
)甲、Xはメチル基、nか3、平均重合度mが20のも
の]36部、ベンゾイルパーオキサイド0.6部の混合
溶液を4時間で滴下した。滴下終了30分後に酢酸ブチ
ル20部、ベンゾイルパーオキサイド0.2部の混合溶
液を20分で滴下し、この滴下終了後同温度で5時間撹
拌を継続して重合反応を完結させた。最後にトルエン1
30部を加えて冷却し、重合体溶液−を得た。
Production Example 7 Place 30 parts of butyl acetate in a flask equipped with a stirrer, and add 8 parts of butyl acetate.
Raise the temperature to 0'C and add methyl methacrylate 72 while stirring.
parts, butyl methacrylate 12 parts, polydimethylsiloxanepropyl methacrylate [as monomer A, general formula (1
) A mixed solution of 36 parts of A, X is a methyl group, n is 3, and average degree of polymerization m is 20] and 0.6 part of benzoyl peroxide was added dropwise over 4 hours. Thirty minutes after the completion of the dropwise addition, a mixed solution of 20 parts of butyl acetate and 0.2 parts of benzoyl peroxide was added dropwise over 20 minutes, and after the completion of the dropwise addition, stirring was continued at the same temperature for 5 hours to complete the polymerization reaction. Finally, 1 toluene
30 parts were added and cooled to obtain a polymer solution.

得られた重合体溶液(VIDは透明で粘度がZ、共重合
体の分子量が150,000であった。
The resulting polymer solution (VID) was transparent, had a viscosity of Z, and had a copolymer molecular weight of 150,000.

製造例8 撹拌機付きのフラスコにキシレン121を仕込み、10
5°Cに昇温し、撹拌しながらメタクリル酸メチル12
0部、メタクリル酸ポリジメチルシOキサンメチル〔単
量体Aとして、一般式+1+中、Xがメチル基、nが1
、平均重合度mが8のもの〕120部、アゾビスイソブ
チロニトリル12部の混合溶液を2時間で滴下した。滴
下終了後同温度で30分保持したのちキシレン40部、
アゾビスイソブチロニトリル06部の混合溶液を15分
で滴下し、この滴下終了後同温度で4時間撹拌を継続し
て重合反応を完結させた。最後にキシレン80部を加え
て冷却し、重合休店1便(旧を寿だ。
Production Example 8 Pour xylene 121 into a flask equipped with a stirrer,
Raise the temperature to 5°C and add methyl methacrylate 12 while stirring.
0 parts, polydimethylsiloxane methyl methacrylate [as monomer A, in the general formula +1+, X is a methyl group, n is 1
, with an average degree of polymerization m of 8] and 12 parts of azobisisobutyronitrile were added dropwise over 2 hours. After the dropwise addition was completed, the temperature was kept at the same temperature for 30 minutes, and then 40 parts of xylene was added.
A mixed solution of 06 parts of azobisisobutyronitrile was added dropwise over 15 minutes, and after the addition was completed, stirring was continued at the same temperature for 4 hours to complete the polymerization reaction. Finally, 80 parts of xylene was added and cooled to polymerize.

得られた重合体溶液(VIIDは白濁し粘度がW、共重
合体の分子量が72,000であった。
The resulting polymer solution (VIID) was cloudy, had a viscosity of W, and had a copolymer molecular weight of 72,000.

製造例9 撹拌機付きのフラスコに酢酸ブチル180部を仕込み、
110°Cに昇温し、撹拌しながらメタクリル酸メチル
150部、メタクリル酸ブチル30部、メタクリル酸ポ
リジメチルシロキサンペンチル[単量体Aとして、一般
式fll中、Xがメチル基、nが5、平均重合度mが2
のもの]180部、アゾビスイソブチロニトリル36部
の混合溶液を3時間で滴下した。滴下終了30分後に酢
酸ブチル60部、アゾビスイソブチロニトリル1.81
の混合溶液を15分て滴下し、この滴下終了後同温度で
4時間撹拌を継続して重合反応を完結させた。
Production Example 9 180 parts of butyl acetate was placed in a flask equipped with a stirrer,
The temperature was raised to 110°C, and while stirring, 150 parts of methyl methacrylate, 30 parts of butyl methacrylate, polydimethylsiloxane pentyl methacrylate [as monomer A, in the general formula flll, X is a methyl group, n is 5, Average degree of polymerization m is 2
A mixed solution of 180 parts of azobisisobutyronitrile and 36 parts of azobisisobutyronitrile was added dropwise over 3 hours. 30 minutes after completion of dropping, 60 parts of butyl acetate, 1.81 parts of azobisisobutyronitrile
A mixed solution of was added dropwise over 15 minutes, and after the addition was completed, stirring was continued for 4 hours at the same temperature to complete the polymerization reaction.

最後にキシレン120部を加えて冷却し、重合体溶液α
)を得た。
Finally, 120 parts of xylene was added, cooled, and the polymer solution α
) was obtained.

得られた重合体溶液(IX)は透明で粘度がK、共重合
体の分子量が65,000であった。
The obtained polymer solution (IX) was transparent, had a viscosity of K, and a copolymer molecular weight of 65,000.

製造例10 耐熱耐圧の容器中にメタクリル酸メチル87部、メタク
リル酸ポリジメチルシロキサンプロピル〔単量体Aとし
て、一般式(1)中、Xがメチル基、nが3、平均重合
度mが75のもの〕13部、ベンゾイルパーオキサイド
4部を仕込み、完全密封して振蕩しながら120℃に昇
温し、同温度で3時間振蕩を継続して重合反応を完結さ
せ、白濁した粘稠物を得た。次いで、酢酸ブチル100
部を加えて120°Cに保ちながら1時間振蕩を続けて
白濁した粘稠物を溶解し、冷却したのち重合体溶液(X
)を得た。
Production Example 10 In a heat-resistant and pressure-resistant container, 87 parts of methyl methacrylate, polydimethylsiloxane propyl methacrylate [as monomer A, in the general formula (1), X is a methyl group, n is 3, and the average degree of polymerization m is 75 13 parts] and 4 parts of benzoyl peroxide, sealed completely and raised the temperature to 120°C while shaking, continued shaking at the same temperature for 3 hours to complete the polymerization reaction, and turned into a cloudy viscous substance. Obtained. Then, butyl acetate 100
of the polymer solution (X
) was obtained.

得られた重合体溶液(X)は白濁し粘度がF、共重合体
の分子量が32,000であった。
The obtained polymer solution (X) was cloudy, had a viscosity of F, and had a copolymer molecular weight of 32,000.

実施例1〜22 重合体溶液(I)〜(VIDを用いて、後記の第1表に
示す配合組成(表中の数値は重量%)により、2.00
0rpmのホモミキサーで混合分散して、22種の水中
防汚被覆剤を調製した。なお、配合成分中、パラフィン
ワックス120P、155P、マイクロクリスタリンワ
ックス170M、ペトロラタム1号および4号はJIS
 K 2235の石油ワックスであり、l5OVGIO
および100はJISK2231の流動パラフィンであ
る。また、商品名がKF96L−10およびKF96H
−50,000であるシリコーンオイルは信越化学工業
■製、商品名がNAA−180およびN A A −8
2である脂肪族モノカルボン酸は日本油脂■製、商品名
がユニスターM9676である脂肪酸エステルは日本油
脂■製である。また、オイルブルー2N[オリエント化
学(掬製の商品名]は染料、デイスパロン6900−2
0X〔楠本化成■製の商品名]およびアエロシール30
0〔日本アエロシール■製の商品名]はいずれもタレ土
用添加剤である。
Examples 1 to 22 Polymer solution (I) ~ (using VID, 2.00
Twenty-two types of underwater antifouling coatings were prepared by mixing and dispersing with a homomixer at 0 rpm. In addition, among the ingredients, paraffin wax 120P, 155P, microcrystalline wax 170M, petrolatum No. 1 and No. 4 are JIS
K 2235 petroleum wax, l5OVGIO
and 100 are JISK2231 liquid paraffin. Also, the product names are KF96L-10 and KF96H
-50,000 silicone oil is manufactured by Shin-Etsu Chemical Co., Ltd., and the product names are NAA-180 and NAA-8.
The aliphatic monocarboxylic acid No. 2 is manufactured by NOF ■, and the fatty acid ester whose trade name is Unistar M9676 is manufactured by NOF ■. In addition, Oil Blue 2N [Orient Chemical (product name made by Kiki)] is a dye, Disparon 6900-2.
0X [product name manufactured by Kusumoto Kasei ■] and Aeroseal 30
0 [trade name manufactured by Nippon Aeroseal ■] are all additives for sagging soil.

比較例1〜5 重合体溶液flll 、 (Illr) 、 (V)お
よび■を用いて実施例1〜22と同様にして、後記第2
表に示す配合組成からなる水中防汚被覆剤を調製した。
Comparative Examples 1 to 5 In the same manner as in Examples 1 to 22 using polymer solutions flll, (Illr), (V) and
An underwater antifouling coating having the composition shown in the table was prepared.

なお、′配合成分中、商品名がKF96H−60,Oo
oであるシリコーンオイルは信越化学工業■製、商品名
がNAA−60であるカプロン酸は日本油脂1川製であ
る。このシリコーンオイルとカプロン酸は椿油およびカ
プロン酸メチルと共に本発明の特定の表面滑性剤に該当
しないものである。
In addition, the product name in the ingredients is KF96H-60, Oo.
The silicone oil No. 0 is manufactured by Shin-Etsu Chemical Co., Ltd., and the caproic acid whose trade name is NAA-60 is manufactured by Nippon Oil & Fats Ichikawa. This silicone oil and caproic acid, together with camellia oil and methyl caproate, do not fall under the specific surface lubricant of the present invention.

比較例6〜8 重合体溶液(11〜(2)の代わりに重合体溶液間0〜
(X)を用いた以外は、実施例1〜22と全く同様にし
て、後記第2表に示す配合組成からなる3種の水中防汚
被覆剤を調製した。
Comparative Examples 6 to 8 Polymer solution (0 to 8 instead of 11 to (2))
Except for using (X), three kinds of underwater antifouling coatings having the compositions shown in Table 2 below were prepared in exactly the same manner as in Examples 1 to 22.

比較例9〜12 重合体溶液(11〜(Vl[)Iニア)代ワリニ、KE
45TS[信越化学工業(掬製の商品名;オリゴマー状
常温硬化形シリコーンゴム50重量%トルエン溶液]を
用いた以外は、実施例1〜22と同様にして後記第2表
に示す配合組成からなる4種の水中防汚被覆剤を調製し
た。
Comparative Examples 9-12 Polymer solution (11-(Vl[)Inia) Varini, KE
The formulation composition shown in Table 2 below was prepared in the same manner as in Examples 1 to 22, except that 45TS [trade name manufactured by Shin-Etsu Chemical Co., Ltd. (Kikusei; oligomeric cold-curing silicone rubber 50% by weight toluene solution] was used). Four types of underwater antifouling coatings were prepared.

比較例13 重合体溶液(I)〜(2)の代わりに有機錫共重合体溶
液を用いた以外は、実施例1〜22と同様にして、後記
第2表に示す配合組成からなる水中防汚被覆剤を調製し
た。
Comparative Example 13 Underwater defense was prepared in the same manner as Examples 1 to 22, except that an organic tin copolymer solution was used instead of the polymer solutions (I) to (2). A soil coating was prepared.

なお、上記の有機錫共重合体溶液とは、メタクリル酸メ
チル40部、アクリル酸オクチル20部、メタクリル酸
トリブチル錫40部を用いて重合した共重合体溶液で、
共重合体の重量平均分子量が90.000の透明なキシ
レン50重量%溶液である。
The above-mentioned organotin copolymer solution is a copolymer solution polymerized using 40 parts of methyl methacrylate, 20 parts of octyl acrylate, and 40 parts of tributyltin methacrylate.
The copolymer has a weight average molecular weight of 90.000 and is a transparent 50% by weight solution in xylene.

以上の実施例1〜22および比較例1〜13の各被覆剤
につき、以下の物理性能試験、被膜表面の滑り角の測定
および防汚性能試験を行い、その性能を評価した。
Each of the coating materials of Examples 1 to 22 and Comparative Examples 1 to 13 described above was subjected to the following physical performance test, measurement of the sliding angle of the coating surface, and antifouling performance test to evaluate the performance.

〈物理性能試験〉 各被覆剤の貯蔵安定性、乾燥性および密着性を下記方法
にて測定した。結果は後記の第3表に示されるとおりで
あった。
<Physical Performance Test> The storage stability, drying properties, and adhesion of each coating material were measured by the following methods. The results were as shown in Table 3 below.

A)貯蔵安定性 各被覆剤を容!250ccのマヨネーズビンに200 
CC入れ、蓋をして密封した。これを温度70°C2湿
度75%の恒温恒湿器中に保存して、2週間後の各試料
の増粘度により、貯蔵安定性を判定した。初期粘度より
増加率が10%未満のとき○、10%以上100%未満
のとき△、100%以上のとき×と評価した。
A) Storage stability of each coating material! 200 in a 250cc mayonnaise bottle
I put it in CC and sealed it with a lid. This was stored in a constant temperature and humidity chamber at a temperature of 70° C. and a humidity of 75%, and the storage stability was determined based on the degree of viscosity increase of each sample after 2 weeks. When the increase rate was less than 10% from the initial viscosity, it was evaluated as ○, when it was 10% or more and less than 100%, it was evaluated as Δ, and when it was 100% or more, it was evaluated as ×.

B)乾燥性 JIS K 5400,5.8の方法に準じて行った。B) Drying property It was carried out according to the method of JIS K 5400, 5.8.

すなわち、各被覆剤をフィルムアプリケーターにてウェ
ット膜厚100−の厚さてガラス板に塗布したものにつ
いて測定を行った。半硬化乾燥時間が1時間未満を01
1時間以上3時間未満を△、3時間以上を×と評価した
。なお、各試験板は温度20°C1湿度75%の恒温恒
温室にて乾燥を行った。
That is, the measurement was performed on a glass plate coated with each coating material using a film applicator to a wet film thickness of 100 mm. 01 if the semi-cured drying time is less than 1 hour
1 hour or more and less than 3 hours was evaluated as △, and 3 hours or more was evaluated as ×. Each test plate was dried in a thermostatic chamber at a temperature of 20° C. and a humidity of 75%.

C)密着性 JIS K 5400,6.15の基盤目試験の方法に
準じて行った。すなわち、各被覆剤をフィルムアプリケ
ーターにてウェット膜厚100−の厚さで磨き鋼板(1
50x70x1間)に塗布し、1週間、温度20°C2
湿度75%の恒温恒温室にて乾燥させた被膜にカッター
ナイフで20朋の長さに十字に下地まで達する切り傷を
つけた。その中心地の試験板裏面よりエリクセン試験機
にて10朋の押し出しを行った。その際、被膜表面の、
十字切り偏部の中心より剥離した長さによって密着性を
判定した。剥龍0のとき○、5間未満のとき△、5朋以
上のとき×と評価した。
C) Adhesion The test was carried out according to the method of the board test of JIS K 5400, 6.15. That is, each coating agent was applied to a polished steel plate (1
50x70x1) and kept at 20°C for 1 week.
The film, which had been dried in a thermostatic chamber with a humidity of 75%, was cut with a cutter knife in a 20 mm length in a cross pattern that reached the base layer. A 10 mm extrusion was performed from the back side of the test plate at the center using an Erichsen tester. At that time, on the surface of the coating,
Adhesion was determined by the length of peeling from the center of the crisscross cut. It was evaluated as ○ when the peeling rate was 0, △ when it was less than 5 days, and × when it was 5 days or more.

第  3   表 上記第3表の結果から明らかなように、乾燥性、密着性
、貯蔵安定性のいずれについても実施例1〜22および
比較例1は良好であった。シリコーンゴム系の比較例9
〜12については乾燥性、密着性、貯蔵安定性のいずれ
も不良であった。比較例13は貯蔵安定性のみ若干劣っ
ていた。また、比較例2,4および5は乾燥性のみ若干
劣り、比較例3は乾燥性および密着性が劣っていた。な
お、比較例6〜8は乾燥後も表面粘着性が残っていた。
Table 3 As is clear from the results in Table 3 above, Examples 1 to 22 and Comparative Example 1 were good in terms of drying properties, adhesion, and storage stability. Comparative example 9 of silicone rubber type
-12 had poor drying properties, adhesion properties, and storage stability. Comparative Example 13 was slightly inferior only in storage stability. Moreover, Comparative Examples 2, 4, and 5 were slightly inferior only in drying properties, and Comparative Example 3 was inferior in drying properties and adhesion. In addition, in Comparative Examples 6 to 8, surface tackiness remained even after drying.

く被膜表面の滑り角の測定〉 前記乾燥性試験で用いた各試験板につき、第1図(5)
、(B)に示す滑り角測定機を用いて以下の要領で被膜
表面の滑り角を測定した。なお、上記測定機は、透明ガ
ラス板1と、このガラス板I上に一端A側が固定治具2
により固定されかつ他端B側が支柱3により支えられて
この支柱3に沿って上方に移動しつるように設けられた
可動板4とから構成されている。
Measurement of sliding angle of coating surface> Figure 1 (5) for each test plate used in the drying test.
The slip angle of the film surface was measured in the following manner using the slip angle measuring device shown in (B). The above measuring machine has a transparent glass plate 1 and a fixing jig 2 on the glass plate I with one end on the A side.
The movable plate 4 is fixed by a support column 3 and has its other end B supported by a support column 3 so as to move upwardly along the support column 3.

まず、第1図(2)に示すように、透明ガラス板1上に
、試験板5をその被膜形成側が上方に位置するように、
可動板4を介して水平に置き、この試験板5上で可動板
4の一端Aつまり固定治具2からの距離Tが185朋の
位置に注射器にてQ、 2ccの滅菌濾過海水を滴下し
て水滴6を形成する。その後、第1図(B)に示すよう
に、可動板4の他端B側を支柱3に沿って1朋/秒の速
度で上方に移動させ、試験板5を傾斜させる。試験板5
上の水滴が滑り始めるときの傾斜角αを測定し、これを
被膜表面の滑り角とした。
First, as shown in FIG. 1 (2), a test plate 5 is placed on a transparent glass plate 1 with the coating side facing upward.
Place the test plate horizontally through the movable plate 4, and drop 2 cc of sterile filtered seawater using a syringe onto the test plate 5 at one end A of the movable plate 4, that is, at a distance T of 185 mm from the fixing jig 2. to form water droplets 6. Thereafter, as shown in FIG. 1(B), the other end B side of the movable plate 4 is moved upward along the support column 3 at a speed of 1 m/sec to tilt the test plate 5. Test board 5
The angle of inclination α at which the water droplets on the surface begin to slide was measured, and this was taken as the slip angle of the coating surface.

なお、上記の測定は、温度25°C2湿度7596の恒
温恒湿室にて行い、各試験板につき3回の測定を行って
、その平均値で表わした。結果は、下記の第4表に示さ
れるとおりであった。
The above measurements were performed in a constant temperature and humidity room at a temperature of 25° C. and a humidity of 7596°C, and each test plate was measured three times, and the average value was expressed. The results were as shown in Table 4 below.

第   4   表 上記第4表の結果から、実施例1〜22については、表
面滑り角が7.9〜9.5度の範囲にあり、その平均が
8.5で、表面滑性剤を併用しない比較例1の8,5度
と一致した。このことは、表面滑性剤が重合体溶液(I
)−(Y[)により得られる樹脂被膜の滑り性の良さを
保持していることを示している。
Table 4 From the results in Table 4 above, for Examples 1 to 22, the surface slip angle was in the range of 7.9 to 9.5 degrees, and the average was 8.5. This corresponded to 8.5 degrees in Comparative Example 1, which did not. This means that the surface lubricant is a polymer solution (I
)-(Y[) shows that the resin coating obtained by the method retains good slipperiness.

比較例2〜13では、その表面滑り角が10.5〜25
.0度であり、実施例1〜22に比べて大きい値を示し
た。
In Comparative Examples 2 to 13, the surface slip angle was 10.5 to 25.
.. 0 degrees, which was a larger value than Examples 1-22.

く防汚性能試験〉 各被覆剤を、サンドブラスト処理鋼板に予めタールビニ
ル系防錆塗料を塗布してなる塗装板(100X200X
1m)の両面に、乾燥膜厚が片面120μとなるように
スプレー塗りにより2回塗装して、試験板を作製した。
Antifouling performance test> Each coating was applied to a painted plate (100X200X
A test plate was prepared by spray painting on both sides of 1 m) twice so that the dry film thickness was 120 μm on each side.

この試験板につき、兵庫県洲本市由良湾にて、36ケ月
の海水浸漬を行い、試験塗膜上の付着生物の占有面積(
付着面積)の割合を経時的に測定した。結果は、下記の
第5表に示されるとおりであった。
This test board was immersed in seawater for 36 months in Yura Bay, Sumoto City, Hyogo Prefecture, and the area occupied by attached organisms on the test coating (
The percentage of adhesion area) was measured over time. The results were as shown in Table 5 below.

上記第5表の結果から明らかなように、実施例1〜22
は36ケ月経過後においても生物の付着は0%であるが
、比較例9においては3ケ月後に、比較例6〜8および
比較例10〜12においては6ケ月後に、比較例3〜5
および比較例13においては18ケ月後に、比較例2に
おいては24ケ月後に、比較例1においては30ケ月後
に生物の付着が見られた。
As is clear from the results in Table 5 above, Examples 1 to 22
The adhesion of organisms is 0% even after 36 months, but in Comparative Example 9 after 3 months, in Comparative Examples 6 to 8 and Comparative Examples 10 to 12 after 6 months, and in Comparative Examples 3 to 5
Adhesion of organisms was observed in Comparative Example 13 after 18 months, in Comparative Example 2 after 24 months, and in Comparative Example 1 after 30 months.

比較例1は重合体溶液御より得られる塗膜の滑り角が小
さいことで24ケ月の防汚性が得られたが、特定の表面
滑性剤と併用した実施例1〜22ではさらに36ケ月の
防汚性が得られ、このことは表面滑性剤が表面滑り角持
続性を補完していることを示しているものと思われる。
Comparative Example 1 achieved stain resistance for 24 months due to the small sliding angle of the coating film obtained by controlling the polymer solution, but in Examples 1 to 22, which were used in combination with a specific surface lubricant, it lasted an additional 36 months. This seems to indicate that the surface slip agent complements the sustainability of the surface sliding angle.

なお、比較例6の防汚性の悪さは、用いた重合体溶液(
2))における単量体Aの一般式中のnが1のため、エ
ステル形成部の結合が弱く、ポリジメチルシロキサン基
が重合反応中脱駈し、膜となったときの粘着の原因とな
り、また海水中ではこの部分が膜より抜は出してしまい
、併用した表面滑性剤の併用効果も発揮されず、防汚持
続性を保てなかったことによるものと考えられる。
In addition, the poor antifouling property of Comparative Example 6 is due to the polymer solution used (
Since n in the general formula of monomer A in 2)) is 1, the bond in the ester forming part is weak, and the polydimethylsiloxane group is decoupled during the polymerization reaction, causing stickiness when formed into a film. In addition, this part was extracted from the membrane in seawater, and the combined effect of the surface lubricant used in combination was not exhibited, which is thought to be due to the fact that the antifouling durability could not be maintained.

また、比較例7では、用いた重合体溶液(lDにおける
単量体Aの一般式中のnが5のため、これより形成され
た被膜が軟化して、乾燥しても粘着性が残り、表面滑性
剤を併用しても表面張力が大きくなることを防げず、防
汚性が悪くなったものと考えられる。さらに比較例8で
は、用いた重合体溶液α)における単量体Aの一般式中
のmが75と大きいため、重合反応性が著しく劣り、未
反応の単1体Aが膜から分離し、膜の均一性が保てず、
表面滑性剤を併用しても防汚持続性を保てなくなったも
のと考えられる。
In addition, in Comparative Example 7, since n in the general formula of monomer A in the polymer solution (ID) used was 5, the film formed from this softened and remained sticky even after drying. It is thought that even if a surface lubricant was used in combination, the increase in surface tension could not be prevented and the antifouling properties deteriorated.Furthermore, in Comparative Example 8, the concentration of monomer A in the polymer solution α) used was Because m in the general formula is as large as 75, the polymerization reactivity is extremely poor, unreacted monomer A separates from the membrane, and the uniformity of the membrane cannot be maintained.
It is thought that the antifouling durability could not be maintained even if a surface lubricant was used in combination.

また、比較例2〜5では、併用した椿油、カプロン酸、
カプロン酸メチルなどにより、被膜に粘着性を残し、表
面の滑り性が落ちたために防汚性が悪くなったものと考
えられる。
In addition, in Comparative Examples 2 to 5, camellia oil, caproic acid,
It is thought that the antifouling properties deteriorated due to the presence of methyl caproate, etc., which left a sticky residue on the film and reduced the slipperiness of the surface.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(5)、(B)は水中防汚被覆剤から形成される
防汚被膜の表面滑り角を測定する方法を示す側面図であ
る。
FIGS. 1(5) and 1(B) are side views showing a method for measuring the surface slip angle of an antifouling film formed from an underwater antifouling coating agent.

Claims (11)

【特許請求の範囲】[Claims] (1)つぎの一般式; ▲数式、化学式、表等があります▼…(1) (ただし、式中、Xは水素原子またはメチル基、nは2
〜4の整数、mは平均重合度で0〜70を表わす) で示される単量体Aの一種または二種以上の重合体、お
よび/または上記単量体Aの一種または二種以上とこれ
らと共重合し得るビニル重合性単量体Bの一種または二
種以上とからなる共重合体と、この重合体および/また
は共重合体から形成される被膜が有する低表面張力を実
質的に維持しうる一種または二種以上の表面滑性剤とを
必須成分として含有する水中防汚被覆剤。
(1) The following general formula; ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(1) (However, in the formula, X is a hydrogen atom or a methyl group, and n is 2
an integer of ~4, m represents an average degree of polymerization of 0 to 70) and/or one or more of the above monomers A and these Substantially maintains the low surface tension of a copolymer consisting of one or more vinyl polymerizable monomers B that can be copolymerized with An underwater antifouling coating agent containing as an essential component one or more surface lubricating agents.
(2)表面滑性剤がJISK2235で規定される石油
ワックスである特許請求の範囲第(1)項記載の水中防
汚被覆剤。
(2) The underwater antifouling coating according to claim (1), wherein the surface lubricant is a petroleum wax specified in JIS K2235.
(3)石油ワックスがパラフィンワックス、マイクロク
リスタリンワックスまたはペトロラタムである特許請求
の範囲第(2)項記載の水中防汚被覆剤。
(3) The underwater antifouling coating according to claim (2), wherein the petroleum wax is paraffin wax, microcrystalline wax, or petrolatum.
(4)表面滑性剤が−5〜60℃の融点を有する油脂で
ある特許請求の範囲第(1)項記載の水中防汚被覆剤。
(4) The underwater antifouling coating according to claim (1), wherein the surface lubricant is an oil or fat having a melting point of -5 to 60°C.
(5)表面滑性剤が30〜95℃の融点を有するろうで
ある特許請求の範囲第(1)項記載の水中防汚被覆剤。
(5) The underwater antifouling coating according to claim (1), wherein the surface lubricant is a wax having a melting point of 30 to 95°C.
(6)表面滑性剤がJISK2231で規定される流動
パラフィンである特許請求の範囲第(1)項記載の水中
防汚被覆剤。
(6) The underwater antifouling coating according to claim (1), wherein the surface lubricant is liquid paraffin defined in JIS K2231.
(7)表面滑性剤が25℃において55,000センチ
ストークス以下の動粘度を有するシリコーンオイルであ
る特許請求の範囲第(1)項記載の水中防汚被覆剤。
(7) The underwater antifouling coating according to claim (1), wherein the surface lubricant is a silicone oil having a kinematic viscosity of 55,000 centistokes or less at 25°C.
(8)シリコーンオイルがジメチルシリコーンオイルで
ある特許請求の範囲第(7)項記載の水中防汚被覆剤。
(8) The underwater antifouling coating according to claim (7), wherein the silicone oil is dimethyl silicone oil.
(9)表面滑性剤が炭素数8以上の脂肪族モノカルボン
酸またはそのエステルである特許請求の範囲第(1)頂
記載の水中防汚被覆剤。
(9) The underwater antifouling coating according to claim 1, wherein the surface lubricant is an aliphatic monocarboxylic acid having 8 or more carbon atoms or an ester thereof.
(10)表面滑性剤が炭素数8以上の脂肪族モノカルボ
ン酸からなるエステル結合を少なくとも1個有するグリ
セライドである特許請求の範囲第(1)項記載の水中防
汚被覆剤。
(10) The underwater antifouling coating according to claim (1), wherein the surface lubricant is a glyceride having at least one ester bond made of an aliphatic monocarboxylic acid having 8 or more carbon atoms.
(11)重合体および/または共重合体と表面滑性剤と
の合計量中に占める表面滑性剤の割合が1〜70重量%
である特許請求の範囲第(1)〜(10)項のいずれか
に記載の水中防汚被覆剤。
(11) The proportion of the surface lubricant in the total amount of the polymer and/or copolymer and the surface lubricant is 1 to 70% by weight.
An underwater antifouling coating according to any one of claims (1) to (10).
JP12698886A 1985-12-27 1986-05-30 Underwater antifouling coating agent Granted JPS62283167A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP12698886A JPS62283167A (en) 1986-05-30 1986-05-30 Underwater antifouling coating agent
CA000526215A CA1274649A (en) 1985-12-27 1986-12-23 Antifouling coating
NO865269A NO177464C (en) 1985-12-27 1986-12-23 Use of a Si-containing polymer as a binder in an antifouling paint
GB8630822A GB2188938B (en) 1985-12-27 1986-12-23 Antifouling coating composition comprising a polymer having siloxane and/or alkylsilyl groups
US07/209,813 US4883852A (en) 1985-12-27 1988-06-22 Antifouling coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12698886A JPS62283167A (en) 1986-05-30 1986-05-30 Underwater antifouling coating agent

Publications (2)

Publication Number Publication Date
JPS62283167A true JPS62283167A (en) 1987-12-09
JPH0558464B2 JPH0558464B2 (en) 1993-08-26

Family

ID=14948876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12698886A Granted JPS62283167A (en) 1985-12-27 1986-05-30 Underwater antifouling coating agent

Country Status (1)

Country Link
JP (1) JPS62283167A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290768A (en) * 1986-06-10 1987-12-17 Kansai Paint Co Ltd Antifouling paint composition
JPS636067A (en) * 1986-06-26 1988-01-12 Nippon Paint Co Ltd Water-repellent antifouling coating composition
EP0273457A2 (en) * 1986-12-30 1988-07-06 Nippon Oil And Fats Company, Limited Antifouling paint
JPS64172A (en) * 1987-02-24 1989-01-05 Kanae Toryo Kk Antifouling coating composition
JPH01306479A (en) * 1988-06-06 1989-12-11 Chugoku Marine Paints Ltd Non-toxic anti-foul coating composition
JPH11263937A (en) * 1998-03-19 1999-09-28 Nof Corp Double layer coated film and method for antifouling
JP2003268300A (en) * 2002-03-14 2003-09-25 Nippon Yushi Basf Coatings Kk Top coating for automobile outer panel, coating method and coating film
US10385221B2 (en) 2014-04-03 2019-08-20 Ppg Coatings Europe B.V. Erodible antifouling coating composition
JP2021085027A (en) * 2019-11-29 2021-06-03 日東化成株式会社 Fishing net anti-fouling coating composition, fishing net having anti-fouling coating film formed using the composition on surface thereof, fishing net tool and underwater structure
JP7324380B1 (en) * 2022-06-28 2023-08-09 日本ペイントマリン株式会社 Coating composition and coating film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645770B2 (en) * 1986-06-10 1994-06-15 関西ペイント株式会社 Antifouling paint composition
JPS62290768A (en) * 1986-06-10 1987-12-17 Kansai Paint Co Ltd Antifouling paint composition
JPS636067A (en) * 1986-06-26 1988-01-12 Nippon Paint Co Ltd Water-repellent antifouling coating composition
EP0273457A2 (en) * 1986-12-30 1988-07-06 Nippon Oil And Fats Company, Limited Antifouling paint
JPS64172A (en) * 1987-02-24 1989-01-05 Kanae Toryo Kk Antifouling coating composition
JPH036192B2 (en) * 1987-02-24 1991-01-29 Kanae Toryo Kk
JPH01306479A (en) * 1988-06-06 1989-12-11 Chugoku Marine Paints Ltd Non-toxic anti-foul coating composition
JPH11263937A (en) * 1998-03-19 1999-09-28 Nof Corp Double layer coated film and method for antifouling
JP2003268300A (en) * 2002-03-14 2003-09-25 Nippon Yushi Basf Coatings Kk Top coating for automobile outer panel, coating method and coating film
US10385221B2 (en) 2014-04-03 2019-08-20 Ppg Coatings Europe B.V. Erodible antifouling coating composition
JP2021085027A (en) * 2019-11-29 2021-06-03 日東化成株式会社 Fishing net anti-fouling coating composition, fishing net having anti-fouling coating film formed using the composition on surface thereof, fishing net tool and underwater structure
WO2021106867A1 (en) * 2019-11-29 2021-06-03 日東化成株式会社 Fishing net antifouling coating composition and fishing net, fishing net gear, or underwater structure having on surface thereof antifouling coating film formed using said composition
JP7324380B1 (en) * 2022-06-28 2023-08-09 日本ペイントマリン株式会社 Coating composition and coating film
WO2024004031A1 (en) * 2022-06-28 2024-01-04 日本ペイントマリン株式会社 Coating material composition and coating film
US11905432B2 (en) 2022-06-28 2024-02-20 Nippon Paint Marine Coatings Co., Ltd. Coating composition and coating film

Also Published As

Publication number Publication date
JPH0558464B2 (en) 1993-08-26

Similar Documents

Publication Publication Date Title
JPS62156172A (en) Underwater antifouling coating agent
KR960005430B1 (en) Antifouling paint
US5116611A (en) Antifouling paint
KR101147065B1 (en) Silyl ester copolymer compositions
US4883852A (en) Antifouling coating
JP7178167B2 (en) antifouling composition
JP2009529088A (en) Dirt release composition
JPH0583090B2 (en)
JPS62283167A (en) Underwater antifouling coating agent
JP2775862B2 (en) Biofouling prevention paint composition
JP2010235877A (en) Copolymer and antifouling coating composition containing the copolymer
EP0825203B1 (en) (Meth)Acrylic resin compositions for marine antifouling coatings
JPH02675A (en) Underwater antifouling coating
JP2600842B2 (en) Underwater antifouling coating agent
JPH011773A (en) Underwater antifouling coating
AU660478B2 (en) Acrylate or methacrylate coating compositions comprising wax
JPS63110268A (en) Aquatic antifouling coating agent
JP2775861B2 (en) Biofouling prevention paint composition
JPH011772A (en) Underwater antifouling coating
JPH01121372A (en) Aquatic antifouling coating agent
JPH01121374A (en) Aquatic antifouling coating agent
JPS63168476A (en) Underwater antifouling coating agent
JP2789684B2 (en) Underwater antifouling coating agent
JPH01252677A (en) Underwater antifouling coating agent
JPH01121373A (en) Aquatic antifouling coating agent

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees