JPS6228169B2 - - Google Patents

Info

Publication number
JPS6228169B2
JPS6228169B2 JP13791883A JP13791883A JPS6228169B2 JP S6228169 B2 JPS6228169 B2 JP S6228169B2 JP 13791883 A JP13791883 A JP 13791883A JP 13791883 A JP13791883 A JP 13791883A JP S6228169 B2 JPS6228169 B2 JP S6228169B2
Authority
JP
Japan
Prior art keywords
mol
copolymer
sulfonated
dihydroxyphenol
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13791883A
Other languages
Japanese (ja)
Other versions
JPS5974128A (en
Inventor
Buruusutaa Roozu Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Imperial Chemical Industries Ltd
Original Assignee
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Imperial Chemical Industries Ltd filed Critical Imperial Chemical Industries Ltd
Publication of JPS5974128A publication Critical patent/JPS5974128A/en
Publication of JPS6228169B2 publication Critical patent/JPS6228169B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polyethers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

技術分野 本発明はポリアリールエーテルスルホン共重合
体の製法に関する。 発明に至る経過の説明 我々は、式 の反覆単位のみを有するポリアリールエーテルス
ルホン重合体は濃硫酸(98%W/W)中に溶解
し、非常に急速にスルホン化されて完全に水溶性
の生成物を生ずることを見出した。これは、多
分、ポリマーの副単位(サブユニツト)、 の芳香族環のすべて又は大部分への−SO2OH基
の置換(例7〜9参照)、上記副単位においてオ
ルトもしくはパラ位に配置されたエーテル結合を
もつポリマーの場合に起こるモノスルホン化並び
に上記副単位においてメタ位に配置されたエーテ
ル結合をもつポリマーの場合に起こるジスルホン
化に基因するのであろう。 これに対し、我々は、式 の反覆単位のみを有するポリアリールエーテルス
ルホンは濃硫酸(98%W/W)中において事実上
スルホン化を受けないことを見出した。濃硫酸は
上記ポリマーを溶解はするがポリマーを変化させ
ないのである(例10参照)。なお、発煙硫酸(オ
レウム)及びクロロスルホン酸のような、その他
のスルホン化剤は、そして濃硫酸と少量の発煙硫
酸との混合物でさえも、上記ポリマーを完全にス
ルホン化するか及び/又は分解する(例11及び12
参照)。それ故、前記単位(A)及び(B)を含むポリア
リールエーテルスルホン共重合体は濃硫酸(98%
W/W)中で制御スルホン化されて、共重合体中
の反覆単位(B)の割合を変えることによつて(完全
に水溶性のポリマーに至るまでの範囲の)親水性
スルホン化共重合体を与える。 発明の構成 本発明に従えば、式(A)の反覆単位、 1〜99モル%、好ましくは5〜80モル%と、こ
れに対応して 式(B)の反覆単位、 99〜1モル%、好ましくは95〜20モル%とを含
んで成るポリアリールエーテルスルホン共重合体
の製法を提供される。 前記ポリアリールエーテルスルホン共重合体
は、ヒドロキノン、カテコールもしくはレゾルシ
ノールから選ばれたジヒドロキシフエノールを
4・4′−ジヒドロキシジフエニルスルホン及び
4・4′−ジクロロジフエニルスルホンと、ジヒド
ロキシフエノール及び4・4′−ジヒドロキシジフ
エニルスルホンの全量の1〜99モル%のジヒドロ
キシフエノールを用いて縮合せしめることによつ
て製造することができる。 発明の具体的な説明 反覆単位(A)はパラ位に配置されたエーテル結合
をもつことが好ましく、好ましくは次式で表わさ
れる。 本発明のポリアリールエーテルスルホン共重合
体はスルホン化後前記共重合単位(A)の実質的にす
べての副単位 がスルホン化され、そしてスルホン化後前記単位
(B)の実質的にすべてが非スルホン化状態で残存し
ているように前述のように制御スルホン化して親
水性スルホン化共重合体を生成することができ
る。 スルホン化反応の制御は、生成共重合体が室温
における吸水度約2重量%水吸収から水中完全溶
解までに相当する親水性の度合をもつようにしな
ければならない。 本発明の共重合体から誘導されるスルホン化親
水性共重合体(室温において、好ましくは2〜40
重量%の水、更に好ましくは5〜30重量%の水を
吸収する)は、それらが親水性を特徴とするばか
りでなく相当量の水(例えば20重量%までの水を
含む場合でさえも相当の強度を保持するから(例
5参照)、メンブレン(膜)材料、例えば、脱塩
や微生物除去のような限外過プロセス用メンブ
レン材料として潜在的に有用である。 −SO2OH基でスルホン化されたこれらスルホ
ン化共重合体のアイオノマーは、例えば、−
SO2OH基をSO3 -M+(Mはアルカリ金属もしくは
NR4、Rはアルキル基)のような塩に転化させる
ことによつて、容易に調製することができる。こ
れらも、また、親水性重合体としての用途をも
つ。従つて、本発明の共重合体から誘導したスル
ホン化共重合体のスルホニル基は式−SO2OY
〔式中YはH、アルカリ金属もしくはNR4(Rは
アルキル基)を示す〕を有するものが好ましい。 上記反覆単位(A)及び(B)を有する共重合体は、カ
ナダ特許第847963号に記載されたポリアリーレン
ポリエーテルの製造を用いて、スルホンもしくは
スルホキシド溶媒の存在下に適当なジヒドロキシ
フエノール(例えばヒドロキノン、カテコールも
しくはレゾルシノール)、4・4′−ジヒドロキシ
ジフエニルスルホン及び4・4′−ジクロロジフエ
ニルスルホン並びにアルカリ金属の炭酸塩もしく
は重炭酸塩の縮合によつて好都合に調製すること
ができる。 実施例 本発明を以下の実施例によつて説明する。 例 1 反覆単位(A)(副単位中のエーテル結合はパラ
位)及び(B)を種々の組成で含む共重合体(単位(A)
25モル%〜66.7モル%、従つて単位(B)75モル%〜
33.3モル%)を、重合溶媒としてジフエニルスル
ホンを用い、K2CO3の存在下において適当な割合
のヒドロキノンと4・4′−ジヒドロキシジフエニ
ルスルホンとを4・4′−ジクロロフエニルスルホ
ンと反応させることにより調製した。重合温度は
200〜290℃の範囲内であつた。実質的に等モル成
分の全ビスフエノールとジハライドとを、ジハラ
イドのモル当量の2倍よりわずかに過剰のモル当
量のK2CO3と共に用いた。 共重合体を以下のごとくスルホン化した(代表
的な例として(A)25モル%/(B)75モル%の共重合体
を用いた)。 共重合体(20g)を濃硫酸(98%W/W)(110
ml)と一緒に18時間振とうし、非常に粘稠な溶液
を得た。更に濃硫酸(50ml)を添加し、更に18時
間(即ち、合計36時間)振とうしつづけた。次
に、この溶液にワーリングブレンダー中の蒸留水
(800ml)中に注ぎ、白色沈殿を生ぜしめた。この
白色沈殿を過し、ブレンダー中で淡水で各洗浄
毎に過分離しながら3回洗浄した。生成物を真
空オーブン中約65℃で一夜乾燥した。 すべてのスルホン化共重合体は220MHzNMR分
光分析法による分析によつて、ポリマー鎖の実質
上すべての副反覆単位 がモノスルホン化されているが、反覆単位(B)のい
ずれもスルホン化されていないことが示された。
すべてのスルホン化生成物がジメチルホルムアミ
ド及びジメチルスルホキシドに可溶であつた。 例 2 反覆単位(A)(副単位のエーテル結合パラ位)及
び(B)を単位(A)80モル%及び単位(B)20モル%で含む
共重合体を例1に記載のごとく製造した。サンプ
ル(5g)を濃硫酸(98%W/W)(20ml)と一
夜振とうした。濃硫酸(20ml)を更に添加して更
に24時間振とうを続けた。次に、この溶液をワー
リングブレンダー中の蒸留水中に注ぎ、白沈を生
ぜしめた。この白色沈殿を過し、水で4回洗浄
し、真空オーブン中で一夜乾燥させた。反覆単位
(A)(副単位のエーテル結合パラ位)及び(B)をそれ
ぞれ、(A)5モル%/(B)95モル%、(A)10モル%/(B)
90モル%、(A)20モル%/(B)80モル%及び(A)40モル
%/(B)60モル%で含む共重合体を、出発の共重合
体の量及び濃硫酸の使用量は異なるが、上記共重
合体(A)80モル%/(B)20モル%と同様の方法でスル
ホン化した。 スルホン化生成物の220MHz分光分析法による
分析により、生成ポリマー鎖の副反覆単位、 の実質上すべてがモノスルホン化されているが、
反覆単位(B)のいずれにもスルホン化が起つていな
いことが示された。 例 3(使用例) 例2のスルホン化共重合体のナトリウム塩を過
剰のNaOH溶液中で中和することによつて調製し
た。スルホン化(A)10モル%/(B)90モル%共重合体
の中和について代表例として説明する。 例2のスルホン化(A)10モル%/(B)90モル%共重
合体(50g)を水(600ml)中NaOH(30g)溶
液中で一夜撹拌した。次に、この混合物を60〜80
℃に終日加熱し、40℃に冷却した。生成物を過
し、水で4回洗浄しそしてオーブンで乾燥した。 スルホン化(A)10モル%/(B)90モル%、(A)20モル
%/(B)80モル%及び(A)40モル%/(B)60モル%共重
合体のナトリウム含量を火炎発光分光分析法
(FES)を用いて測定し、すべての単位(A)がモノ
スルホン化されていることを示すNMR分光分析
を確認した。結果は次の通りであつた。
TECHNICAL FIELD The present invention relates to a method for producing polyarylethersulfone copolymers. Explanation of the process leading to the invention We used the formula It has been found that a polyarylether sulfone polymer having only repeating units of is dissolved in concentrated sulfuric acid (98% w/w) and sulfonated very rapidly to yield a completely water-soluble product. This is probably a subunit of the polymer. substitution of -SO 2 OH groups on all or most of the aromatic rings of (see Examples 7 to 9), monosulfonation that occurs in the case of polymers with ether bonds placed in the ortho or para position in the subunits mentioned above. This may also be due to the disulfonation that occurs in polymers with ether bonds located in the meta position in the subunits. In contrast, we use the formula It has been found that polyarylether sulfones having only repeating units of 2 undergo virtually no sulfonation in concentrated sulfuric acid (98% w/w). Concentrated sulfuric acid dissolves the polymer but does not change it (see Example 10). Note that other sulfonating agents, such as oleum and chlorosulfonic acid, and even mixtures of concentrated sulfuric acid and small amounts of oleum, will completely sulfonate and/or decompose the polymer. (Examples 11 and 12)
reference). Therefore, the polyarylethersulfone copolymer containing the units (A) and (B) is prepared using concentrated sulfuric acid (98%
hydrophilic sulfonated copolymers (ranging up to completely water-soluble polymers) by varying the proportion of repeating units (B) in the copolymer. Gives union. Structure of the invention According to the invention, repeating units of formula (A), 1 to 99 mol%, preferably 5 to 80 mol% and correspondingly repeating units of formula (B), Provided is a method for making a polyarylethersulfone copolymer comprising 99 to 1 mole %, preferably 95 to 20 mole %. The polyarylethersulfone copolymer combines dihydroxyphenol selected from hydroquinone, catechol or resorcinol with 4,4'-dihydroxydiphenyl sulfone and 4,4'-dichlorodiphenyl sulfone, dihydroxyphenol and 4,4' It can be produced by condensing -dihydroxydiphenyl sulfone with 1 to 99 mol% of dihydroxyphenol based on the total amount. DETAILED DESCRIPTION OF THE INVENTION The repeating unit (A) preferably has an ether bond located at the para position, and is preferably represented by the following formula. After sulfonation, the polyarylethersulfone copolymer of the present invention contains substantially all the subunits of the copolymerized unit (A). is sulfonated, and after sulfonation said unit
Controlled sulfonation as described above can be performed to produce a hydrophilic sulfonated copolymer such that substantially all of (B) remains in the unsulfonated state. Control of the sulfonation reaction must be such that the resulting copolymer has a degree of hydrophilicity corresponding to a water absorption of about 2% by weight water at room temperature up to complete solubility in water. A sulfonated hydrophilic copolymer derived from the copolymer of the present invention (at room temperature, preferably 2 to 40
% water, more preferably from 5 to 30% water), even when they are not only characterized by hydrophilicity but also contain significant amounts of water (e.g. up to 20% water). Because it retains considerable strength (see Example 5), it is potentially useful as a membrane material, e.g. for ultrafiltration processes such as desalination and microbial removal. The ionomers of these sulfonated copolymers are, for example, -
SO 2 OH group is replaced by SO 3 - M + (M is an alkali metal or
It can be easily prepared by converting it into a salt such as NR 4 (R is an alkyl group). These also have use as hydrophilic polymers. Therefore, the sulfonyl group of the sulfonated copolymer derived from the copolymer of the present invention has the formula -SO 2 OY
[In the formula, Y represents H, an alkali metal, or NR 4 (R is an alkyl group)] is preferred. A copolymer having repeating units (A) and (B) described above can be prepared using a suitable dihydroxyphenol (e.g. Hydroquinone, catechol or resorcinol), 4,4'-dihydroxydiphenyl sulfone and 4,4'-dichlorodiphenyl sulfone and an alkali metal carbonate or bicarbonate. EXAMPLES The present invention will be illustrated by the following examples. Example 1 Copolymers containing repeating unit (A) (the ether bond in the subunit is in the para position) and (B) in various compositions (unit (A)
25 mol% ~ 66.7 mol%, therefore unit (B) 75 mol% ~
Using diphenyl sulfone as a polymerization solvent, appropriate proportions of hydroquinone and 4,4'-dihydroxydiphenyl sulfone were combined with 4,4'-dichlorophenyl sulfone in the presence of K2CO3 . It was prepared by reacting. The polymerization temperature is
The temperature was within the range of 200-290°C. Substantially equimolar components of total bisphenol and dihalide were used with a molar equivalent of K 2 CO 3 in excess of slightly more than two times the molar equivalent of the dihalide. The copolymer was sulfonated as follows (a 25 mol% (A)/75 mol% (B) copolymer was used as a representative example). Copolymer (20g) in concentrated sulfuric acid (98% W/W) (110g)
ml) for 18 hours to obtain a very viscous solution. Further concentrated sulfuric acid (50ml) was added and shaking continued for a further 18 hours (ie 36 hours total). This solution was then poured into distilled water (800 ml) in a Waring blender resulting in a white precipitate. The white precipitate was filtered and washed three times with fresh water in a blender with overseparation after each wash. The product was dried in a vacuum oven at about 65° C. overnight. All sulfonated copolymers were analyzed by 220MHz NMR spectroscopy to reveal that virtually all subrepeat units of the polymer chain were was shown to be monosulfonated, but none of the repeating units (B) were sulfonated.
All sulfonated products were soluble in dimethylformamide and dimethyl sulfoxide. Example 2 A copolymer containing repeating units (A) (ether bond para position of the subunit) and (B) in an amount of 80 mol% of units (A) and 20 mol% of units (B) was prepared as described in Example 1. . The sample (5 g) was shaken with concentrated sulfuric acid (98% W/W) (20 ml) overnight. Further concentrated sulfuric acid (20ml) was added and shaking continued for a further 24 hours. This solution was then poured into distilled water in a Waring blender to create a white precipitate. The white precipitate was filtered off, washed four times with water, and dried in a vacuum oven overnight. Repetition unit
(A) (ether bond para position of subunit) and (B) are respectively (A) 5 mol%/(B) 95 mol%, (A) 10 mol%/(B)
The amount of starting copolymer and the use of concentrated sulfuric acid Although the amounts were different, sulfonation was performed in the same manner as for the above copolymer (A) 80 mol %/(B) 20 mol %. Analysis of the sulfonation product by 220MHz spectroscopy revealed that the subrepeat unit of the resulting polymer chain, Virtually all of them are monosulfonated, but
It was shown that no sulfonation had occurred in any of the repeating units (B). Example 3 (Example of Use) The sodium salt of the sulfonated copolymer of Example 2 was prepared by neutralizing it in excess NaOH solution. Neutralization of a sulfonated (A) 10 mol %/(B) 90 mol % copolymer will be explained as a representative example. The sulfonated 10 mol % (A)/90 mol % (B) copolymer (50 g) of Example 2 was stirred in a solution of NaOH (30 g) in water (600 ml) overnight. Then add this mixture to 60-80
℃ overnight and cooled to 40 ℃. The product was filtered, washed four times with water and dried in the oven. The sodium content of the sulfonated (A) 10 mol%/(B) 90 mol%, (A) 20 mol%/(B) 80 mol% and (A) 40 mol%/(B) 60 mol% copolymer. Measured using flame emission spectroscopy (FES) and confirmed NMR spectroscopy showing that all units (A) are monosulfonated. The results were as follows.

【表】 例 4(使用例) 例2の共重合体のスルホン化前後の水吸収及び
例3の中和スルホン化共重合体の水吸収を、共重
合体の乾燥フイルム(ジメチルホルムアミド溶液
から流延)を最初に常温で24時間水中に浸した
後、測定した。結果は次の通りであつた。
[Table] Example 4 (Example of use) The water absorption before and after sulfonation of the copolymer of Example 2 and the water absorption of the neutralized sulfonated copolymer of Example 3 were measured using a dry film of the copolymer (flowed from a dimethylformamide solution). The samples were first immersed in water at room temperature for 24 hours, and then measured. The results were as follows.

【表】 例 5(使用例) 例2のスルホン(A)40モル%/(B)60モル%及び(A)
80モル%/(B)20モル%共重合体の機械的性質を、
流延フイルム形状において、乾燥状態と水吸収後
とについて試験した。比較のために、単位(B)(ス
ルホン化されていない)のみを含むホモポリマー
についても試験した。結果は次の通りであつた。
[Table] Example 5 (Usage example) Sulfone of Example 2 (A) 40 mol%/(B) 60 mol% and (A)
The mechanical properties of the 80 mol%/(B) 20 mol% copolymer are
Tests were conducted in the form of a cast film both in a dry state and after water absorption. For comparison, a homopolymer containing only units (B) (not sulfonated) was also tested. The results were as follows.

【表】 例 6 反覆単位(A)(副単位中のエーテル結合メタ位)
及び(B)を(A)40モル%及び(B)60モル%で含む共重合
体(5g)を実質的に例1に記載の操作に従つて
調製した(ヒドロキノンのかわりにレゾルシノー
ルを用いた)。この共重合体5gを濃硫酸(98%
W/W)中に溶解し、36時間放置した。この溶液
を蒸留水中に注ぎ白沈を生ぜしめた。この白色沈
殿を過し、水で3回洗浄し、そしてオーブン乾
燥した。生成物を220MHz分光分析法で分析し、
生成ポリマー鎖中の副反覆単位、 の実質上すべてがジスルホン化されているが、反
覆単位(B)はスルホン化されていないことを確認し
た。 このスルホン化共重合体の水吸収を、共重合体
の最初乾燥状態のフイルム(ジメチルホルムアミ
ド溶液から流延)を室温で24時間水中に浸した後
測定した。得られた水吸収量は7.5重量%であつ
た。 例 7(比較例) 反覆単位(A)(副単位中のエーテル結合パラ位)
のホモポリマー(10g)を撹拌しながら濃硫酸
(98%W/W)中に溶解し、経時的にサンプル
(50ml)を取り出して、希硫酸もしくは飽和硫酸
ナトリウム中で沈殿せしめた。様々なスルホン化
時間に対応したポリマーサンプルをジメチルスル
ホキシド溶液として220MHz NMR分光分析法で
分析して以下の性質をもつことを確認した。 1時間 単位の85%が−SO2OH基を有する(Na
塩として単離)。 2時間 単位の99%が−SO2OH基を有する(Na
塩として単離)。 4.5時間 単位の100%が−SO2OH基を有する
(Na塩として単離)。 23時間 単位の98%が−SO2OH基を有する(遊
離酸として単離)。 実質上すべての副単位が一つの−SO2OH基を
有していた。 例 8(比較例) 反覆単位(A)(副単位中のエーテル結合オルト
位)のホモポリマーを濃硫酸(98%W/W)中で
スルホン化し、生成物を濃硫酸溶液として
220MHz NMR分光分析法で分析した(生成物は
この酸溶液を水中に注ぐことによつては沈殿しな
かつた)。上記反覆単位(A)(副単位中のエーテル
結合パラ位)のホモポリマーの場合のように、こ
の生成物は実質上すべての副単位が一つの−
SO2OH基をもつように急速にスルホン化された
ことを認めた。 例 9(比較例) 反覆単位(A)(副単位中のエーテル結合メタ位)
ホモポリマーを濃硫酸(98%W/W)中でスルホ
ン化し、生成物を濃硫酸中の溶液として(この生
成物は酸溶液を水中に注ぐことによつては沈殿し
なかつた)220MHz NMR分光分析法によつて分
析した。前述の反覆単位(A)(副単位中のエーテル
結合パラもしくはオルト位)のホモポリマーの場
合のように、生成物は素早くスルホン化されたこ
とを認めたが、本例では実質上すべての副単位は
二つの−SO2OH基を有していた。 例 10(比較例) 反覆単位(B)を含むホモポリマー(50g)を濃硫
酸(98%W/W)(200ml)中に溶解し、72時間放
置し、希硫酸中において沈殿せしめ、洗浄し、細
断し、乾燥した。生成物の赤外及びNMRスペク
トルによつて生成物が出発物質と同一物質である
ことを確認した。 例 11(比較例) 反覆単位(B)を含むホモポリマー(20g)をクロ
ロスルホン酸(100ml)に添加した。僅かな泡立
ちがみられ、そして白色の発煙があつた。一夜放
置後(クロロスルホン酸中のポリマー滞留時間計
20時間)、この溶液を濃硫酸(98%W/W)300ml
中に注ぎ、そしてこの溶液を次に氷上に注いだ。
非常に微細な沈殿が生成し、これを非常にゆつく
り過し、水で1回洗浄し、次いで乾燥した。こ
の生成物はほとんど完全に水に溶解するようであ
り、高度にスルホン化されていることを示した。 例 12(比較例) 反覆単位(B)のホモポリマー(20g)を発煙硫酸
(150ml)と混合し、一夜放置した。生成した黒色
溶液は未だ不溶解ポリマーを含んでいたので、更
に5時間撹拌し、次いで水中に注いだ。沈殿は生
成しなかつたが、その代りに茶色味を帯びた橙色
の溶液が得られた。生成物は、高度にスルホン化
されたものであるか又は完全に分解したものと推
定され、処分した。 別の実験では、前記反覆単位(B)のホモポリマー
(15g)を濃硫酸(98%W/W)に溶解し、次に
発煙硫酸(50ml)を添加し、この溶液を30分間撹
拌し、そして氷上に注いで一夜放置した。ゴム状
の白色固形物が沈殿し、これを洗浄、乾燥した。
この生成物は高度にスルホン化されたものである
ことを確認した。
[Table] Example 6 Repeating unit (A) (ether bond meta position in subunit)
A copolymer (5 g) containing 40 mol % of (A) and 60 mol % of (B) was prepared essentially according to the procedure described in Example 1 (resorcinol was used in place of hydroquinone). ). Add 5 g of this copolymer to concentrated sulfuric acid (98%
W/W) and left for 36 hours. This solution was poured into distilled water to produce a white precipitate. The white precipitate was filtered off, washed three times with water, and oven dried. The product was analyzed by 220MHz spectroscopy;
sub-repeating unit in the resulting polymer chain, It was confirmed that substantially all of the repeating unit (B) was disulfonated, but the repeating unit (B) was not sulfonated. The water uptake of this sulfonated copolymer was measured after initially dry films of the copolymer (cast from a dimethylformamide solution) were immersed in water for 24 hours at room temperature. The water absorption amount obtained was 7.5% by weight. Example 7 (comparative example) Repeating unit (A) (ether bond para position in subunit)
The homopolymer (10 g) was dissolved in concentrated sulfuric acid (98% w/w) with stirring, and samples (50 ml) were taken over time and precipitated in dilute sulfuric acid or saturated sodium sulfate. Polymer samples corresponding to various sulfonation times were analyzed in dimethyl sulfoxide solution using 220MHz NMR spectroscopy, and the following properties were confirmed. 1 hour 85% of the units have −SO 2 OH groups (Na
isolated as salt). 2 hours 99% of the units have −SO 2 OH groups (Na
isolated as salt). 4.5 hours 100% of the units have -SO2OH groups (isolated as Na salt). 23 hours 98% of the units have -SO2OH groups (isolated as free acid). Virtually all subunits had one -SO2OH group. Example 8 (comparative example) A homopolymer of repeating unit (A) (ether bond ortho position in the subunit) was sulfonated in concentrated sulfuric acid (98% W/W), and the product was prepared as a concentrated sulfuric acid solution.
Analyzed by 220MHz NMR spectroscopy (the product did not precipitate by pouring the acid solution into water). As in the case of the homopolymer of the repeating unit (A) above (ether bond para position in the subunit), this product has virtually all of the subunits in one -
It was observed that it was rapidly sulfonated to have an SO 2 OH group. Example 9 (comparative example) Repeating unit (A) (ether bond meta position in subunit)
The homopolymer was sulfonated in concentrated sulfuric acid (98% W/W) and the product was analyzed as a solution in concentrated sulfuric acid (the product did not precipitate by pouring the acid solution into water) at 220MHz NMR spectroscopy. Analyzed by analytical method. Although it was observed that the product was rapidly sulfonated, as in the case of the homopolymer of repeating unit (A) (ether bond para or ortho position in the subunit) described above, in this example virtually all of the subunits were sulfonated. The unit had two -SO2OH groups. Example 10 (Comparative Example) A homopolymer (50 g) containing the repeating unit (B) was dissolved in concentrated sulfuric acid (98% W/W) (200 ml), allowed to stand for 72 hours, precipitated in dilute sulfuric acid, and washed. , shredded and dried. Infrared and NMR spectra of the product confirmed that the product was the same as the starting material. Example 11 (comparative example) A homopolymer (20 g) containing repeating unit (B) was added to chlorosulfonic acid (100 ml). Slight bubbling was observed and white smoke was produced. After standing overnight (polymer residence time meter in chlorosulfonic acid
20 hours), add 300 ml of concentrated sulfuric acid (98% W/W) to this solution.
and this solution was then poured onto ice.
A very fine precipitate formed which was filtered off very slowly, washed once with water and then dried. The product appeared to be almost completely soluble in water, indicating that it was highly sulfonated. Example 12 (Comparative Example) Homopolymer (20 g) of repeating unit (B) was mixed with fuming sulfuric acid (150 ml) and left overnight. The resulting black solution still contained undissolved polymer, so it was stirred for an additional 5 hours and then poured into water. No precipitate was formed, but instead a brownish-orange solution was obtained. The product was assumed to be highly sulfonated or completely degraded and was discarded. In another experiment, the homopolymer (15 g) of the repeating unit (B) was dissolved in concentrated sulfuric acid (98% W/W), then fuming sulfuric acid (50 ml) was added, the solution was stirred for 30 minutes, It was then poured onto ice and left overnight. A gummy white solid precipitated and was washed and dried.
This product was confirmed to be highly sulfonated.

Claims (1)

【特許請求の範囲】 1 ヒドロキノン、カテコールもしくはレゾルシ
ノールから選ばれたジヒドロキシフエノールを
4・4′−ジヒドロキシジフエニルスルホン及び
4・4′−ジクロロジフエニルスルホンと、ジヒド
ロキシフエノール及び4・4′−ジヒドロキシジフ
エニルスルホンの全量の1〜99モル%のジヒドロ
キシフエノールを用いて縮合せしめることを特徴
とする式(A)の反覆単位 1〜99モル%と、これに対応して式(B)の反覆単
位、 99〜1モル%とを含んで成るポリアリールエー
テルスルホン共重合体の製造方法。 2 ジヒドロキシフエノールがジヒドロキシフエ
ノール及び4・4′−ジヒドロキシフエニルスルホ
ンの全量の5〜80モル%である特許請求の範囲第
1項記載の製造方法。 3 ジヒドロキシフエノールがヒドロキノンであ
る特許請求の範囲第1項又は第2項に記載の製造
方法。 4 縮合をアルカリ金属の炭酸塩もしくは重炭酸
塩を用いて実施する特許請求の範囲第1項〜第3
項のいずれか1項に記載の製造方法。 5 縮合をスルホン又はスルホキシドの存在下に
実施する特許請求の範囲第1項〜第4項のいずれ
か1項に記載の製造方法。
[Scope of Claims] 1 Dihydroxyphenol selected from hydroquinone, catechol or resorcinol is combined with 4,4'-dihydroxydiphenyl sulfone and 4,4'-dichlorodiphenyl sulfone, and dihydroxyphenol and 4,4'-dihydroxydiphenyl sulfone. A repeating unit of formula (A) characterized in that it is condensed using 1 to 99 mol% of dihydroxyphenol based on the total amount of enylsulfone. 1 to 99 mol% and correspondingly repeating units of formula (B), A method for producing a polyarylethersulfone copolymer comprising 99 to 1 mol%. 2. The manufacturing method according to claim 1, wherein the dihydroxyphenol is 5 to 80 mol% of the total amount of dihydroxyphenol and 4,4'-dihydroxyphenyl sulfone. 3. The manufacturing method according to claim 1 or 2, wherein the dihydroxyphenol is hydroquinone. 4 Claims 1 to 3 in which the condensation is carried out using an alkali metal carbonate or bicarbonate
The manufacturing method according to any one of Items. 5. The manufacturing method according to any one of claims 1 to 4, wherein the condensation is carried out in the presence of a sulfone or a sulfoxide.
JP13791883A 1978-09-05 1983-07-29 Polyaryl ether sulfon copolymer Granted JPS5974128A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB7835589 1978-09-05
GB35589/78 1978-09-05
GB2490/79 1979-01-24

Publications (2)

Publication Number Publication Date
JPS5974128A JPS5974128A (en) 1984-04-26
JPS6228169B2 true JPS6228169B2 (en) 1987-06-18

Family

ID=10499438

Family Applications (3)

Application Number Title Priority Date Filing Date
JP11306379A Granted JPS5536296A (en) 1978-09-05 1979-09-05 Sulfonated polyaryletherketone
JP13791883A Granted JPS5974128A (en) 1978-09-05 1983-07-29 Polyaryl ether sulfon copolymer
JP12136886A Granted JPS6289730A (en) 1978-09-05 1986-05-28 Polyaryl ether sulfone polymer

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP11306379A Granted JPS5536296A (en) 1978-09-05 1979-09-05 Sulfonated polyaryletherketone

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP12136886A Granted JPS6289730A (en) 1978-09-05 1986-05-28 Polyaryl ether sulfone polymer

Country Status (1)

Country Link
JP (3) JPS5536296A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2147947A1 (en) 2001-11-29 2010-01-27 Ube Industries, Ltd. Process for preparing an aromatic polyether sulfone blockcopolymer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413425Y2 (en) * 1988-04-28 1992-03-27
US5641450A (en) * 1991-03-28 1997-06-24 Toray Industries, Inc. Process of making a module including a polysulphonic hollow fiber membrane
WO2000015691A1 (en) * 1998-09-11 2000-03-23 Victrex Manufacturing Limited Ion-exchange polymers
GB0123109D0 (en) * 2001-09-26 2001-11-14 Victrex Mfg Ltd Cells
GB0400626D0 (en) * 2004-01-13 2004-02-11 Johnson Matthey Plc Polymer
JP2006328430A (en) * 2006-09-19 2006-12-07 Jsr Corp Method for producing sulfonic acid group-containing polymer
WO2019157377A1 (en) * 2018-02-09 2019-08-15 Board Of Regents, The University Of Texas System Sulfonated poly(arylene ether) membranes with high monovalent salt rejection even in the presence of mixed salt feeds that contain multivalent salts

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2147947A1 (en) 2001-11-29 2010-01-27 Ube Industries, Ltd. Process for preparing an aromatic polyether sulfone blockcopolymer

Also Published As

Publication number Publication date
JPS6351174B2 (en) 1988-10-13
JPS5536296A (en) 1980-03-13
JPS6289730A (en) 1987-04-24
JPS5974128A (en) 1984-04-26
JPH0312094B2 (en) 1991-02-19

Similar Documents

Publication Publication Date Title
JPS6136781B2 (en)
Noshay et al. Sulfonated polysulfone
Ogawa et al. Polyaromatic ether–ketones and ether–keto–sulfones having various hydrophilic groups
RU2423393C2 (en) Sulphonated poly(arylenes) as hydrolytically and thermal-oxidative stable polymers
JP2011026592A (en) Step-by-step alkylation of polymeric amine
KR940005709A (en) Polymer electrolyte and preparation method thereof
US20100273953A1 (en) Functionalized polyaryl ethers
Turbak Polymer sulfonation without cross linking. The sulfur trioxide-phosphate system
JPS6067535A (en) Chlorosulfonated polyaryl ether sulfon resin, derivative and ion exchange resin
JPS6228169B2 (en)
JPS63243128A (en) Crystalline polyaryl ether and its production
JP2019507822A (en) Process for sulfonation of polymers
Bunn et al. Sulphonation of poly (phenylene ether sulphone) s containing hydroquinone residues
EP0049070B1 (en) Production of aromatic polysulphones
AU622464B2 (en) Polymer sulphomyl derivatives
JPS6274929A (en) Sulfonated polyaryl ether polymer, its production and separatory membrane comprising the same
JP4681298B2 (en) Method for producing sulfoalkyl group-containing polymer
JPH02214725A (en) Aromatic polymer
Gutch et al. Polymeric decontaminant 2 (N, N‐dichloropolystyrene sulfonamide): Synthesis, characterization, and efficacy against simulant of sulfur mustard
JPH06182169A (en) Separation membrane of sulfonated polyaryl ether-based polymer
JPS60228541A (en) Preparation of polysulfone
JPS61171730A (en) Production of polycyanoaryl ether