JPS62282190A - Axial compressor - Google Patents

Axial compressor

Info

Publication number
JPS62282190A
JPS62282190A JP12489186A JP12489186A JPS62282190A JP S62282190 A JPS62282190 A JP S62282190A JP 12489186 A JP12489186 A JP 12489186A JP 12489186 A JP12489186 A JP 12489186A JP S62282190 A JPS62282190 A JP S62282190A
Authority
JP
Japan
Prior art keywords
casing
flow
axial flow
rotor
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12489186A
Other languages
Japanese (ja)
Inventor
Hiroaki Nakano
宏明 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP12489186A priority Critical patent/JPS62282190A/en
Publication of JPS62282190A publication Critical patent/JPS62282190A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a high speed and a large capacity by forming two flow path systems symmetrically in a casing and producing a double flow. CONSTITUTION:A casing 1 is splitted symmetrically into first and second casings 1a, 1b and an inlet casing 7 is formed in the center. A stationary blade 8 is secured to the inner circumference of the first and second casings 1a, 1b and a moving blade 9 is secured to the outer circumference of a rotor 2. The air sucked through the inlet casing 7 passes through the flow paths 10a, 10b and produces a double flow. Consequently, the effective length of the moving blade can be shortened resulting in a high speed and a large capacity.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (発明の目的) (産業上の利用分野) 本発明は軸流圧縮機に係り、特に0衷の有効長を長くす
ることなく高速人容量化を図れるようにした軸流圧縮機
に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention (Objective of the Invention) (Industrial Application Field) The present invention relates to an axial flow compressor, and in particular, the present invention relates to an axial flow compressor that can achieve high-speed passenger capacity without increasing the effective length of the This invention relates to an axial flow compressor that can be used to

(従来の技術) 一般にケーシングに固着された静翼とロータに固着され
た動翼とで形成される流路内で吸入空気を順次圧縮する
ようにした軸流圧縮機は知られている。
(Prior Art) Axial flow compressors are generally known that sequentially compress intake air within a flow path formed by stator vanes fixed to a casing and rotor blades fixed to a rotor.

第3図はこの種の従来の軸流圧縮機を示している。図中
符号31はケーシングを示し、このケーシング31の内
周には静翼32が固着され、ケーシング31に組込まれ
たロー933の外周に(よ動翼34が固着されている。
FIG. 3 shows a conventional axial flow compressor of this type. In the figure, reference numeral 31 indicates a casing, a stationary blade 32 is fixed to the inner periphery of this casing 31, and a moving blade 34 is fixed to the outer periphery of a row 933 incorporated in the casing 31.

ロータ33は両端を第1おにび第2の1111受35.
3Jで支承され、第2の軸受36の外側はスラスト軸受
37で支承されている。なJ3、符号39は吐出ケーシ
ングを示している。
The rotor 33 has both ends connected to a first holder 35 and a second 1111 holder 35.
3J, and the outside of the second bearing 36 is supported by a thrust bearing 37. J3, numeral 39 indicates a discharge casing.

この構造は静翼32と動翼34とで形成される流路40
が一系列であるので以下単流式という。
This structure has a flow path 40 formed by a stator blade 32 and a rotor blade 34.
Since it is one series, it is hereinafter referred to as single flow type.

ところで、近年、軸流圧縮殿は高速大容量化の傾向が強
く、単流式では入口流量を増すために動翼34の有効長
を艮くすることが要求されている。
Incidentally, in recent years, there has been a strong tendency for axial flow compression chambers to increase in speed and capacity, and in single flow systems, it is required to increase the effective length of the rotor blades 34 in order to increase the inlet flow rate.

有効長を長くすると回転中の翼のマツハ数が高くなり軸
流圧縮機の効率は低下する。
When the effective length is increased, the Matsuha number of the rotating blade increases and the efficiency of the axial flow compressor decreases.

従来、圧縮曙瀉列に適した翼形としてNAC八〇へ系翼
形が多く用いられているが、この翼形では第4図に示さ
れるように、マツハ数が0.76を越えると損失係数が
茗じるしく大きくなる。一方、軸流圧縮機の高速人吉量
化を図るため高マツハ数でも高効率を1qることができ
る翼形の開発が進められているが、広い作動範囲におい
て高効率を得ることのできる翼形は完成さ′れていない
Conventionally, the NAC 80 type airfoil has been widely used as an airfoil suitable for compression rows, but as shown in Figure 4, losses occur when the Matsuh number exceeds 0.76. The coefficient increases dramatically. On the other hand, in order to increase the high-speed Hitoyoshi capacity of axial flow compressors, the development of airfoils that can achieve high efficiency of 1q even with a high Matsuha number is underway. Not completed.

(発明が解決しようとする問題点) したがって、軸流圧縮懇の高速大容量化を図るためには
a翼の有効長を良くしなければならず、これに伴って圧
縮機の効率が低■するという問題があった。
(Problems to be Solved by the Invention) Therefore, in order to increase the speed and capacity of the axial flow compressor, it is necessary to improve the effective length of the a-blade, and as a result, the efficiency of the compressor decreases. There was a problem.

また、有効長を長くすると遠心応力が増大し信頼性が低
下するという問題があった。
Furthermore, there is a problem in that increasing the effective length increases centrifugal stress and reduces reliability.

さらに、大容量化によりスラスト力が増大するためスラ
スト軸受37を大きくする必要があり、これによってス
ラスト先端周速が速くなり潤?0慴が低下するという問
題もあった。
Furthermore, as the thrust force increases with the increase in capacity, it is necessary to increase the size of the thrust bearing 37, which increases the circumferential speed of the thrust tip and increases the thrust force. There was also the problem of a decline in 0.

15なみに、動翼34をチタン材等の高級材料で形成し
たり、92の断面積を大きくすることも考えられるが製
造コストが高くなったり、製造上の制約を受ける等の問
題が残る。
15, it is also conceivable to form the rotor blade 34 with a high-grade material such as titanium or to increase the cross-sectional area of 92, but problems such as increased manufacturing cost and manufacturing restrictions remain.

そこで、本発明の目的は、上’+’rBした従来の技術
が有する問題点を解消し、動翼の有効長を良くすること
なく高速大容量化を達成できる軸流圧縮殿を提供するこ
とにある。
Therefore, an object of the present invention is to provide an axial flow compression chamber that can achieve high speed and large capacity without improving the effective length of the rotor blades, by solving the above-mentioned problems of the conventional technology. It is in.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成づ゛るために、本発明は、ケーシングに
固着された静翼とロータに固着された動翼とで形成され
る流路内で吸入空気を順次圧縮りるようにした軸流圧縮
機において、上記ケーシング内に左右対称に二系列の前
記流路を形成し、流体の流れを複流式としたことを特徴
とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a means for discharging intake air within a flow path formed by stationary blades fixed to a casing and moving blades fixed to a rotor. The axial flow compressor is characterized in that two series of the flow passages are formed symmetrically within the casing, and the fluid flow is of a double flow type.

(作 用) 上記構成に基づいて本発明の詳細な説明づると、ケーシ
ング内に吸入される流体は二系列に形成された流路内に
分かれて流入し、それぞれの流路内で順次圧縮される。
(Function) To explain the present invention in detail based on the above configuration, the fluid sucked into the casing is divided into two flow paths formed in the flow path, and is sequentially compressed in each flow path. Ru.

複流式となっているのぐ従来の単流式と比べると各流路
面積は少なくすることができ各動翼有効長を短くするこ
とができる。これによって、翼のマツハ数を低く押さえ
ることができ圧縮橢の効率低下を防止できる。また、流
路が左右対象に形成されているので流体の圧力がつり合
いスラスト力が小さくなり、スラスト軸受を小型にする
ことができる。
Compared to the conventional single-flow type, which is a double-flow type, the area of each flow path can be reduced, and the effective length of each rotor blade can be shortened. As a result, the blade number can be kept low and a reduction in compression efficiency can be prevented. Further, since the flow passages are formed symmetrically, the pressure of the fluid is balanced, the thrust force is reduced, and the thrust bearing can be made smaller.

(実施例) 以下本発明による軸流圧m機の一実施例を第1図を参照
して説明する。
(Example) An example of an axial flow pressure machine according to the present invention will be described below with reference to FIG.

第1図において符号1はケーシングを示し、このケーシ
ング1にはロータ2が回転可能に組込まれている。ロー
タ2(よ両端を第1d′3よび第2の軸受3,4で支承
され、第2の軸受4の外側はスラスト軸受5(゛支承さ
れている。
In FIG. 1, reference numeral 1 indicates a casing, and a rotor 2 is rotatably incorporated into the casing 1. The rotor 2 is supported at both ends by a first bearing 3 and second bearings 3 and 4, and the outside of the second bearing 4 is supported by a thrust bearing 5.

ケーシング1は第1ケーシング1aと第2ケーシング1
bとに分割されて左右対称に形成され、中央には入ロケ
ーシングアが形成されている。第1および第2ケーシン
グ1a、”It)の内周にはそれぞれ静翼8が固着され
、上記ロータ2の外周には左右対称にそれぞれ動翼9が
固着されている。
The casing 1 includes a first casing 1a and a second casing 1.
b, and are formed symmetrically on the left and right, with an entry casing a formed in the center. Stator blades 8 are fixed to the inner circumferences of the first and second casings 1a, "It", respectively, and rotor blades 9 are fixed to the outer circumference of the rotor 2 symmetrically.

このように構成されたlNl流圧縮機において、入ロケ
ーシングアから吸入される空気tよ第1J′3よび第2
ケーシング1a、lb内に分かれて流入し、ぞれぞれ静
Vぐ8ど動翼9とで形成される流路10a、1Ob内を
通り順次圧縮される。この構造は流路10a、10bが
二系列あるので以下1u流式という。
In the 1N1 flow compressor configured in this manner, the air t taken in from the inlet casing a is
The liquid flows into the casings 1a and 1b separately, passes through channels 10a and 1Ob formed by static V-shaped rotor blades 9, and is sequentially compressed. Since this structure has two lines of flow paths 10a and 10b, it is hereinafter referred to as a 1u flow type.

しかして、本発明によれば、入口流量を等しくした揚台
、復流式としたことにより従来の単流式に比べて動9ン
9の有効長をおよそ半分の長さにすることができる。こ
れによって、蓼のマツハ数を低く押えることができ圧縮
様の効率低下を防止することができる。また、各流路1
0a、10bで圧縮される流体の圧力が左右でつり合う
ためスラスト力が小さくなり、スラスト軸受5を極めて
小さなものにすることができる。
Therefore, according to the present invention, by using a reciprocating type and a lifting platform with equal inlet flow rates, the effective length of the dynamic 9 can be reduced to approximately half that of the conventional single flow type. . As a result, the number of mats of the turret can be kept low, and compression-like efficiency reduction can be prevented. In addition, each flow path 1
Since the pressure of the fluid compressed by 0a and 10b is balanced on the left and right sides, the thrust force is reduced, and the thrust bearing 5 can be made extremely small.

一方、第2図は本発明の他の実施例を示し、この実施例
によれば、ケーシング1の両端に図示を省略した入口ケ
ーシングが形成され、中央に吐出ケーシング12が形成
されている。このように構成しても復流式とすることが
でき、左右の流体の圧力がつり合うから、上述したもの
と同様の効果を得ることができる。
On the other hand, FIG. 2 shows another embodiment of the present invention. According to this embodiment, inlet casings (not shown) are formed at both ends of the casing 1, and a discharge casing 12 is formed in the center. Even with this configuration, it is possible to use a return flow type, and since the pressures of the left and right fluids are balanced, the same effect as described above can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明にJ:れば、復
流式としたから動凶の有効長を短くづることができ、軸
流圧縮機の効率、信頼性の向上およびスラスト軸受の小
型化を図ることがCきる。
As is clear from the above explanation, since the present invention is a reciprocating type, the effective length of the moving shaft can be shortened, improving the efficiency and reliability of the axial flow compressor, and improving the thrust bearing. It is possible to achieve miniaturization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による軸流圧縮機の一実施例を示す縦断
面図、第2図は同曲の実施例を示す縦断面図、第3図は
従来の軸流圧縮機を示す縦断面図、第4図はマツハ数と
屓失係数との関係をポず線図である。 1・・・ケーシング、2・・・ロータ、5・・・スラス
ト軸受、8・・・静翼、9・・・動芙、10 a、 1
0 ’o・・・′ot路。 出願人代理人  佐  藤  −雄 第1目 第2図 第3目 第4囮
Fig. 1 is a longitudinal sectional view showing an embodiment of an axial flow compressor according to the present invention, Fig. 2 is a longitudinal sectional view showing an embodiment of the same, and Fig. 3 is a longitudinal sectional view showing a conventional axial flow compressor. FIG. 4 is a Poss diagram showing the relationship between the Matsuha number and the decay coefficient. DESCRIPTION OF SYMBOLS 1... Casing, 2... Rotor, 5... Thrust bearing, 8... Stationary blade, 9... Moving part, 10 a, 1
0 'o...'ot road. Applicant's representative Sato - Male 1st eye 2nd figure 3rd eye 4th decoy

Claims (1)

【特許請求の範囲】 1、ケーシングに固着された静翼とロータに固着された
動翼とで形成される流路内で吸入空気を順次圧縮するよ
うにした軸流圧縮機において、上記ケーシング内に左右
対称に二系列の前記流路を形成し、流体の流れを複流式
としたことを特徴とする軸流圧縮機。 2、前記ケーシングの中央に入口ケーシングを形成した
ことを特徴とする特許請求の範囲第1項に記載の軸流圧
縮機。 3、前記ケーシングの中央に吐出ケーシングを形成した
ことを特徴とする特許請求の範囲第1項に記載の軸流圧
縮機。
[Claims] 1. In an axial flow compressor that sequentially compresses intake air within a flow path formed by stator blades fixed to a casing and moving blades fixed to a rotor, An axial flow compressor characterized in that two series of the flow passages are formed symmetrically on the left and right sides, and the fluid flow is of a double flow type. 2. The axial flow compressor according to claim 1, wherein an inlet casing is formed in the center of the casing. 3. The axial flow compressor according to claim 1, characterized in that a discharge casing is formed in the center of the casing.
JP12489186A 1986-05-30 1986-05-30 Axial compressor Pending JPS62282190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12489186A JPS62282190A (en) 1986-05-30 1986-05-30 Axial compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12489186A JPS62282190A (en) 1986-05-30 1986-05-30 Axial compressor

Publications (1)

Publication Number Publication Date
JPS62282190A true JPS62282190A (en) 1987-12-08

Family

ID=14896659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12489186A Pending JPS62282190A (en) 1986-05-30 1986-05-30 Axial compressor

Country Status (1)

Country Link
JP (1) JPS62282190A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478629B2 (en) * 2004-11-04 2009-01-20 Del Valle Bravo Facundo Axial flow supercharger and fluid compression machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7478629B2 (en) * 2004-11-04 2009-01-20 Del Valle Bravo Facundo Axial flow supercharger and fluid compression machine

Similar Documents

Publication Publication Date Title
US5020969A (en) Turbo vacuum pump
US5118251A (en) Compound turbomolecular vacuum pump having two rotary shafts and delivering to atmospheric pressure
KR20020024933A (en) Turbine compressor structure with Impeller
JP3168865B2 (en) Impeller for multistage centrifugal compressor and method of manufacturing the same
CN109790847A (en) Modularization turbocompressor shaft
JPH04224295A (en) Turbo-molecular pump
JPS62282190A (en) Axial compressor
US4732530A (en) Turbomolecular pump
JPS62686A (en) Liquid ring compressor
JPH0786357B2 (en) Oil-free vacuum pump
US6884047B1 (en) Compact scroll pump
JP2757922B2 (en) Centrifugal compressor
JPS6355396A (en) Turbo vacuum pump
US11248607B2 (en) Multi-stage vacuum booster pump rotor
JPH02264196A (en) Turbine vacuum pump
JPH01170795A (en) Vortex turbo-machinery
JPS6361798A (en) Multiple stage monoblock impeller
JP2003013880A (en) Turbo molecular pump
JPS5960093A (en) Scroll compressor
JPH02136595A (en) Vacuum pump
JPS63280893A (en) Turbo vacuum pump
JPH03237297A (en) Turbo-molecular pump
JP2002310086A (en) Seal-less motor pump
JPS63266191A (en) Vacuum pump
SU1498955A1 (en) Multistage pump