JPS62282112A - Internal combustion engine - Google Patents

Internal combustion engine

Info

Publication number
JPS62282112A
JPS62282112A JP12701486A JP12701486A JPS62282112A JP S62282112 A JPS62282112 A JP S62282112A JP 12701486 A JP12701486 A JP 12701486A JP 12701486 A JP12701486 A JP 12701486A JP S62282112 A JPS62282112 A JP S62282112A
Authority
JP
Japan
Prior art keywords
engine
combustion chamber
nozzle hole
combustion
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12701486A
Other languages
Japanese (ja)
Inventor
Shigetoshi Toeda
戸枝 重俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12701486A priority Critical patent/JPS62282112A/en
Publication of JPS62282112A publication Critical patent/JPS62282112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

PURPOSE:To make the opening sectional area of a nozzle hole variable by rotatably mounting a sub-combustion chamber member spherically formed of ceramic material on a cylinder head. CONSTITUTION:In a sub-combustion chamber member 5, a rotating shaft 10 in the sub-combustion chamber is externally rotated according to an engine load and the number of its revolutions to make a communicating hole 12 formed on the bottom of a seat 8 properly mask a nozzle hole li and thereby variably control its opening sectional area. For instance, the opening sectional area of the nozzle hole 11 is minimized under the condition of low revolutions and low load to realize the safety of combustion and excellent startability during the low revolution of the engine. Under the condition of the partial loading of the engine, the opening sectional area of the nozzle hole 11 is made narrower, and in the case of the full loading of the engine, since a large quantity of air is required to be drawn in to maximize the quantity of air flowing into a cylinder, the opening sectional area of the nozzle hole 11 is maximized. Therefore, the optimum condition of engine combustion can be realized according to an engine condition.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明はディーゼルエンジン等の内燃機関に関するもの
である。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an internal combustion engine such as a diesel engine.

〔従来の技術〕[Conventional technology]

従来から、内燃機関の一種であるディーゼルエンジンに
おいては、燃焼方式として単一の主燃焼室中に燃料を直
接噴射して燃焼させる直接噴射方式と主燃焼室の他に渦
流室を設け、この渦流室の内壁には開口した噴射ポート
を有し、燃料噴射ノズルより燃料が該噴射ボートを経て
前記渦流室内に噴射されて仮燃焼させるようにした副燃
焼室方式がある。しかしながら最近におけるディーゼル
エンジンはとりわけ小型化・高速化傾向に伴い、より短
時間に燃焼を完了させる必要性から、高速燃焼が可能で
あり、騒音が少ない副燃焼室方式のものが広く用いられ
ている。
Conventionally, diesel engines, which are a type of internal combustion engine, have two combustion methods: a direct injection method, in which fuel is directly injected into a single main combustion chamber for combustion, and a vortex chamber is provided in addition to the main combustion chamber. There is a sub-combustion chamber type in which an injection port is opened on the inner wall of the chamber, and fuel is injected from a fuel injection nozzle into the swirl chamber via the injection boat for temporary combustion. However, in recent years, diesel engines have become smaller and faster, and as a result of the need to complete combustion in a shorter period of time, auxiliary combustion chamber systems, which are capable of high-speed combustion and produce less noise, have become widely used. .

かかるディーゼルエンジンにおける副燃焼室は、通常主
燃焼室の上方位置において冷却水路を備えたシリンダヘ
ッドに、主燃焼室に連通ずる噴孔と呼ばれる貫通孔が設
けられた副燃焼室の下半部を構成する金属製のホットプ
ラグが装着されている。
The sub-combustion chamber in such a diesel engine usually has a lower half of the sub-combustion chamber in which a through-hole called a nozzle hole communicating with the main combustion chamber is provided in the cylinder head which is equipped with a cooling water passage above the main combustion chamber. A metal hot plug is installed.

このように装着されるホントプラグはディーゼルエンジ
ンの小型化・貰速化に伴い、ターボチャージャーが装備
されるようになり耐熱性および断熱性の点からニッケル
、コバルト等からなる高級な耐熱合金で構成されている
にもかかわらず、耐久性が乏しかった。また、副燃焼室
が金属製であることから熱伝導性がよく、そのためホッ
トプラグの熱は冷却水で冷却されたシリンダヘッドに伝
導してしまい、ホットプラグ自体の温度上昇が図られず
副燃焼室内の燃焼ガスが壁面で冷却されてしまい、エン
ジンの始動初期における暖機特性が極めて悪く、失火を
生じ易<、)IC等の未燃ガスを発生するとともに、主
燃焼室内での燃焼が不適切なことによりスモークを発生
し易いという欠点があり、また、穫めて高価であるとい
う難点もあった。
As diesel engines become smaller and faster, the real plugs installed in this way are equipped with turbochargers, and are made of high-grade heat-resistant alloys made of nickel, cobalt, etc. for their heat resistance and insulation properties. Despite this, its durability was poor. In addition, since the sub-combustion chamber is made of metal, it has good thermal conductivity, so the heat from the hot plug is conducted to the cylinder head which is cooled by cooling water, and the temperature of the hot plug itself does not rise, resulting in sub-combustion. The combustion gas inside the room is cooled by the wall surface, and the warm-up characteristics at the initial stage of engine startup are extremely poor, causing misfires to occur easily.In addition to generating unburned gas from ICs, etc., combustion in the main combustion chamber does not occur. It has the disadvantage that it tends to produce smoke when not properly harvested, and it also has the disadvantage that it is expensive to harvest.

そこで、前述の様な高性能化による熱負荷増大に伴い、
最も高温となる渦流室を、耐熱性が太き(断熱性に優れ
た安価な窒化珪素、サイアロン、炭化珪素、ジルコニア
、リシア等のセラミック材にて構成することによりセラ
ミック材のもつ断熱性、保温性を利用してta’tA室
内での燃料の霧化を促進し、とりわけ混合気の着火性お
よびその燃焼を改良し、排気ガス中の微粒子排出量を低
減することを目的としたものが提案されている。
Therefore, with the increase in heat load due to higher performance as mentioned above,
The vortex chamber, which is at the highest temperature, is made of ceramic materials with high heat resistance (such as silicon nitride, sialon, silicon carbide, zirconia, and lithia, which are inexpensive and have excellent heat insulation properties). The proposed method is to promote the atomization of fuel in the ta'tA chamber by utilizing the characteristics of the fuel, particularly to improve the ignitability of the air-fuel mixture and its combustion, and to reduce the amount of particulate emissions in the exhaust gas. has been done.

また、前記始動性および低回転時の燃焼の安定性を改良
するため、副燃焼室内の一部または全体に発熱体を配W
し、燃焼を制御することが提案されている。
In addition, in order to improve the startability and stability of combustion at low rotation speeds, a heating element is disposed in part or all of the sub-combustion chamber.
It has been proposed to control combustion.

更に前記燃焼状態を改良するため副燃焼室の内面に三元
触媒を担持させて、有害物質であるHC。
Furthermore, in order to improve the combustion state, a three-way catalyst is supported on the inner surface of the sub-combustion chamber to remove HC, which is a harmful substance.

COおよびNo、等の発生量を減少することも提案され
ている。
It has also been proposed to reduce the amount of CO, No, etc. generated.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、渦流室をセラミック材にて構成したもの
では、セラミック材の断熱効果を得んとする改良ととも
に、燃焼を改善せんとして多くの噴孔断面形状の改良が
試みられてきたが、単一の噴孔断面形状ではディーゼル
エンジンの複雑な燃焼状況におけるすべての燃焼領域に
わたって燃焼を改良することは困難であり所期の目的を
達成し得なかった。
However, in the case where the swirl chamber is made of ceramic material, many attempts have been made to improve the cross-sectional shape of the nozzle hole in order to improve combustion as well as to obtain the heat insulating effect of the ceramic material. With the nozzle hole cross-sectional shape, it is difficult to improve combustion over all combustion regions in the complex combustion situation of diesel engines, and the intended purpose could not be achieved.

また、副燃焼室に発熱体としてグロープラグを設けた場
合、始動性の改善および低回転時の燃焼の安定性の改良
の効果をよりよく発揮するためには、燃料がグロープラ
グに当たるのが望ましく、そのためグロープラグを副燃
焼室内に突出させたり、副燃焼室内壁の一部を座ぐり、
グロープラグの一部または全部が座ぐり部に位置するよ
うに配置する必要があり、始動時および低回転時以外に
は渦流の自然な流れが乱され火炎の伝播を妨げ、燃焼状
態が悪化してスモークを発生し易(、ひいては出力低下
の大きな要因にもなるという問題があり、また燃焼を制
御するために副燃焼室の内部の一部または全体に発熱体
を配置することは技術的に極めて困難であった。
In addition, when a glow plug is installed as a heating element in the auxiliary combustion chamber, it is desirable for the fuel to hit the glow plug in order to better achieve the effects of improving startability and improving combustion stability at low rotation speeds. Therefore, it is necessary to make the glow plug protrude into the auxiliary combustion chamber, counterbore a part of the wall of the auxiliary combustion chamber,
It is necessary to arrange the glow plug so that part or all of it is located in the counterbore, and the natural flow of the vortex will be disturbed and the flame propagation will be hindered and the combustion conditions will deteriorate except during startup and low rotation. There is a problem that smoke is likely to be generated (which can also be a major factor in reducing output), and it is technically difficult to place a heating element in part or all of the interior of the auxiliary combustion chamber to control combustion. It was extremely difficult.

更に、副燃焼室の内面に三元触媒を担持させたものでは
、触媒の耐久性が乏しいという問題があった。
Furthermore, in the case where the three-way catalyst is supported on the inner surface of the sub-combustion chamber, there is a problem that the durability of the catalyst is poor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記に鑑みて、副燃焼室に流入する空気量と渦
流の強さの最適化を図ることにより高出力、低公害の内
燃機関をもたらすべく、セラミック材でもって外形が球
状をした副燃焼室部材を構成するとともに回動自在に支
承し、副燃焼室に設けた噴孔の開口断面積を可変できる
ようにしたことを特徴とするものである。
In view of the above, the present invention aims to optimize the amount of air flowing into the sub-combustion chamber and the strength of the vortex flow, thereby providing a high-output, low-pollution internal combustion engine. It is characterized in that it constitutes a combustion chamber member and is rotatably supported, and that the opening cross-sectional area of the nozzle hole provided in the sub-combustion chamber can be varied.

〔実施例〕〔Example〕

以下、本発明実施例を図により具体的に詳述する。 Hereinafter, embodiments of the present invention will be specifically described in detail with reference to the drawings.

第1図に示した内燃機関Eにおいて、ピストン1には主
燃焼室2を形成するとともに、シリンダヘッド3には冷
却水路4および前記セラミック材よりなる副燃焼室部材
5が装着され、噴射ポート6には燃料噴射ノズル7が装
備されている。この副燃焼室部材5はセラミック材とし
ての窒化珪素質、サイアロンなどが用いられこれらセラ
ミックが有する高温強度および高温における無潤滑摺動
特性が優れていることから、外形を球状となし、凹球面
8aをもった前記セラミック材よりなるシート8および
9によって摺動自在に支承されるとともに、副燃焼室部
材5には燃料噴射ノズル7に沿設された副燃焼室回転軸
10が固定されている。
In the internal combustion engine E shown in FIG. 1, a piston 1 forms a main combustion chamber 2, a cylinder head 3 is equipped with a cooling channel 4 and a sub-combustion chamber member 5 made of the ceramic material, and an injection port 6 is equipped with a fuel injection nozzle 7. This sub-combustion chamber member 5 is made of ceramic material such as silicon nitride or Sialon, and because these ceramics have excellent high-temperature strength and high-temperature lubrication-free sliding properties, the outer shape is spherical, and the concave spherical surface 8a The auxiliary combustion chamber rotating shaft 10 is fixed to the auxiliary combustion chamber member 5 and is slidably supported by the sheets 8 and 9 made of the ceramic material having the above-mentioned properties.

一方、副燃焼室部材5に固定された副燃焼室回転軸10
を外部から回転させることにより、副燃焼室部材5に形
成された噴孔11をシート8の底面に形成された連通孔
12により適宜遮蔽することにより噴孔11の断面積が
可変に制御される。
On the other hand, the auxiliary combustion chamber rotating shaft 10 fixed to the auxiliary combustion chamber member 5
By rotating the nozzle hole 11 from the outside, the cross-sectional area of the nozzle hole 11 is variably controlled by appropriately shielding the nozzle hole 11 formed in the sub-combustion chamber member 5 with the communication hole 12 formed on the bottom surface of the seat 8. .

またシート8および9の間にはシール性と緩衝性をもた
せることを目的とした断面がC字型、S字型などをした
クッションリング13が介装され、シート8および9に
挟持され摺動自在に支承された副燃焼室部材5はセラミ
ック材のもつ断熱効果を損なわぬ様にシールリング14
を介してシート8の外径より若干大きく設定されたシリ
ンダヘッド3の凹部に装着され、かかるシリンダへラド
3はヘッドガスケツ[15を介してシリンダブロック1
6に装着して機関が組立てられている。
In addition, a cushion ring 13 having a C-shaped or S-shaped cross section is interposed between the sheets 8 and 9 to provide sealing and cushioning properties, and is sandwiched between the sheets 8 and 9 so as to slide. The freely supported auxiliary combustion chamber member 5 is fitted with a seal ring 14 so as not to impair the heat insulating effect of the ceramic material.
The cylinder head 3 is attached to the cylinder block 1 via the head gasket [15].
6 and the engine is assembled.

前記の如く構成された内燃機関用副燃焼室部材5にあっ
て、副燃焼室部材5に流入する空気量と渦流室5a内の
高圧空気の渦流の強さを制御′Bシ、更に主燃焼室2内
に流出する燃焼ガスを制御するために、エンジンの負荷
と回転数に呼応して副燃焼室回転軸10を外部から回転
させ、噴孔11をシート8の底面に形成された連通孔1
2により適宜遮蔽することにより噴孔12の開口断面積
を可変に制御し、例えば低回転・無負荷状態では第2図
に示す様に、噴孔11の開口断面積が最小とすることに
より、低回転時の燃焼の安定性と良好な始動性が実現さ
れる。
In the sub-combustion chamber member 5 for an internal combustion engine configured as described above, the amount of air flowing into the sub-combustion chamber member 5 and the strength of the vortex of high-pressure air in the vortex chamber 5a are controlled. In order to control the combustion gas flowing into the chamber 2, the auxiliary combustion chamber rotating shaft 10 is rotated from the outside in response to the load and rotation speed of the engine, and the nozzle hole 11 is connected to a communication hole formed in the bottom surface of the seat 8. 1
2, the opening cross-sectional area of the nozzle hole 12 is variably controlled by appropriately shielding the nozzle hole 12. For example, in a low rotation and no-load state, the opening cross-sectional area of the nozzle hole 11 is minimized as shown in FIG. Stable combustion and good startability at low speeds are achieved.

また、エンジンの部分負荷状態においては第3図に示す
様に噴孔11の開口断面積が小さくなるように作用し、
エンジンの全負荷状態においては第4図に示す様に流入
する空気量を大量に入れる必要から噴孔12の断面積を
最大とすることにより最適な燃焼状態をエンジンの状況
に応じて実現できる。
In addition, when the engine is under partial load, the opening cross-sectional area of the nozzle hole 11 becomes smaller as shown in FIG.
When the engine is under full load, a large amount of air must be allowed to flow in as shown in FIG. 4, so by maximizing the cross-sectional area of the nozzle holes 12, an optimal combustion state can be achieved depending on the engine situation.

〔発明の効果〕〔Effect of the invention〕

叙上のように本発明に係る内燃機関によれば、機関の負
荷と回転数に呼応して噴孔の開口断面積を可変に制御で
きることから、渦流を減衰させることなく高温高圧空気
と噴射燃料を混合させて適正な予混金気を生成すること
ができ、空気利用率が大幅に向上し、最適な燃焼が行わ
れるためスモークの生成が抑制され、ひいては排気ガス
中の微粒子排出量が大幅に低減され燃焼効率の向上と出
力ロスの低減が実現され、かつまた着火遅れ時間の短縮
による騒音の低下と熱負荷の低減とが行われ、ひいては
最高燃焼温度の低下にともない有害物質であるNOKの
発生量を減少させることができ、高出力・低公害の内燃
機関を得ることができる。
As described above, according to the internal combustion engine according to the present invention, the opening cross-sectional area of the nozzle hole can be variably controlled in response to the load and rotation speed of the engine. It is possible to generate an appropriate premixed air by mixing the air, greatly improving the air utilization rate, and achieving optimal combustion, which suppresses smoke generation and, in turn, significantly reduces the amount of particulate emissions in the exhaust gas. This improves combustion efficiency and reduces power loss, and also reduces noise and heat load by shortening the ignition delay time.As a result, the maximum combustion temperature decreases, reducing NOK, a harmful substance. This makes it possible to reduce the amount of gas generated, and to obtain a high-output, low-pollution internal combustion engine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例に係る内燃機関の構造を示す要部
断面図、第2図、第3図、第4図はそれぞれ本発明実施
例に係る内燃機関における副燃焼室部材の有する噴孔の
開口状態を説明するための要部底面図である。 l・・・ピストン 2・・・主燃焼室 3・・・シリンダヘッド 4・・・冷却水路 5・・・副燃焼室部材 5a・・・渦流室 6・・・噴射ポート 7・・・燃料噴射ノズル 8・・・シート 9・・・シート 10・・・副燃焼室回転軸 11・・・噴孔 12・・・連通孔 13・・ ・クンジョンリング 14・・・シールリング 15・・・ヘッドガスケット 16・・・シリンダブロック
FIG. 1 is a cross-sectional view of main parts showing the structure of an internal combustion engine according to an embodiment of the present invention, and FIGS. FIG. 3 is a bottom view of a main part for explaining the opening state of a hole. l...Piston 2...Main combustion chamber 3...Cylinder head 4...Cooling channel 5...Sub-combustion chamber member 5a...Swirl chamber 6...Injection port 7...Fuel injection Nozzle 8...Seat 9...Seat 10...Sub-combustion chamber rotating shaft 11...Nozzle hole 12...Communication hole 13...Kungjong ring 14...Seal ring 15...Head Gasket 16...Cylinder block

Claims (1)

【特許請求の範囲】[Claims] 機関の主燃焼室に連通する噴孔を有する副燃焼室部材を
セラミック材でもって球状に形成するとともにシリンダ
ヘッドに対し回動自在に装着せしめ、上記噴孔の開口断
面積を可変し得るようにしたことを特徴とする内燃機関
An auxiliary combustion chamber member having a nozzle hole communicating with the main combustion chamber of the engine is formed into a spherical shape using a ceramic material and is rotatably attached to the cylinder head, so that the opening cross-sectional area of the nozzle hole can be varied. An internal combustion engine characterized by:
JP12701486A 1986-05-30 1986-05-30 Internal combustion engine Pending JPS62282112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12701486A JPS62282112A (en) 1986-05-30 1986-05-30 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12701486A JPS62282112A (en) 1986-05-30 1986-05-30 Internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62282112A true JPS62282112A (en) 1987-12-08

Family

ID=14949550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12701486A Pending JPS62282112A (en) 1986-05-30 1986-05-30 Internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62282112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293337B1 (en) * 2021-04-16 2022-04-05 Ford Global Technologies, Llc Systems and methods for adjustable pre-chamber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11293337B1 (en) * 2021-04-16 2022-04-05 Ford Global Technologies, Llc Systems and methods for adjustable pre-chamber

Similar Documents

Publication Publication Date Title
JP6699050B2 (en) Gasoline internal combustion engine with pre-combustion chamber and two spark plugs
US5095872A (en) Alcohol engine with combustion cavity
US4545344A (en) Diesel engine having turbulent combustion chamber
JP6634774B2 (en) Natural gas engine and heat shielding method for natural gas engine
JPH01193080A (en) Ignition device for engine
JPS62282112A (en) Internal combustion engine
WO2007080746A1 (en) Premixing compression self-ignition combustion engine
JPS6336021A (en) Internal combustion engine
JPS6332117A (en) Internal combustion engine
JPS63111217A (en) Internal combustion engine
JP2549850B2 (en) Internal combustion engine
JP2004270566A (en) Premixed compression self-ignition type internal combustion engine
JPS5821090B2 (en) air injection gasoline engine
JPH05280384A (en) Diesel engine with variable compression ratio means
JPH08296441A (en) Internal combustion engine with reduced combustion chamber
JP2785351B2 (en) Insulated engine with auxiliary combustion chamber
JPS6198920A (en) Suction device of internal-combustion engine
JP2010216451A (en) Internal combustion engine
JPH10103094A (en) Multicylinder engine with egr system using incombustible fuel
JP2713447B2 (en) Engine combustion chamber
JPS63105228A (en) Combustion chamber of gasoline engine
JP2580948Y2 (en) Heat shield structure for sub-chamber engine
JP2717960B2 (en) Engine combustion chamber
JP2020084955A (en) Internal combustion engine
JPS63140815A (en) Combustion chamber for gasoline engine