JPS62282440A - Manufacture of resin-sealed semiconductor - Google Patents

Manufacture of resin-sealed semiconductor

Info

Publication number
JPS62282440A
JPS62282440A JP12618586A JP12618586A JPS62282440A JP S62282440 A JPS62282440 A JP S62282440A JP 12618586 A JP12618586 A JP 12618586A JP 12618586 A JP12618586 A JP 12618586A JP S62282440 A JPS62282440 A JP S62282440A
Authority
JP
Japan
Prior art keywords
resin
molding resin
pot
molding
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12618586A
Other languages
Japanese (ja)
Inventor
Kunihito Sakai
酒井 国人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12618586A priority Critical patent/JPS62282440A/en
Publication of JPS62282440A publication Critical patent/JPS62282440A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/02Transfer moulding, i.e. transferring the required volume of moulding material by a plunger from a "shot" cavity into a mould cavity

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain an IC of excellent reliability in dampproof property, heat-resisting property and the like having no disconnection of wire and the like by a method wherein a pot is formed in the volume larger than that of the maximum volume of the heated molding resin expanded in vacuum state, and after the molding resin has been arranged in the pot and the pot has been evacuated, the external shape of an IC is formed, and the air, the moisture and the low boiling point substance contained in the molding resin are removed. CONSTITUTION:Taking into consideration of the fact that the molding resin heated up to 100 deg.C or thereabout expands about two times larger in a vacuum state, a pot having the volume in excess of the expansion coefficient of molding resin is used in the method wherein bubbles are removed in the pot. The inside of the pot 4 is evacuated, and when the molding resin 7 is sufficiently expanded and the low boiling point substance and the the air contained therein is removed, the molding resin 7 begins to contract on the contrary. At this point of time, a valve 10 is moved upward, a valve ring 15 is closely contacted to the lower part of the top force 1, and the valve 10 is closed. Then, a plunger 3 is moved upward, and the molding regin 7 is compressed. The molding resin passes a runner 8 by the pressure generated as above, it flows to each cavity 5, and an IC 6 is sealed with the molding resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体集積回路(以下ICと示す。)を外的
環境から保護する1こめに全体を樹脂で封止する樹脂封
止形半導体の製造方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to a resin-sealed semiconductor in which the entire semiconductor integrated circuit (hereinafter referred to as IC) is sealed with resin in order to protect it from the external environment. This relates to a manufacturing method.

〔従来の技術〕[Conventional technology]

第5図は例えば特匪昭60−132716号公報に記載
される従来の半導体封止用トランスファ成形の金型を示
す断面図であり、図において(1)は油圧プレス(図示
せず)に取付けられ、taOoCに加熱できる2分割金
型のと型、(2)は同職の下型、(3)はポット(4)
内の成形樹脂(7)をキャビティ(5)まで圧送するプ
ランジャであり、キャビティ(5)は腹敗のIC(6)
7)外形を形成るように金型円に裏敢設うブらnでいる
FIG. 5 is a sectional view showing a conventional transfer molding mold for semiconductor encapsulation, which is described in, for example, Tokusho 60-132716, and in the figure (1) is attached to a hydraulic press (not shown). The mold of the two-part mold that can be heated to taOoC, (2) is the lower mold of the same job, (3) is the pot (4)
It is a plunger that pumps the molded resin (7) inside to the cavity (5), and the cavity (5) is the IC (6).
7) Place a hole in the mold circle to form the outer shape.

(8)は成形樹脂(7)をキャビティ(5)まで送るラ
ンナー、(9)はポット(4)及びキャビティ(5)内
を真空にする場合の排気口である。
(8) is a runner that sends the molded resin (7) to the cavity (5), and (9) is an exhaust port for evacuating the inside of the pot (4) and cavity (5).

次1こ従来の樹脂封止形半導体の製造方法であるトラン
スファ成形法について、@5図をもとに説明する。
Next, the transfer molding method, which is a conventional method for manufacturing resin-sealed semiconductors, will be explained based on Figure @5.

まず上型(1)と下型(2)を油圧プレスに取付け。First, attach the upper mold (1) and lower mold (2) to the hydraulic press.

170 ’C−111tOQcに加熱する。型開状態で
下型(2)に複数のI C+6)を配置遺し、を型(1
)と下型(2)を型締めする。プランジャ(3)を上型
(1)から抜けるまで丘に移動させ、あらかじめ80°
C−100°Cに予熱した成形樹脂(7)を上型(1)
のプランジャ(3)が通る穴即ちポット(4)に入れ、
直ちにプランジャ(3)を下に動かし。
Heat to 170'C - 111tOQc. With the mold open, place multiple IC+6) on the lower mold (2), and place the mold (1)
) and the lower mold (2). Move the plunger (3) up the hill until it comes out of the upper mold (1), and
The molding resin (7) preheated to C-100°C is placed in the upper mold (1).
into the hole or pot (4) through which the plunger (3) passes;
Immediately move the plunger (3) down.

成形樹脂(7)を圧縮する。成形樹脂(7)は金型の熱
を受は取り、さらGこ粘度が低くなることから、ランナ
ー(8)を通り、各キャビティ(5)に圧送され、IC
(6)の全体を包み込む。
Compress the molded resin (7). The molding resin (7) receives and absorbs the heat from the mold, and its viscosity decreases, so it passes through the runner (8) and is pumped into each cavity (5), forming an IC.
(6) Envelops the whole.

成形樹脂(7)は90秒〜120秒で硬化するため後は
金型を開いて成形物を取り出し、後加工を行って製品完
成となる。
Since the molding resin (7) hardens in 90 to 120 seconds, the mold is then opened, the molded product is taken out, and post-processing is performed to complete the product.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の樹脂封止形半導体の製造方法はと記のようにして
行われるので、成形樹脂(7)中に含まれる空気や、水
分、あるいはエポキシ樹脂、フェノールノボラック樹脂
、反応促進剤、シランカップリング剤、難燃化剤%離型
剤等の有機物から低分子量物即ち、低沸点物が同時に成
形され、成形物内に混入して、例えば、成形物内部に多
量の独立した内部空気が混入したり、成形物の表面にも
凹状の気泡痕跡が残り、外観不良、断線不良及び耐湿性
不良になる等のICの信頼性に問題があった。
The conventional manufacturing method for resin-encapsulated semiconductors is carried out as described below, so air and moisture contained in the molding resin (7), epoxy resin, phenol novolac resin, reaction accelerator, and silane coupling are removed. Low molecular weight substances, that is, low boiling point substances are simultaneously molded from organic substances such as mold release agents, flame retardants, etc., and are mixed into the molded product, for example, a large amount of independent internal air is mixed inside the molded product. In addition, concave bubble traces remain on the surface of the molded product, resulting in problems with the reliability of the IC, such as poor appearance, poor wire breakage, and poor moisture resistance.

ま1こ、例えばICを耐湿環境1こ置くと、成形物内を
透過する水分が成形物内Cζ混入した低沸点有機物を溶
解し、透過水自体が酸性やアルカリ性に変化し、■(0
)チップ上に配線したアルミニウム等を腐食するという
問題があった。
For example, when an IC is placed in a humidity-resistant environment, the water that permeates through the molded product dissolves the low-boiling point organic matter mixed in with the molded product, and the permeated water itself changes to acidity or alkalinity.
) There was a problem in that it corroded the aluminum wired on the chip.

この発明は上記のような問題点を解消する1こめになさ
れたもので成形樹脂中に含まれる空気や水分、あるいは
低沸点物を除去し、断線不良等がなく、また耐湿性や耐
熱性等の信頼性に優れr、:Icを得ることができる樹
脂封止形半導体の製造方法を提供することを目的とする
This invention was made with the aim of solving the above-mentioned problems.It removes air, moisture, and low-boiling substances contained in the molding resin, eliminates disconnection defects, and improves moisture resistance, heat resistance, etc. An object of the present invention is to provide a method for manufacturing a resin-sealed semiconductor that can obtain r, :Ic with excellent reliability.

〔問題点を解決するための手段〕[Means for solving problems]

こめ発明に係る樹脂封止形半導体の製造方法は。 A method of manufacturing a resin-encapsulated semiconductor according to the invention is as follows.

ポットの容積を、加熱された成形樹脂が真空で膨脹する
最大体積より大きな容積とし、ポット内に成形樹脂を配
してポット内を真空排気した後、ICの外形を形成する
ようにするものである。
The volume of the pot is larger than the maximum volume that the heated molding resin expands in vacuum, and after placing the molding resin in the pot and evacuating the inside of the pot, the outer shape of the IC is formed. be.

〔作用〕[Effect]

こめ発明における樹脂封止形半導体の製造方法は、成形
樹脂を加熱状態で真空引きすることにより、低沸点物の
沸点温度が下がることから、水分w7沸点有機物が気体
となり成形樹脂中から除去されるようにしたものであり
、また、真空引きGこより、これらの気体や空気等の気
泡が膨脹するに伴って成形樹脂も膨脹するが、この時成
形樹脂の膨脹量よりポットの容積が大きいため、気泡は
破壊して外に排出され、成形時には低沸点物や気泡のな
い状−で成形できるようにしたものである。
In the method for manufacturing a resin-encapsulated semiconductor in the Kome invention, the boiling point temperature of low boiling point substances is lowered by vacuuming the molded resin in a heated state, so that water w7 boiling point organic matter becomes a gas and is removed from the molded resin. In addition, as these gas and air bubbles expand due to the vacuum G, the molding resin also expands, but at this time, since the volume of the pot is larger than the expansion amount of the molding resin, The bubbles are destroyed and discharged to the outside, allowing molding to be performed without low boiling point substances or bubbles.

゛〔実施例〕 以下、この発明の実施例を図について説明する。゛ [Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図、第2図及び第3図は各々この発明の一実施例【
こよる樹脂封止形半導体の製造方法を工程順Gこ示す金
型の断面図であり1図において、(4)は成形樹脂(7
)が真空で膨脹する最大体積より大きな容積を有するポ
ットで、この場合、成形樹脂(7)の2倍以上の体積を
有する。αQはポット(4)内を真空にしたり、成形樹
脂(7)が排気口(9)へ流れないようにする排気弁、
αυは排気弁QOを開閉する動力を発生するエアシリン
ダ、(6)はプランジャ(3)をと下に動かす動力を発
生する油圧シリンダ%□はプツト(4)内を真空にする
真空ポンプ、l1K4はポット(4)内を真空に保持す
る弁リング、(至)は同様な弁座リング、a・も同様な
金型リング、側も同様なプランジャリングである。
FIG. 1, FIG. 2, and FIG. 3 are each an embodiment of the present invention.
This is a cross-sectional view of a mold showing the process order G for the manufacturing method of a resin-sealed semiconductor.
) has a volume larger than the maximum volume to which the molding resin (7) expands in vacuum, in this case more than twice the volume of the molding resin (7). αQ is an exhaust valve that creates a vacuum inside the pot (4) and prevents the molded resin (7) from flowing to the exhaust port (9);
αυ is an air cylinder that generates the power to open and close the exhaust valve QO, (6) is a hydraulic cylinder that generates the power to move the plunger (3) downward, and %□ is a vacuum pump that creates a vacuum inside the put (4), l1K4 is a valve ring that maintains a vacuum inside the pot (4), (to) is a similar valve seat ring, a is a similar mold ring, and the side is also a similar plunger ring.

次にこの発明の方法について説明する。Next, the method of this invention will be explained.

まず、油圧プレスに取付けられ180’C1?−加熱さ
れにを型(1)と下型(2)を開き、下型(2)にI 
C(6)を配置する。プランジャ(3)を下げ、ポット
(4)内Gζブリヒータで80’C−100°Cに加熱
した成形樹脂(7)を入れ、直ら昏こと型(1)と下型
(2)を型締めする。第1図に示すように、真空ポット
ロを回し、排気弁αOを下に移動してポット(4)内の
空気を排気口(9)を通じて排気し、ポット(4)内を
真空にする。(例えば8Torr、)このようにすると
、第2因のごとく成形樹脂(7)は元の体積の2倍程度
に膨脹する。これは成形樹脂(7)内の低沸点物が真空
引きにより沸点温度が下がることにより気体となり、こ
れら気体や成形樹脂内の空気が圧力差により膨脹し、そ
れに伴って成形樹脂自体も元の体積の2倍程度に膨脹す
る。ここでプツトの容積と成形樹脂(7)の体積比が2
倍以下と小さい場合は膨脹した成形樹脂がポットの空間
を埋めつ<シ、それ以を成形樹脂は膨脹できなくなる。
First, it is installed on a hydraulic press and is a 180'C1? - Open the heated mold (1) and the lower mold (2), and place the I in the lower mold (2).
Place C(6). Lower the plunger (3), fill the pot (4) with the molding resin (7) heated to 80'C-100°C with a Gζ pre-heater, and immediately clamp the mold (1) and lower mold (2) together. . As shown in FIG. 1, the vacuum potter is turned and the exhaust valve αO is moved downward to exhaust the air inside the pot (4) through the exhaust port (9), thereby creating a vacuum inside the pot (4). (For example, 8 Torr) When this is done, the molding resin (7) expands to about twice its original volume as the second factor. This is because the low-boiling point substances in the molding resin (7) become gases as the boiling point temperature decreases due to vacuuming, and these gases and the air in the molding resin expand due to the pressure difference, and the molding resin itself also returns to its original volume. Expands to about twice the size. Here, the volume ratio of the puttu and the molding resin (7) is 2.
If it is smaller than twice that, the expanded molding resin will fill the space in the pot, and the molding resin will no longer be able to expand.

樹脂中に含まれる気泡を真空で脱泡する機構は、内部に
含まれる気体が圧力差Eこより膨脹し、結果として樹脂
全体の体積が大きくなる。この度合は内部昏ζ含まれる
気泡の量及び#J脂自体の−粘度と表面張力により変わ
る。
In the mechanism for defoaming air bubbles contained in the resin using a vacuum, the gas contained inside expands due to the pressure difference E, and as a result, the volume of the entire resin increases. This degree varies depending on the amount of air bubbles included in the internal coagulation and the viscosity and surface tension of the #J fat itself.

真空で脱泡するには必らず樹脂が膨脹する以との自由容
積がなくてはならない。
For degassing in a vacuum, there must be a free volume for the resin to expand.

半導体封止用樹脂も同様で、真空によって膨脹する気泡
を破壊するtごけD十分な容積を必要とする。
The same applies to semiconductor sealing resins, which require a sufficient volume to destroy bubbles that expand due to vacuum.

発明者はこのような基本原理を基に、成形樹脂の膨脹性
について研究調査した結果、100°CD後fこ加熱し
た成形樹脂を真空にすると約2倍膨脹することを見出し
、ポット内で脱泡する方法として。
Based on this basic principle, the inventor conducted research on the expansibility of molded resin and found that when molded resin heated to 100°C is evacuated, it expands approximately twice as much. As a way to foam.

成形樹脂の膨脹率以上の容積を持つポットを用いるよう
にしたものである。
A pot having a volume greater than the expansion rate of the molding resin is used.

このようにしてポット(4)内を真空GCL、十分膨脹
して成形樹脂(7)に含まれる低沸点物や空気が除去さ
れると成形樹脂(7)は逆に収縮をはじめる。この時点
から第3図に示すようfこ弁αQを七に動かし弁リング
(至)を上型(1)の下部に密着して閉じる。次にプラ
ンジャ(3)を上に動かし、成形樹脂(7)を圧縮する
。成形樹脂はその圧力でランナーt8+ ’)通り。
In this way, when the inside of the pot (4) is sufficiently expanded by vacuum GCL and low-boiling substances and air contained in the molding resin (7) are removed, the molding resin (7) starts to contract. From this point on, as shown in FIG. 3, the valve αQ is moved to 7 to close the valve ring (end) in close contact with the lower part of the upper mold (1). Next, move the plunger (3) upward to compress the molding resin (7). The molding resin passes through the runner t8+') under that pressure.

各キャビティ(5)1こ流れ、I Ct6)を封止する
Each cavity (5) is filled and sealed.

成形樹脂(7)は90秒〜120秒で硬化する1こめ型
開きを行い、必要な後加工を行って製品完成となる。
The molding resin (7) is cured in 90 seconds to 120 seconds by opening the mold, and the necessary post-processing is performed to complete the product.

次に実験例を用いてこの発明の詳細な説明する。Next, the present invention will be explained in detail using experimental examples.

実験例1 第1図及び第5図12−示す金型を用いてそれぞれ成形
し、成形物の内部に含まれる気泡の鰍を調量した。
Experimental Example 1 Molding was performed using the molds shown in FIGS. 1 and 5, and the amount of air bubbles contained inside the molded products was measured.

試料を製作する条件を表11こホす。Table 11 shows the conditions for producing the sample.

表1.試料裂乍条件 評価方法は成形物の1下から0.5mmを切断し、顕微
鏡で気泡の数を目視した。結果を表21こホす。
Table 1. To evaluate sample tearing conditions, a 0.5 mm section was cut from the bottom of the molded article, and the number of bubbles was visually observed using a microscope. The results are shown in Table 21.

表2から明らかなごとく、従来のように単に金型を真空
にしたのみでは(従来法l)、金型を真空にしない場合
(従来法2)と大差なく、成形物中に多量の気泡がある
ことがわかる。これiζ対し、この発明のようにポット
の容積を成形樹脂自体の2倍程度にすると全く気泡のな
いものが得られることが判る。
As is clear from Table 2, simply evacuating the mold as in the past (conventional method 1) is not much different from not evacuating the mold (conventional method 2), and a large number of air bubbles are created in the molded product. I understand that there is something. In contrast to this iζ, it can be seen that if the volume of the pot is made approximately twice the volume of the molding resin itself as in the present invention, a product completely free of bubbles can be obtained.

表2. 調査結果 実験例2 成形樹脂を真空にするとどのような低沸点物がどのくら
い蒸発するかについて調査した。調査方法は第4図に示
す装置を用い1こ。第4図において(至)は真空容器■
の真空度を測定する真空計、四は真空度を測定するピラ
ンゲージ、ゆは成形樹脂(7)から蒸発する一低沸点物
を捕集するトラップ、■はトラップ同を冷却し、低沸点
物を捕集しやすくするための液体チッ素である。測定は
、まず、成形樹脂(7)としてEME5G00 (住友
ベークライト社製品)1kgをプリヒータで80〜10
0℃Cζ加熱し、直ちに真空容器■に入れ、10分間で
1Torrの真空度にし、その間にトラップ四に捕集し
た低沸点物の量と成分を分析した。量については重量法
、成分については水酸化濃度、赤外分光分析、ガスクロ
マトグラフィを用いた。
Table 2. Investigation Results Experimental Example 2 An investigation was conducted to find out how much of a low-boiling point substance evaporates when a molded resin is evacuated. The investigation method was carried out using the equipment shown in Figure 4. In Figure 4, (to) is a vacuum container■
4 is a vacuum gauge that measures the degree of vacuum, yu is a trap that collects low boiling point substances that evaporate from the molding resin (7), and ■ is a trap that cools the trap and collects low boiling point substances. This is liquid nitrogen to make it easier to collect. For the measurement, first, 1 kg of EME5G00 (product of Sumitomo Bakelite Co., Ltd.) as the molding resin (7) was heated to 80 to 10
The mixture was heated to 0° C., immediately placed in a vacuum container (2), and brought to a vacuum of 1 Torr for 10 minutes, during which time the amount and components of low-boiling substances collected in trap 4 were analyzed. The weight method was used to determine the amount, and the hydroxide concentration, infrared spectroscopy, and gas chromatography were used to determine the components.

その結果を表3Iζ示す。The results are shown in Table 3Iζ.

表3.捕果物の分析結果 表8より、成形樹脂組成原料中の有機物のほとんどの種
類が捕集されていることが判った。
Table 3. From the analysis results of the collected fruits in Table 8, it was found that most of the organic substances in the raw materials for the molding resin composition were collected.

実験例8 次に成形する前に真空にする場合(第1図のもの)と真
空にしない場合(第5図のもの)のIcの耐湿性テスト
、及び高温保存テストを行った。成形条件は成形温度1
80℃、成形時間90秒、成形圧力100kg/cm’
、アフターキュア1701:: 16時間、成形個数各
100個、成形材料EME5000 、用いたテストI
Cは三菱電機社製のものを採用した。耐湿性テストは1
21℃、2気圧、高温保存テストは1701:で行った
。結果を表4に示す。
Experimental Example 8 Next, a moisture resistance test and a high-temperature storage test were conducted on Ic in the case of applying a vacuum before molding (as shown in Figure 1) and without applying a vacuum (as shown in Figure 5). Molding conditions are molding temperature 1
80℃, molding time 90 seconds, molding pressure 100kg/cm'
, After Cure 1701:: 16 hours, number of molded pieces: 100 each, molding material EME5000, test I used
C was manufactured by Mitsubishi Electric. Moisture resistance test is 1
The high temperature storage test at 21° C. and 2 atm was conducted at 1701:. The results are shown in Table 4.

表4.#J湿性と高温保存テスト結果 表4からポット内で10秒間真空にして成形したICは
いずれも従来の封止方法と比較して不良率が少なく、こ
の発明の方法による効果が明らかである。
Table 4. #J Humidity and High Temperature Storage Test Results Table 4 shows that all ICs molded in a pot under vacuum for 10 seconds had a lower defect rate than the conventional sealing method, which clearly shows the effectiveness of the method of the present invention.

〔発明の効果〕〔Effect of the invention〕

以とのように、9の発明によれば、加熱された゛   
成形m岬が真空で膨脹する最寄体積より大きな容積を有
するポット内に、成形樹脂を配し、ポット内を真空排気
して加熱されy、=成形樹脂より発生する気体を排気す
るようにしたので、内部に気泡がなく;、耐湿性や耐熱
性の優れた信頼性の高い樹脂封止形半導体を一造するこ
とができる効果がある。
As described below, according to invention No. 9, heated
The molded resin was placed in a pot having a volume larger than the nearest volume to which the molded cape expands in vacuum, and the inside of the pot was evacuated to exhaust the gas generated from the molded resin when it was heated. Therefore, there are no air bubbles inside, and there is an effect that a highly reliable resin-sealed semiconductor with excellent moisture resistance and heat resistance can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図及び銅8図は各々この発明の一実施例に
よる樹脂封止形半導体の製造方法を工程順に示す金型の
断面図、第4図はこの発明の一実施例に係る成形樹脂中
の低沸点物捕集装置を示す構成図、並びに第6図は従来
の樹脂封止形半導体の製造に用いられる金型を示す断面
図である。 (1)・・・を型、(2)・・・下型、(3)・・・プ
ランジャ、(4)・・・ポ゛ソト、(5)・・・キャビ
ティ、(6)・・・IC,(7)・・・成形樹l旨、(
9)・・・排気口、03・・・真空ポンプなお、図中、
同一符号は同−又は相当部分を示す。
FIGS. 1, 2, and 8 are cross-sectional views of a mold showing a method for manufacturing a resin-sealed semiconductor according to an embodiment of the present invention in the order of steps, and FIG. 4 is a cross-sectional view of a mold according to an embodiment of the present invention. FIG. 6 is a block diagram showing a device for collecting low boiling point substances in molded resin, and a cross-sectional view showing a mold used for manufacturing a conventional resin-sealed semiconductor. (1)...mold, (2)...lower mold, (3)...plunger, (4)...point, (5)...cavity, (6)... IC, (7)... Molded tree l effect, (
9)...Exhaust port, 03...Vacuum pump In addition, in the figure,
The same reference numerals indicate the same or equivalent parts.

Claims (5)

【特許請求の範囲】[Claims] (1)加熱された成形樹脂が真空で膨脹する最大体積よ
り大きな容積を有するポット内に、上記成形樹脂を配す
る工程、上記ポット内を真空排気すると共に、加熱され
た上記成形樹脂から発生する気体を排気する工程、及び
上記ポット内の上記成形樹脂を押圧して半導体集積回路
の配設されたキャビティ内へ圧送し、上記半導体集積回
路の外形を形成する工程を施す樹脂封止形半導体の製造
方法。
(1) A step of placing the molded resin in a pot having a volume larger than the maximum volume that the heated molded resin expands in vacuum, and evacuates the inside of the pot, and generates from the heated molded resin. A process of exhausting gas, and a process of pressurizing the molded resin in the pot and feeding it into a cavity in which a semiconductor integrated circuit is arranged, to form an external shape of the semiconductor integrated circuit. Production method.
(2)ポットの容積は成形樹脂の体積の2倍以上である
特許請求の範囲第1項記載の樹脂封止形半導体の製造方
法。
(2) The method for manufacturing a resin-sealed semiconductor according to claim 1, wherein the volume of the pot is at least twice the volume of the molding resin.
(3)成形樹脂から発生する気体は空気である特許請求
の範囲第1項又は第2項記載の樹脂封止形半導体の製造
方法。
(3) The method for manufacturing a resin-sealed semiconductor according to claim 1 or 2, wherein the gas generated from the molding resin is air.
(4)成形樹脂から発生する気体は水蒸気である特許請
求の範囲第1項ないし第8項のいづれかに記載の樹脂封
止形半導体の製造方法。
(4) The method for manufacturing a resin-sealed semiconductor according to any one of claims 1 to 8, wherein the gas generated from the molding resin is water vapor.
(5)成形樹脂から発生する気体は低沸点有機物である
特許請求の範囲第1項ないし第4項のいづれかに記載の
樹脂封止形半導体の製造方法。
(5) The method for manufacturing a resin-encapsulated semiconductor according to any one of claims 1 to 4, wherein the gas generated from the molding resin is a low boiling point organic substance.
JP12618586A 1986-05-30 1986-05-30 Manufacture of resin-sealed semiconductor Pending JPS62282440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12618586A JPS62282440A (en) 1986-05-30 1986-05-30 Manufacture of resin-sealed semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12618586A JPS62282440A (en) 1986-05-30 1986-05-30 Manufacture of resin-sealed semiconductor

Publications (1)

Publication Number Publication Date
JPS62282440A true JPS62282440A (en) 1987-12-08

Family

ID=14928793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12618586A Pending JPS62282440A (en) 1986-05-30 1986-05-30 Manufacture of resin-sealed semiconductor

Country Status (1)

Country Link
JP (1) JPS62282440A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082615A (en) * 1987-12-18 1992-01-21 Mitsubishi Denki Kabushiki Kaisha Method for packaging semiconductor devices in a resin
NL9200089A (en) * 1991-01-17 1992-08-17 Towa Corp METHOD FOR INCLUDING A SEMICONDUCTOR DEVICE AND DEVICE FOR CARRYING OUT THE PROCESS BY ARTIFICIAL RESIN CASTING
JPH0745651A (en) * 1991-01-17 1995-02-14 Towa Kk Method for sealing electronic parts with resin
US5603879A (en) * 1993-04-22 1997-02-18 Towa Corporation Method of molding resin to seal electronic parts using two evacuation steps

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082615A (en) * 1987-12-18 1992-01-21 Mitsubishi Denki Kabushiki Kaisha Method for packaging semiconductor devices in a resin
NL9200089A (en) * 1991-01-17 1992-08-17 Towa Corp METHOD FOR INCLUDING A SEMICONDUCTOR DEVICE AND DEVICE FOR CARRYING OUT THE PROCESS BY ARTIFICIAL RESIN CASTING
JPH0745651A (en) * 1991-01-17 1995-02-14 Towa Kk Method for sealing electronic parts with resin
US5435953A (en) * 1991-01-17 1995-07-25 Towa Corporation Method of molding resin for sealing an electronic device
US5507633A (en) * 1991-01-17 1996-04-16 Towa Corporation Resin molding apparatus for sealing an electronic device
US5834035A (en) * 1993-04-19 1998-11-10 Towa Corporation Method of and apparatus for molding resin to seal electronic parts
US5603879A (en) * 1993-04-22 1997-02-18 Towa Corporation Method of molding resin to seal electronic parts using two evacuation steps

Similar Documents

Publication Publication Date Title
US5082615A (en) Method for packaging semiconductor devices in a resin
Mosquera et al. Stress during drying of two stone consolidants applied in monumental conservation
KR20060058108A (en) Process for fabricating electronic components using liquid injection molding
JP2007307766A5 (en)
JPS62282440A (en) Manufacture of resin-sealed semiconductor
TW530355B (en) Resin sealing method for semiconductors and release film used therefor
JP3305842B2 (en) Resin encapsulation method, semiconductor encapsulation device, and resin encapsulation semiconductor component
Rao et al. An improved methodology for determining temperature dependent moduli of underfill encapsulants
JP2000021908A (en) Manufacture of resin sealing-type electronic part
TW507279B (en) Semiconductor device baking method
JPS60132716A (en) Method and apparatus for molding resin
JP3751325B2 (en) Resin sealing molding method for electronic parts
JPH03116939A (en) Resin-sealing of semiconductor device
Ma et al. Characterization and modeling of moisture absorption of underfill for IC packaging
US4374081A (en) Cure of epoxy systems at reduced pressures
Ma et al. Moisture diffusion characterization and comparison of different packaging materials
Cai et al. Investigation on failures of plastic package devices with unidentifiable defects related to deficient molding process
JP3733264B2 (en) Tablet molding method and tablet molding machine
JPS635908A (en) Manufacture of vacuum tablet
JPH02305454A (en) Semiconductor device
JP2006198813A (en) Seal-molding method and seal-molding machine
Sinkankas High pressure epoxy impregnation of porous materials for thin-section and microprobe analysis
JPH11196914A (en) Filling method of crack in jewelry
JPH0677266A (en) Electronic part resin sealing method, resin pocessing device, and resin evaluation method
JPH0229089B2 (en)