JPS6228085B2 - - Google Patents

Info

Publication number
JPS6228085B2
JPS6228085B2 JP2200579A JP2200579A JPS6228085B2 JP S6228085 B2 JPS6228085 B2 JP S6228085B2 JP 2200579 A JP2200579 A JP 2200579A JP 2200579 A JP2200579 A JP 2200579A JP S6228085 B2 JPS6228085 B2 JP S6228085B2
Authority
JP
Japan
Prior art keywords
silicic acid
hydrated silicic
acid
agglomerated particles
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2200579A
Other languages
Japanese (ja)
Other versions
JPS55116614A (en
Inventor
Yoshiaki Koga
Kyoshi Agawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2200579A priority Critical patent/JPS55116614A/en
Publication of JPS55116614A publication Critical patent/JPS55116614A/en
Publication of JPS6228085B2 publication Critical patent/JPS6228085B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は新規な含水珪酸及びその製造方法を提
供するものである。本発明の含水珪酸は特に農薬
担体として優れた性質を有するばかりでなく従来
公知の含水珪酸の使用分野にも好適に使用出来る
すぐれた含水珪酸である。また本発明の含水珪酸
の製造方法は工業的に簡単な技術で優れた性状を
付与出来るものである。 含水珪酸は種々の方法で製造され、種々の用途
に使用されている。例えば合成ゴム補強剤、合成
樹脂充填剤、農薬担持担体、歯科用充填剤等に含
水珪酸が使用されている。しかしながら含水珪酸
は単位粒子径10〜50mμの極微粉のものが凝集し
て存在した形状の製品となつているためその取扱
いによつては十分に優れた性状を発揮しない場合
がある。また例えば農薬担持担体として使用する
場合は従来の含水珪酸では農薬原体を吸収させる
工程に於ける壁面、混合羽根、取出口等に付着す
る現象がみられ必ずしも満足出来るものではなか
つた。 本発明者等は長年含水珪酸の製造研究を続けて
来た。更に含水珪酸の経時変化、取扱い中の変化
など多方面に渡つてその性状の変化を追求して来
た結果、意外にも特定の含水珪酸が多方面の用途
に安定した性状を呈することを見出し本発明を完
成させ提案するに至つた。 即ち本発明は細孔径分布のうち細孔半径150Å
以下の細孔が占める容積が0.5c.c./g以上で、1
次凝集粒子の粒子径が46μ以下で且つ2次凝集粒
子の粒子径が149μ〜6000μのものを55%以上含
む含水珪酸である。また本発明は珪酸アルカリを
酸で中和して水和珪酸を製造し、該水和珪酸を含
むケーキ又は乾燥水和珪酸をジエツト粉砕機又は
衝撃式粉砕機で、1次凝集粒子が46μ以下となる
如く粉砕し、該粉砕物を0.1〜3Kg/cm2の圧縮圧
で圧縮及び脱気し、細孔径分布のうち細孔半径
150Å以下の細孔が占める容積が0.5c.c./g以上
で、1次凝集粒子の粒子径が46μ以下で且つ2次
凝集粒子の粒子径が149μ〜6000μのものを55%
以上含む含水珪酸の製造方法をも提供するもので
ある。 本発明は以下詳細に説明するが本発明に於いて
は目的物即ち製品を含水珪酸と称し、製品に至る
までの中間製品を水和珪酸と称して区別する。ま
た本発明で云う1次凝集粒子とは製品から湿式法
粉末度測定によつて得られる粒子径を、2次凝集
粒子とは製品から乾式法粒度測定によつて得られ
る粒子径をそれぞれ表わすものである。また湿式
法粉末度測定は農薬公定検査法に於ける物理性検
定法の「粉末度検定法」に準じた測定方法をさ
す。該測定法は例えば鈴木照麿監修南江堂発行
「農薬公定検査法註解」(昭和47年10月31日発行)
第156頁に記載されている。更にまた乾式法粉度
測定はアール・エル・カー(R.L.Carr)の粉体
流動性評価法による粉体流動性の測定に於いて篩
上に残つた含水珪酸の積算重量割合で表示したも
のである。該乾式法粒度測定法は例えば粉体工学
研究会発行「粉体工学研究会誌」第6巻No.4
P.264〜272(1969)特にP265〜P266にかけて粘
着度の測定方法に記載されている方法に準じ篩上
に残つた含水珪酸を積算重量割合で表示すればよ
い。 本発明の1次凝集粒子の粒子径は前記した含水
珪酸の湿式法粉末度測定によつて求められるが通
常は300メツシユ篩を用い95%以上が該300メツシ
ユ篩を通過する状態をもつて粒子径とすればよ
い。 本発明の含水珪酸の1次凝集粒子の粒子径は従
来公知の含水珪酸に比べると極めて小さいもので
ある。該1次凝集粒子径が46μを超える粗い粒子
径である場合は例えば農薬用担体として利用する
とき農薬原体の吸着力が弱く懸垂性が劣る欠点と
なるばかりでなく2次凝集粒子の凝集力が小さい
ため圧縮・脱気の効果が小さくなり、農薬原体を
混合する時に2次凝集粒子が崩壊し易く作業性が
悪く、利用率の面からも好ましくない。従つて本
発明に於ける含水珪酸の1次凝集粒子の粒子径は
46μ以下であることが必要である。該湿式法粉末
度測定による粒子径が本発明の規定に合格する含
水珪酸についてその代表的な製法は後述するが一
般には通常の方法で得られる1次凝集粒子の粗い
ものを機械的な方法で微粉にする方法で十分目的
を達成出来る。 本発明の含水珪酸は2次凝集粒子即ち乾式法粒
度測定による粒子径が149μ〜6000μの範囲のも
のを55%以上含んでいることが必要である。2次
凝集粒子の粒子径が上記範囲より小さいものが増
加すると含水珪酸の取扱いに於ける装置付着、利
用率低下等の作業性の面で大きな欠陥となる。ま
た該2次凝集粒子の粒子径が前記上限値より大き
くなると例えば農薬用担体として使用するとき流
動性が悪く、散粉機へ閉塞したり、又種々の充填
剤とするとき分散性が悪く再粉砕を必要とするの
で好ましくない。 本発明に於ける1次凝集粒子及び2次凝集粒子
のそれぞれの粒子径は各独立にそれぞれ異なるも
のであるが前記両方の性状を満足するとき初めて
本発明の効果を発揮するもので両方の性状を切り
はなして考えることは出来ない。特に含水珪酸は
単位粒子の凝集によつて製品が構成されるもので
あるので前記性状をはずれる製品であれば全く別
の性状となる。例えば2次凝集粒子径が本発明の
限定範囲内にあるものであつても1次凝集粒径が
粗いものであればもはや性状は勿論、製品として
も本発明の効果を発揮出来なくなる。勿論上記と
逆の場合も同様のことが云える。 本発明の含水珪酸の農薬用担体の如く薬剤を吸
着させる担体として用いる場合は含水珪酸が有す
る細孔径分布のうち細孔半径150Å以下の細孔が
占める容積が0.5c.c./g以上あり、吸油量の大き
いものが好ましい。一般には吸油量は1.5〜3.5
c.c./gの範囲のものが好適である。該細孔径分布
は種合の方法で測定されるが上記細孔径分布のう
ち細孔半径150Å以下の細孔が占める容積の測定
は水銀ポロシメーター法による測定結果である。
また含水珪酸の吸油量はJIS K 6220に準じて測
定した結果である。該150Å以下の細孔が占める
容積が0.5c.c./g以上好ましくは0.6c.c./g以上の
含水珪酸はハンドリング、吸油速度等が著しくす
ぐれている。上記細孔径分布のうち該150Å以下
の細孔(一般には50〜150Åの間の細孔で測定し
てもよい。)が占める容積が0.5c.c./g以上のもの
は公知の含水珪酸に対し特殊なものとなる珪酸ア
ルカリと鉱酸との反応条件を選定することにより
製造出来る。即ち含水珪酸の細孔径分布は水和珪
酸を得る反応条件によつて決定されるもので水和
珪酸の取扱いによつて影響をうけるものではな
い。代表的な製法を例示すれば、珪酸アルカリ水
溶液に酸を多段添加して水和珪酸を製造する際に
第2段の酸を添加する時の珪酸アルカリ水溶液中
のシリカ濃度(C)が2〜6g/100c.c.、全酸添加量に
対する第1段の酸添加割合(A)が20〜50%及び反応
温度(T)が70〜100℃の範囲の条件を選び且つ
一般式 X={1/T−65+(A/10)〓}/C〓 で表わされるXの値(以下単にX値と云う)が
1.28〜1.55となるように各条件を選定するとよ
い。 前記含水珪酸即ち細孔径分布のうち細孔半径
150Å以下の細孔が占める容積が0.5c.c./g以上
で、1次凝集粒子の粒子径が46μ以下で且つ2次
凝集粒子の粒子径が149μ〜6000μのものを55%
以上含む珪酸の製法は特に限定されるものではな
く如何なる製造方法であつてもよい。一般に工業
的に利用が容易な方法の代表的なものを以下説明
する。 珪酸アルカリ含有水溶液を酸例えば塩酸、硫酸
等の鉱酸で中和して水和珪酸とすることは公知で
ある。本発明にあつてはこれら公知の水和珪酸製
造条件をそのまま採用すればよい。ただ細孔径分
布のうち150Å以下の細孔が占める容積が0.5c.c./
g以上の含水珪酸を得ようとする場合は前記した
如く水和珪酸の製造条件をきびしくコントロール
する必要がある。珪酸アルカリを酸で中和して得
られる水和珪酸は一般に過してケーキとするか
該ケーキを乾燥して乾燥水和珪酸とする。この状
態で得られる乾燥水和珪酸は一般に1次凝集粒子
径が本発明の規定より大きいもの例えば前記湿式
法粉末度測定に於ける300メツシユ篩を用いると
100%またはそれに近い篩上残となる。従つて一
般には該水和珪酸を本発明の1次凝集粒子になる
ように粉砕する必要がある。また前記反応で得ら
れる水和珪酸を含むケーキを用いる場合は粉砕と
同時か前後に1次凝集粒子が前記粒子径を有する
状態に乾燥するのが好ましい。一般に水和珪酸を
含むケーキを用いる場合は粉砕と同時に乾燥する
ような乾燥粉砕機を用いるのが好ましい。 前記水和珪酸を粉砕する粉砕機は2次凝集粒子
が本発明の条件になるように再凝集のしやすい状
態に粉砕する必要上ジエツト粉砕機又は衝撃式粉
砕機を用いるのが好ましい。粉砕機としてボール
ミル、チユーブミル等の摩耗を伴うような粉砕機
を用いると1次凝集粒子は小さくなるがこの1次
凝集粒子間の再凝集性に乏しく前記本発明の2次
凝集粒子の条件を満足しない場合が多い。従つて
本発明に於ける水和珪酸の粉砕は摩耗を伴なわな
い粉砕機を用いるのが好ましい。この意味で前記
ジエツト粉砕機又は衝撃式粉砕機が最も好まし
い。該ジエツト粉砕機の代表的なものはジエツト
マイザー、超音速ジエツトミル等のものがあり、
衝撃式粉砕機の代表的なものは奈良式自由粉砕
機、コーヒーミル、ターボミル等(いずれも商品
名)がある。これらの粉砕機は分級器そのものを
内蔵したものもあるが分級器がセツトされていな
いものは1次凝集粒子の粒子径が本発明の条件内
にあるまで微粉砕する必要がある。 前記粉砕された水和珪酸はそのままでは1次凝
集粒子は本発明の条件に合格するが、2次凝集粒
子が本発明の条件を満足出来ない場合が多い。こ
のような場合は工業的には該粉砕した粉砕物を圧
縮・脱気して1次凝集粒子を積極的に再凝集させ
る必要がある。該圧縮は特に限定されず必要な荷
重を該粉砕機に与えるだけでよい。該圧縮圧は1
次凝集粒子の性状、加圧手段等によつて異なるが
一般には0.1〜3Kg/cm2範囲から適宜選択すれば
よい。また該圧縮は前記粉砕物を貯槽するタン
ク、袋詰め時等必要に応じて従来の工程中から適
当な箇所を選べばよい。 前記粉砕物を単に圧縮すると含水珪酸自体空隙
率が大きいものであるため1次凝集粒子間の空気
が脱けきらず圧縮時に1次凝集粒子が隙間より飛
散したり圧縮力が大きくなつたり袋詰めするとき
圧縮処理しようとすれば包装袋が破壊する等の現
象が起る。この現象を回避するため圧縮と同時に
又は圧縮の前後に脱気するのが好ましい。該脱気
は特に限定されず、圧縮に準ずる含有空気を自然
に或いは積極的に取り出せばよいが一般には前記
粉砕物を圧縮した状態で積極的に空気を吸引する
のが最も好適である。勿論圧縮する前後で脱気す
る手段を用いても本発明の効果は十分に発揮する
が工業的には前記した如く含水珪酸タンク中で圧
縮脱気を同時に又は順次行うか含水珪酸を袋詰め
する際に脱気しながら圧縮する方式を採用すれば
よい。後者の代表的な例として袋詰めする際にゲ
リバツク、バキユプレス(いずれも商品名)等を
用いて実施することにより十分に本発明の圧縮・
脱気となりうる。 以上本発明の含水珪酸の代表的な製造方法を説
明したが本発明は前記製造方法に限定されるもの
ではない。例えば珪酸アルカリを酸で中和して得
られる含水珪酸が製品形態として前記細孔容積を
有し、1次凝集粒子の粒子径が46μ以下で且つ2
次凝集粒子の粒子径が149μ〜6000μのものを55
%以上含む含水珪酸であればよく、機械的手段を
経ることなく直接珪酸アルカリと酸との反応で得
てもよい。 本発明は以上の説明から明らかな如く1次凝集
粒子の小さいもので、しかも2次凝集粒子の大き
い含水珪酸を提供する。このような性状を有する
含水珪酸は特に薬剤を吸着させる担体として使用
する場合吸着速度が良好なだけでなく薬剤を吸着
させる時の作業性例えば器壁への付着が大巾に改
良されるだけでなく含水珪酸の利用率を向上さす
ことが出来る。これらの効果は薬剤吸着時のみな
らず含水珪酸の従来の用途に対しても同様のこと
が云える。従つて本発明が工業的に寄与する度合
いは計り知れないものとなる。 本発明を更に具体的に説明するため以下実施例
及び比較例を挙げて説明するが本発明はこれらの
実施例に限定されるものではない。 尚、実施例及び比較例に於ける含水珪酸の1次
凝集粒子の粒子径、2次凝集粒子の149μ〜6000
μの積算重量割合、細孔容積、混合試験、見掛比
重、吸油量及び吸油速度の測定は以下の方法によ
つて行なつた。 (1) 1次凝集粒子の粒子径: 農薬公定検査法(300メツシユ篩使用)に準
じて行なつた。 (2) 2次凝集粒子の149μ〜6000μの積算重量割
合: アール・エル・カー(R.L.Carr)の粉体流
動性評価法に準じたパウダーテスター(細川鉄
工所製)を用いて測定した。 (3) 細孔容積: カルロエルバ(CARLO ERBA)社製の1520
型水銀ポロシメーター(ダイラトメーター
(Dilatometer)タイプSM3、キヤピラリー
(Capillary):3mm、0.07065cm2)を用いて
測定した。 (4) 混合試験 第1図は混合試験に用いる装置を示す概略図
である。第1図に示されるモーターMによつて
回転する回転撹拌翼2、及び添加口3を設けた
内容積500mlのポリ容器1に含水珪酸試料4を
20g入れ、農薬原体20mlを添加口3より9〜10
分で滴下し、回転撹拌翼の回転数200r.P.mで
滴下開始時より30分間混合する。混合後、試料
を取り出し、容器内壁及び回転撹拌翼に付着し
た試料の重量を測定した。 (5) 見掛比重:JIS K 6220に準じて行なつた。 (6) 吸油量:JIS K 6220に準じて行なつた。 (7) 吸油速度:第2図〜第4図は吸油速度の測定
方法を示す概略図である。32メツシユ篩で篩分
けした篩下の含水珪酸試料4を第2図に示す如
く径70mm、高さ16mmの上面が開口した容器5に
試料の安息角まで入れる。次いで、第3図に示
す如く径110mmの時計皿6に分銅7を乗せた全
重量100gとした重しを試料上に乗せ、圧縮し
15秒後に引き上げる。そして、第4図に示す如
く上記圧縮された試料表面にボイル油8を2ml
滴下し、ボイル油と試料が接触した時からボイ
ル油が試料中に全て吸収されるまでに要した時
間を測定した。 尚、測定は気温20℃の室内で行なつた。 実施例 1 市販の珪酸ソーダ(SiO2/Na2O=3.03、
SiO226.4%)を7.6m3とNa2O4(Na2O1.48%)33.8
m3、水3.64m3を60m3撹拌翼付内部加熱式反応槽へ
入れて撹拌しながら硫酸(22g/100ml)1.99m3
約10分で注加し1段目の酸添加を行なう。注加が
終つたら撹拌しながら水蒸気を吹き込み20分間で
昇温し、95℃とする。昇温後同温度で7分間熟成
を行う。この時のシリカ濃度は3.9g/100c.c.であ
つた。その後、中和を再開し、残余のアルカリを
中和するため前記硫酸2.9m3を90分を要して注加
し、溶液のPHを6として反応を終了する。この反
応条件のX値は1.395であつた。次にこの溶液を
乾燥後の含水珪酸の製品PHが5.5〜6.5となるよう
にPHを4.4に調整する。この溶液を過・水洗を
行ない、水和珪酸を含むフイルターケークを分散
装置を使用して分散させ、高濃度珪酸懸濁液を作
り噴霧乾燥機により乾燥し、水和珪酸乾燥物を得
る。 次にこの乾燥物をジエツト粉砕機の粉砕圧3
Kg/cm2、4Kg/cm2及び6Kg/cm2で粉砕したものを
紙袋へ充填し、表1No.1を除き油圧式プレス機
(谷本機械製作所)を用い圧縮圧0.16Kg/cm2、1
Kg/cm2及び3Kg/cm2の圧力で加圧して該加圧に準
ずる空気を自然に抜き出し脱気した。この製品を
用いて農薬原体の吸着混合試験を行なつた。農薬
原体は化学式2−セカンダリブチルフエニル−N
−メチルカーバメート(以下単にB.P.M.C.と略
記する)で表わされ、商品名「バツサ」を使用し
た。 この含水珪酸の粉砕、脱気及びB.P.M.C試験結
果を表1に示す。又ジエツト粉砕機は日本ニユー
マツチク工業K.K.製のP.J.M(商品名)P.J.M−
I型(商品名)とフイルドエネルギープロセツシ
ング アンド イクイツプメント カンパニー
(FLUID ENERGY PROCESSING and
EQUIPMENT COMPANY)製の0202型(以下単
にJ.O.Mと略す)を使用した。 前記で得た含水珪酸の物性値は次の如くであつ
た。 水分(105℃ 2hr) :7.9% PH(5%懸濁) :6.2 吸油量(ml/100g) :250 見掛比重(50g/cm2荷重式) :0.10〜0.18g/cm3 150Å以下細孔容積(c.c./g) :0.77 吸油速度(秒) :80
The present invention provides a novel hydrated silicic acid and a method for producing the same. The hydrated silicic acid of the present invention not only has excellent properties as a carrier for agricultural chemicals, but also is an excellent hydrated silicic acid that can be suitably used in conventionally known fields of use of hydrated silicic acid. Further, the method for producing hydrated silicic acid of the present invention can provide excellent properties with an industrially simple technique. Hydrous silicic acid is produced by various methods and used for various purposes. For example, hydrated silicic acid is used in synthetic rubber reinforcing agents, synthetic resin fillers, agricultural chemical carriers, dental fillers, and the like. However, since hydrated silicic acid is a product in the form of agglomerated ultrafine powder with a unit particle size of 10 to 50 mμ, it may not exhibit sufficiently excellent properties depending on its handling. Furthermore, when used as a carrier for carrying pesticides, for example, conventional hydrated silicic acid is not always satisfactory because it tends to adhere to walls, mixing blades, outlet ports, etc. during the process of absorbing pesticide ingredients. The present inventors have been conducting research on the production of hydrated silicic acid for many years. Furthermore, as a result of pursuing various changes in the properties of hydrated silicic acid, such as changes over time and changes during handling, we surprisingly discovered that a specific hydrated silicic acid exhibits stable properties for a wide variety of uses. We have completed and proposed the present invention. That is, the present invention has a pore radius of 150 Å in the pore size distribution.
The volume occupied by the following pores is 0.5cc/g or more, 1
It is a hydrous silicic acid containing 55% or more of secondary agglomerated particles having a particle size of 46 μm or less and secondary agglomerated particles having a particle size of 149 μm to 6000 μm. In addition, the present invention involves neutralizing an alkali silicate with an acid to produce hydrated silicic acid, and then processing a cake containing the hydrated silicic acid or dried hydrated silicic acid using a jet pulverizer or an impact pulverizer, so that the primary agglomerated particles are 46μ or less. The pulverized material is compressed and degassed at a compression pressure of 0.1 to 3 kg/ cm2 , and the pore radius of the pore size distribution is
55% when the volume occupied by pores of 150 Å or less is 0.5 cc/g or more, the particle size of primary agglomerated particles is 46 μ or less, and the particle size of secondary agglomerated particles is 149 μ to 6000 μ
The present invention also provides a method for producing hydrated silicic acid containing the above. The present invention will be described in detail below, but in the present invention, the target object, that is, the product, is referred to as hydrated silicic acid, and the intermediate product leading to the product is referred to as hydrated silicic acid. Furthermore, in the present invention, the term "primary agglomerated particles" refers to the particle size obtained from the product by wet-method particle size measurement, and the "secondary agglomerated particles" refers to the particle size obtained from the product by dry-method particle size measurement. It is. In addition, wet method powderiness measurement refers to a measurement method based on the "powderyness test method" of the physical property test method in the official agricultural chemical testing method. For example, this measurement method is supervised by Terumaro Suzuki and published by Nankodo, "Commentary on Official Pesticide Inspection Methods" (published October 31, 1972).
It is described on page 156. Furthermore, dry method powder size measurement is expressed as the cumulative weight percentage of hydrated silicic acid remaining on the sieve when powder flowability is measured using RLCarr's powder flowability evaluation method. . The dry method particle size measurement method is used, for example, in "Powder Technology Research Society Journal", Vol. 6, No. 4, published by Powder Technology Research Society.
The hydrated silicic acid remaining on the sieve may be expressed as an integrated weight percentage according to the method described in P. 264 to 272 (1969), especially P. 265 to P. 266, in the method for measuring tackiness. The particle diameter of the primary agglomerated particles of the present invention is determined by the wet method fineness measurement of hydrated silicic acid described above, but usually a 300-mesh sieve is used to obtain particles with a state in which 95% or more passes through the 300-mesh sieve. It may be the diameter. The particle size of the primary agglomerated particles of the hydrated silicic acid of the present invention is extremely small compared to conventionally known hydrated silicic acids. If the primary agglomerated particles have a coarse particle size exceeding 46μ, for example, when used as a carrier for agricultural chemicals, not only will the adsorption power of the agricultural chemical ingredient be weak and the suspension properties will be poor, but also the cohesive force of the secondary agglomerated particles will be reduced. Since this is small, the effect of compression and deaeration is small, and when the agricultural chemical raw material is mixed, the secondary agglomerated particles tend to collapse, resulting in poor workability, which is also unfavorable in terms of utilization rate. Therefore, the particle size of the primary agglomerated particles of hydrated silicic acid in the present invention is
It must be 46μ or less. A typical manufacturing method for hydrated silicic acid whose particle size as determined by the wet method powderiness measurement passes the requirements of the present invention will be described later, but in general, coarse primary agglomerated particles obtained by a conventional method are processed by a mechanical method. The purpose can be achieved by pulverizing it into a fine powder. The hydrated silicic acid of the present invention must contain 55% or more of secondary agglomerated particles, that is, particles having a particle size in the range of 149 μ to 6000 μ by dry method particle size measurement. If the particle size of the secondary agglomerated particles is smaller than the above range, it will cause major defects in workability such as adhesion to equipment when handling hydrated silicic acid and a decrease in utilization rate. In addition, if the particle size of the secondary agglomerated particles is larger than the above upper limit, for example, when used as a carrier for agricultural chemicals, the fluidity is poor and the dusting machine is clogged, and when used as various fillers, the dispersibility is poor and re-pulverization is required. This is not desirable because it requires In the present invention, the particle diameters of the primary agglomerated particles and the secondary agglomerated particles are independently different from each other, but the effect of the present invention is exhibited only when both of the above properties are satisfied. cannot be considered separately. In particular, since products of hydrated silicic acid are constructed by agglomeration of unit particles, products that deviate from the above properties will have completely different properties. For example, even if the secondary agglomerated particle size is within the limited range of the present invention, if the primary agglomerated particle size is coarse, it will no longer be possible to exhibit the effects of the present invention not only in terms of properties but also as a product. Of course, the same thing can be said in the opposite case. When the hydrated silicic acid is used as a carrier for adsorbing drugs, such as the agricultural chemical carrier of the present invention, the volume occupied by pores with a pore radius of 150 Å or less in the pore size distribution of the hydrated silicic acid is 0.5 cc/g or more, and the oil absorption is A large one is preferable. Generally oil absorption is 1.5 to 3.5
A range of cc/g is preferred. The pore size distribution is measured by various methods, but the volume occupied by pores with a pore radius of 150 Å or less in the pore size distribution is measured by a mercury porosimeter method.
Moreover, the oil absorption amount of hydrated silicic acid is the result of measurement according to JIS K 6220. Hydrous silicic acid in which the volume occupied by pores of 150 Å or less is 0.5 cc/g or more, preferably 0.6 cc/g or more, is extremely excellent in handling, oil absorption rate, etc. Among the above pore size distributions, those in which the volume occupied by pores of 150 Å or less (generally, pores between 50 and 150 Å) occupy 0.5 cc/g or more are special compared to known hydrous silicic acids. It can be produced by selecting the reaction conditions between an alkali silicate and a mineral acid to produce the desired product. That is, the pore size distribution of hydrated silicic acid is determined by the reaction conditions for obtaining hydrated silicic acid, and is not affected by the handling of hydrated silicic acid. To illustrate a typical manufacturing method, when producing hydrated silicic acid by adding acid to an aqueous alkali silicate solution in multiple stages, the silica concentration (C) in the aqueous alkali silicate solution when adding the second stage acid is 2 to 2. 6g/100c.c., the first stage acid addition ratio (A) to the total acid addition amount is 20 to 50%, and the reaction temperature (T) is 70 to 100℃, and the general formula X = { 1/T-65+(A/10)〓}/C〓The value of X (hereinafter simply referred to as the
It is preferable to select each condition so that the value is 1.28 to 1.55. The hydrated silicic acid, that is, the pore radius of the pore size distribution
55% when the volume occupied by pores of 150 Å or less is 0.5 cc/g or more, the particle size of primary agglomerated particles is 46 μ or less, and the particle size of secondary agglomerated particles is 149 μ to 6000 μ
The method for producing the silicic acid contained above is not particularly limited, and any method may be used. Typical methods that are generally easy to use industrially will be described below. It is known to neutralize an aqueous solution containing an alkali silicate with an acid such as a mineral acid such as hydrochloric acid or sulfuric acid to obtain hydrated silicic acid. In the present invention, these known conditions for producing hydrated silicic acid may be employed as they are. However, the volume occupied by pores of 150 Å or less in the pore size distribution is 0.5 cc/
In order to obtain hydrated silicic acid with a weight of more than 100 g, it is necessary to strictly control the production conditions of hydrated silicic acid as described above. Hydrated silicic acid obtained by neutralizing an alkali silicate with an acid is generally filtered to form a cake, or the cake is dried to obtain dry hydrated silicic acid. The dried hydrated silicic acid obtained in this state generally has a primary agglomerated particle size larger than the specification of the present invention.
100% or close to 100% residue on the sieve. Therefore, it is generally necessary to grind the hydrated silicic acid into the primary agglomerated particles of the present invention. Further, when using a cake containing hydrated silicic acid obtained in the above reaction, it is preferable to dry the cake to a state where the primary aggregated particles have the above particle diameter at the same time or before or after the pulverization. Generally, when using a cake containing hydrated silicic acid, it is preferable to use a drying mill that pulverizes and dries at the same time. As the pulverizer for pulverizing the hydrated silicic acid, it is preferable to use a jet pulverizer or an impact pulverizer because it is necessary to pulverize the secondary agglomerated particles into a state in which they are easily re-agglomerated to meet the conditions of the present invention. If a grinder that causes wear, such as a ball mill or a tube mill, is used as a grinder, the primary agglomerated particles will become smaller, but the re-agglomeration between the primary agglomerated particles will be poor and the conditions for the secondary agglomerated particles of the present invention will be satisfied. Often not. Therefore, it is preferable to use a grinder that does not cause wear for grinding the hydrated silicic acid in the present invention. In this sense, the jet pulverizer or impact pulverizer is most preferred. Typical jet crushers include jettomizers, supersonic jet mills, etc.
Typical impact crushers include the Nara free crusher, coffee mill, and turbo mill (all are trade names). Some of these pulverizers have a built-in classifier, but those without a classifier need to be pulverized until the particle size of the primary agglomerated particles falls within the conditions of the present invention. If the pulverized hydrated silicic acid is used as is, the primary agglomerated particles pass the conditions of the present invention, but the secondary agglomerated particles often fail to satisfy the conditions of the present invention. In such a case, industrially, it is necessary to compress and deaerate the pulverized material to actively re-agglomerate the primary agglomerated particles. The compression is not particularly limited, and it is sufficient to simply apply a necessary load to the crusher. The compression pressure is 1
Although it varies depending on the properties of the secondary agglomerated particles, the pressure means, etc., it may generally be selected appropriately from the range of 0.1 to 3 kg/cm 2 . Further, the compression may be carried out at an appropriate location in the conventional process, such as in a tank for storing the pulverized product, or during bagging, etc., as required. If the pulverized material is simply compressed, since the hydrated silicic acid itself has a large porosity, the air between the primary agglomerated particles cannot be removed, and the primary agglomerated particles may scatter through the gaps during compression, or the compressive force may become large, resulting in bagging. If compression treatment is attempted, phenomena such as destruction of the packaging bag may occur. In order to avoid this phenomenon, it is preferable to perform deaeration at the same time as compression or before and after compression. The deaeration is not particularly limited, and the air contained therein may be removed naturally or actively as in the case of compression, but in general, it is most preferable to actively draw out the air while the pulverized material is compressed. Of course, the effect of the present invention can be fully exhibited even if a means of degassing before and after compression is used, but industrially, as described above, compression and degassing are performed simultaneously or sequentially in a hydrated silicic acid tank, or hydrated silicic acid is packed in bags. What is necessary is to adopt a method of compressing while degassing. As a typical example of the latter, when packing bags, the compression and compression of the present invention can be sufficiently achieved by using a gel bag, a bag press (all product names), etc.
May cause deflation. Although the typical manufacturing method of hydrated silicic acid of the present invention has been described above, the present invention is not limited to the above manufacturing method. For example, hydrated silicic acid obtained by neutralizing alkali silicate with acid has the above pore volume as a product, the particle size of the primary aggregate particles is 46μ or less, and
55 particles with a particle size of 149μ to 6000μ
% or more of hydrated silicic acid, and may be obtained by directly reacting an alkali silicate with an acid without going through mechanical means. As is clear from the above description, the present invention provides a hydrous silicic acid having small primary agglomerated particles and large secondary agglomerated particles. Hydrous silicic acid with such properties not only has a good adsorption rate when used as a carrier for adsorbing drugs, but also greatly improves workability when adsorbing drugs, such as adhesion to the vessel wall. Therefore, the utilization rate of hydrated silicic acid can be improved. These effects can be said not only to drug adsorption but also to conventional uses of hydrated silicic acid. Therefore, the degree of industrial contribution of the present invention is immeasurable. EXAMPLES In order to explain the present invention more specifically, Examples and Comparative Examples will be described below, but the present invention is not limited to these Examples. In addition, the particle diameter of the primary agglomerated particles of hydrated silicic acid in the Examples and Comparative Examples, and the particle diameter of the secondary agglomerated particles are 149 μ to 6000 μm.
The cumulative weight ratio of μ, pore volume, mixing test, apparent specific gravity, oil absorption amount, and oil absorption rate were measured by the following methods. (1) Particle size of primary agglomerated particles: This was conducted in accordance with the official pesticide inspection method (using a 300 mesh sieve). (2) Cumulative weight ratio of 149μ to 6000μ of secondary agglomerated particles: Measured using a powder tester (manufactured by Hosokawa Iron Works) according to RLCarr's powder fluidity evaluation method. (3) Pore volume: 1520 manufactured by CARLO ERBA
Measurements were made using a type mercury porosimeter (Dilatometer type SM3, capillary: 3 mm, 0.07065 cm 2 ). (4) Mixing test Figure 1 is a schematic diagram showing the equipment used for the mixing test. A hydrous silicic acid sample 4 was placed in a polyurethane container 1 with an internal volume of 500 ml, equipped with a rotary stirring blade 2 rotated by a motor M and an addition port 3 as shown in FIG.
Pour 20g and 20ml of agricultural chemical ingredient from addition port 3 9-10
Mix for 30 minutes from the start of dropping at a rotation speed of 200 r.Pm using a rotating stirring blade. After mixing, the sample was taken out, and the weight of the sample adhering to the inner wall of the container and the rotating stirring blade was measured. (5) Apparent specific gravity: Performed according to JIS K 6220. (6) Oil absorption: Conformed to JIS K 6220. (7) Oil absorption rate: Figures 2 to 4 are schematic diagrams showing a method for measuring oil absorption rate. The hydrated silicic acid sample 4, which has been sieved with a 32-mesh sieve, is placed in a container 5 with an open top, 70 mm in diameter and 16 mm in height, as shown in FIG. 2, up to the angle of repose of the sample. Next, as shown in Figure 3, a weight (total weight 100 g), which includes a weight 7 placed on a watch glass 6 with a diameter of 110 mm, was placed on the sample and compressed.
Pull up after 15 seconds. Then, as shown in Figure 4, 2 ml of boiling oil 8 was applied to the surface of the compressed sample.
The time required from the time the boiled oil came into contact with the sample until all the boiled oil was absorbed into the sample was measured. The measurements were conducted indoors at a temperature of 20°C. Example 1 Commercially available sodium silicate (SiO 2 /Na 2 O=3.03,
SiO 2 26.4%) 7.6 m 3 and Na 2 O 4 (Na 2 O 1.48%) 33.8
m 3 and 3.64 m 3 of water were placed in a 60 m 3 internally heated reaction tank equipped with stirring blades, and while stirring, 1.99 m 3 of sulfuric acid (22 g/100 ml) was added over about 10 minutes to perform the first acid addition. After the addition is complete, blow in steam while stirring and raise the temperature to 95°C over 20 minutes. After raising the temperature, ripening is performed at the same temperature for 7 minutes. The silica concentration at this time was 3.9 g/100 c.c. Thereafter, neutralization was restarted, and 2.9 m 3 of the sulfuric acid was added over a period of 90 minutes to neutralize the remaining alkali, and the pH of the solution was brought to 6 to complete the reaction. The X value under this reaction condition was 1.395. Next, the pH of this solution is adjusted to 4.4 so that the pH of the product of hydrated silicic acid after drying is 5.5 to 6.5. This solution is filtered and washed with water, and a filter cake containing hydrated silicic acid is dispersed using a dispersing device to form a highly concentrated silicic acid suspension and dried with a spray dryer to obtain a dried hydrated silicic acid product. Next, this dried material is crushed by a jet crusher at a crushing pressure of 3
Kg/cm 2 , 4 Kg/cm 2 and 6 Kg/cm 2 were crushed and filled into paper bags, and compressed at a pressure of 0.16 Kg/cm 2 , 1 using a hydraulic press machine (Tanimoto Kikai Seisakusho), except for No. 1 in Table 1.
It was pressurized at a pressure of Kg/cm 2 and 3 Kg/cm 2 and air corresponding to the pressurization was naturally extracted and deaerated. Using this product, we conducted an adsorption/mixing test for agricultural chemical ingredients. The pesticide active ingredient has the chemical formula 2-Secondarybutylphenyl-N
- Represented by methyl carbamate (hereinafter simply abbreviated as BPMC), and the product name "Batsusa" was used. Table 1 shows the results of the crushing, degassing and BPMC tests on this hydrated silicic acid. The jet crusher is PJM (trade name) PJM- manufactured by Nippon New Matsushiku Kogyo KK.
Type I (product name) and FLUID ENERGY PROCESSING and
EQUIPMENT COMPANY) model 0202 (hereinafter simply abbreviated as JOM) was used. The physical properties of the hydrated silicic acid obtained above were as follows. Moisture (105℃ 2hr): 7.9% PH (5% suspension): 6.2 Oil absorption (ml/100g): 250 Apparent specific gravity (50g/cm 2 loading type): 0.10 to 0.18g/cm 3 Pores below 150Å Volume (cc/g): 0.77 Oil absorption rate (sec): 80

【表】 比較例 1 実施例1に於いて粉砕品を圧縮脱気しない以外
は実施例1と同様にして含水珪酸を得た。この含
水珪酸を用いて実施例1と同様に農薬原体の吸着
混合試験を行つた。その結果を表2に示す。
[Table] Comparative Example 1 Hydrous silicic acid was obtained in the same manner as in Example 1 except that the pulverized product was not compressed and degassed. Using this hydrated silicic acid, an adsorption and mixing test for agricultural chemical ingredients was conducted in the same manner as in Example 1. The results are shown in Table 2.

【表】 実施例 2 実施例1の水和珪酸の乾燥物をミクロンミル及
びフイリツプス社製コーヒーミル(家庭用)で20
秒粉砕し、この粉砕物を紙袋へ充填し、実施例1
と同様に圧縮圧1Kg/cm2、3Kg/cm2及び5Kg/cm2
の圧力で加圧して脱気した。この粉体を用いて農
薬原体(B.P.M.C)の吸着混合試験を行つた。そ
の結果を表3に示す。
[Table] Example 2 The dried hydrated silicic acid of Example 1 was heated in a micron mill and a Philips coffee mill (home use) for 20 minutes.
Example 1
Similarly, the compression pressure is 1Kg/cm 2 , 3Kg/cm 2 and 5Kg/cm 2
It was pressurized and degassed at a pressure of . This powder was used to conduct adsorption and mixing tests for active agricultural chemicals (BPMC). The results are shown in Table 3.

【表】 比較例 2 実施例2に於いて粉砕物を圧縮・脱気しない以
外は実施例2と同様にして含水珪酸を得た。この
含水珪酸を用いて実施例2と同様に農薬原体の吸
着混合試験を行つた。その結果を表4に示す。
[Table] Comparative Example 2 Hydrous silicic acid was obtained in the same manner as in Example 2 except that the pulverized material was not compressed and deaerated. Using this hydrated silicic acid, an adsorption and mixing test for agricultural chemical ingredients was conducted in the same manner as in Example 2. The results are shown in Table 4.

【表】 比較例 3 実施例1の水和珪酸の乾燥物を内径110mmの
磁性ボールミルにより粉砕し、この粉砕物を紙袋
へ充填し、その後実施例1と同様にして圧縮圧3
Kg/cm2の圧力で加圧して脱気した。このものを用
いて実施例1と同様にして農薬原体の吸着混合試
験を行つた。その結果を表5に示す。
[Table] Comparative Example 3 The dried hydrated silicic acid of Example 1 was pulverized using a magnetic ball mill with an inner diameter of 110 mm, the pulverized product was filled into a paper bag, and then compressed at a compression pressure of 3 in the same manner as in Example 1.
It was pressurized and degassed at a pressure of Kg/cm 2 . Using this product, an adsorption and mixing test for agricultural chemical ingredients was conducted in the same manner as in Example 1. The results are shown in Table 5.

【表】 比較例 4 実施例1でジエツト粉砕機P.J.Mを用いて、粉
砕圧3Kg/cm2、圧縮圧1Kg/cm2で脱気した以外は
実施例1と同様にして含水珪酸を得た。この含水
珪酸を標準篩149μで篩分けを行ない篩下の製品
について実施例1と同様に農薬原体の吸着混合試
験を行なつた。その結果、B.P.M.Cの吸着混合試
験の付着量は2.0gであつた。 実施例 3 市販品のトクシールNR(徳山曹達(株)製)をジ
エツト粉砕機P.J.Mを用い粉砕圧4Kg/cm2で粉砕
した。この粉砕品を実施例1と同様に圧縮圧1
Kg/cm2で圧縮・脱気し含水珪酸を得た。この含水
珪酸を用いて実施例1と同様に農薬原体の吸着混
合試験を行つた。含水珪酸の性状及び上記試験結
果を表6に示す。 又、含水珪酸の物性値は次の如くであつた。 水分(105℃ 2hr) 7% PH(5%懸濁) 6.3 吸油量(ml/100g) 240 見掛比重(50g/cm2荷重式) 0.17 150A以下細孔容積〔c.c./g〕 0.32
[Table] Comparative Example 4 Hydrous silicic acid was obtained in the same manner as in Example 1 except that the jet pulverizer PJM was used and deaeration was performed at a crushing pressure of 3 kg/cm 2 and a compression pressure of 1 kg/cm 2 . This hydrated silicic acid was sieved using a standard sieve of 149 μm, and the product under the sieve was subjected to an adsorption and mixing test for agricultural chemical ingredients in the same manner as in Example 1. As a result, the adhesion amount of BPMC in the adsorption mixing test was 2.0g. Example 3 Commercially available Tokusil NR (manufactured by Tokuyama Soda Co., Ltd.) was pulverized using a jet pulverizer PJM at a pulverizing pressure of 4 kg/cm 2 . This pulverized product was compressed at a pressure of 1 as in Example 1.
Compression and deaeration were performed at kg/cm 2 to obtain hydrous silicic acid. Using this hydrated silicic acid, an adsorption and mixing test for agricultural chemical ingredients was conducted in the same manner as in Example 1. Table 6 shows the properties of the hydrated silicic acid and the above test results. The physical properties of the hydrated silicic acid were as follows. Moisture (105℃ 2hr) 7% PH (5% suspension) 6.3 Oil absorption (ml/100g) 240 Apparent specific gravity (50g/cm 2 loading type) 0.17 Pore volume below 150A [cc/g] 0.32

【表】 比較例 5 市販品のトクシールUR(徳山曹達(株)製)を用
いて実施例1と同様にして農薬原体の吸着混合試
験を行つた。その結果を表7に示す。 尚 トクシールURの物性値は次の如くであ
る。 水分(105℃ 2hr) 5.5% PH(5%懸濁) 5.6 吸油量(ml/100g) 180 見掛比重(50g/cm2荷重式) 0.28 150A以下細孔容積〔c.c./g〕 0.45
[Table] Comparative Example 5 An adsorption and mixing test of agricultural chemical ingredients was conducted in the same manner as in Example 1 using the commercially available Tokusil UR (manufactured by Tokuyama Soda Co., Ltd.). The results are shown in Table 7. The physical properties of Tokusil UR are as follows. Moisture (105℃ 2hr) 5.5% PH (5% suspension) 5.6 Oil absorption (ml/100g) 180 Apparent specific gravity (50g/cm 2 loading type) 0.28 150A or less Pore volume [cc/g] 0.45

【表】 実施例 4 実施例1と同様にして得た水和珪酸の乾燥物を
フイリツプス社製コーヒーミル(家庭用)で20秒
粉砕した。内径125mmのブフナーロートへ布
を敷き、上記粉砕物30gを布上に置き更にこの
上へ布を置いた。このブフナーロートを吸引ロ
過瓶へ取付け、吸引しながら重さ20Kgの重りを置
き、この状態で5分保持して脱気し含水珪酸を得
た。この含水珪酸を用いて実施例1と同様にして
農薬原体の吸着混合試験を行つた。その結果を表
8に示す。
[Table] Example 4 A dried product of hydrated silicic acid obtained in the same manner as in Example 1 was ground for 20 seconds using a Philips coffee mill (for home use). A cloth was placed on a Buchner funnel with an inner diameter of 125 mm, 30 g of the above-mentioned pulverized material was placed on the cloth, and the cloth was placed on top of the cloth. This Buchner funnel was attached to a suction filtration bottle, a weight of 20 kg was placed on the flask while suction was being applied, and the flask was kept in this state for 5 minutes to degas it and obtain hydrous silicic acid. Using this hydrated silicic acid, an adsorption and mixing test for agricultural chemical ingredients was conducted in the same manner as in Example 1. The results are shown in Table 8.

【表】 実施例 5 実施例1において、第1段目の硫酸の添加量を
1.74m3に、残部の硫酸の添加量を3.08m3に、そし
て反応温度を85℃にそれぞれ変えた以外は実施例
1の表1No.3同様にして水和珪酸を得た。第1表
にシリカ濃度(C)、酸添加割合(A)、反応温度
(T)、及び(X)値を示す。また、実施例1と同
様な試験及びその他の測定した結果を第9表に示
す。 実施例 6 実施例1と同じ珪酸ソーダ水溶液、ボウ硝水溶
液をそれぞれ2.27m3、13.5m3と水2.02m3を内容積
25m3、撹拌機付の内部加熱式反応槽に供給した。
次いで、撹拌しながら温度40〜45℃の範囲で硫酸
(22g/100c.c.)0.44m3を約10分間で添加した。上
記硫酸の添加割合(A)を第9表に示す。上記第1段
の酸添加終了後撹拌を継続しながら水蒸気を吹き
込み20分間で第1表に示す反応温度(T)まで昇
温した。この時のシリカ濃度(C)を第1表に示す。
該溶液を10分間上記反応温度に保つた後、撹拌を
継続しながら、残部の硫酸1.03m3を100分間で連
続添加し、溶液のPHを6として反応を終了した。
上記(C)、(A)、(T)より求められたX値を第9表
に示す。以下実施例1表1No.3と同様にして含水
珪酸を得た。得られた含水珪酸について実施例1
と同様な測定、試験を行なつた。その結果を第9
表に示す。 実施例 7 実施例1と同じ珪酸ソーダ水溶液、ボウ硝水溶
液をそれぞれ6.1、27.0と水6.9を、内容積
50、撹拌機付の外部加熱式反応槽に供給した。
次いで、撹拌しながら温度40〜45℃の範囲で硫酸
(22g/100c.c.)1.58を約10分間で添加した。上
記硫酸の添加割合(A)を第1表に示す。この時のシ
リカ濃度(C)を第9表に示す。上記第1段の酸添加
終了後、撹拌を継続しながら20分間で第9表に示
す反応温度(T)まで昇温した。該溶液を10分間
上記反応温度に保つた後、撹拌を継続しながら残
部の硫酸2.29を100分間で連続添加し、溶液の
PHを6として反応を終了した。上記(C)、(A)、
(T)より求められたX値を第9表に示す。以下
実施例1表1No.3と同様にして水和珪酸を得た。
得られた水和珪酸について実施例1と同様な測
定、試験を行なつた結果を第1表に示す。 実施例 8 実施例4と同様な珪酸ソーダ水溶液、ボウ硝水
溶液、及び反応槽を用い、珪酸ソーダ水溶液8.79
、ボウ硝水溶液27.0及び水4.2を反応槽に
供給した。以下、第1段の硫酸の添加量を2.56
に、残部の硫酸の添加量を3.03に、そして反応
温度を変えた以外は実施例7と同様にして水和珪
酸を得た。第9表にシリカ濃度(C)酸添加割合(A)、
反応温度(T)、及び(X)値を示す。また、実
施例1と同様な測定、試験を行なつた結果を第9
表に示す。
[Table] Example 5 In Example 1, the amount of sulfuric acid added in the first stage was
Hydrated silicic acid was obtained in the same manner as No. 3 in Table 1 of Example 1 except that the amount of sulfuric acid added was changed to 1.74 m 3 , the remaining amount of sulfuric acid was changed to 3.08 m 3 and the reaction temperature was changed to 85°C. Table 1 shows the silica concentration (C), acid addition ratio (A), reaction temperature (T), and (X) values. Further, Table 9 shows the results of tests similar to those in Example 1 and other measurements. Example 6 The same sodium silicate aqueous solution and Boron's sulfur aqueous solution as in Example 1 were used in an internal volume of 2.27 m 3 and 13.5 m 3 , respectively, and 2.02 m 3 of water.
25 m 3 was fed into an internally heated reactor equipped with a stirrer.
Then, 0.44 m 3 of sulfuric acid (22 g/100 c.c.) was added over about 10 minutes at a temperature in the range of 40-45° C. while stirring. Table 9 shows the addition ratio (A) of the above sulfuric acid. After the first acid addition was completed, water vapor was blown into the mixture while stirring was continued, and the temperature was raised to the reaction temperature (T) shown in Table 1 over 20 minutes. The silica concentration (C) at this time is shown in Table 1.
After the solution was kept at the above reaction temperature for 10 minutes, the remaining 1.03 m 3 of sulfuric acid was continuously added over 100 minutes while stirring to bring the pH of the solution to 6 and complete the reaction.
Table 9 shows the X values determined from (C), (A), and (T) above. Hydrous silicic acid was obtained in the same manner as No. 3 in Table 1 of Example 1. Example 1 about the obtained hydrated silicic acid
The same measurements and tests were carried out. The result is the 9th
Shown in the table. Example 7 The same sodium silicate aqueous solution and Boron's salt aqueous solution as in Example 1 were added to 6.1 and 27.0, respectively, and water was 6.9 to an inner volume of
50, was fed to an externally heated reaction tank equipped with a stirrer.
Then, 1.58 g of sulfuric acid (22 g/100 c.c.) was added over about 10 minutes at a temperature in the range of 40 to 45° C. while stirring. The addition ratio (A) of the above sulfuric acid is shown in Table 1. The silica concentration (C) at this time is shown in Table 9. After the first stage of acid addition was completed, the temperature was raised to the reaction temperature (T) shown in Table 9 over 20 minutes while stirring was continued. After keeping the solution at the above reaction temperature for 10 minutes, the remaining 2.29% of sulfuric acid was continuously added over 100 minutes while continuing to stir.
The reaction was completed by setting the pH to 6. (C), (A) above,
Table 9 shows the X values determined from (T). Hydrated silicic acid was obtained in the same manner as No. 3 in Table 1 of Example 1.
The obtained hydrated silicic acid was subjected to the same measurements and tests as in Example 1, and the results are shown in Table 1. Example 8 Using the same aqueous sodium silicate solution, aqueous salt solution, and reaction tank as in Example 4, an aqueous sodium silicate solution of 8.79%
, 27.0 g of aqueous Bowel's salt solution and 4.2 g of water were supplied to the reaction tank. Below, the amount of sulfuric acid added in the first stage is 2.56
Then, hydrated silicic acid was obtained in the same manner as in Example 7 except that the amount of the remaining sulfuric acid added was 3.03 and the reaction temperature was changed. Table 9 shows silica concentration (C), acid addition ratio (A),
Reaction temperature (T) and (X) values are shown. In addition, the results of the same measurements and tests as in Example 1 are presented in the 9th section.
Shown in the table.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水和珪酸の性状を知るために用いる混
合試験装置である。また第2図、第3図及び第4
図は含水珪酸の吸油速度の測定方法を説明するた
めの説明図である。図中、Mはモーター、1はポ
リ容器、2は回転撹拌翼、3は添加口、4は含水
珪酸試料、5は容器、6は時計皿、7は分銅、8
はボイル油をそれぞれ示す。
Figure 1 shows a mixing test device used to determine the properties of hydrated silicic acid. Also, Figures 2, 3 and 4
The figure is an explanatory diagram for explaining a method for measuring the oil absorption rate of hydrous silicic acid. In the figure, M is a motor, 1 is a plastic container, 2 is a rotating stirring blade, 3 is an addition port, 4 is a hydrous silicic acid sample, 5 is a container, 6 is a watch glass, 7 is a weight, 8
indicate boiled oil, respectively.

Claims (1)

【特許請求の範囲】 1 細孔径分布のうち細孔半径150Å以下の細孔
が占める容積が0.5c.c./g以上で、1次凝集粒子
の粒子径が46μ以下で且つ2次凝集粒子の粒子径
が149μ〜6000μのものを55%以上含む含水珪
酸。 2 珪酸アルカリを酸で中和して水和珪酸を製造
し、該水和珪酸を含むケーキ又は乾燥水和珪酸を
ジエツト粉砕機又は衝撃式粉砕機で、1次凝集粒
子が46μ以下となる如く粉砕し該粉砕物を0.1〜
3Kg/cm2の圧縮圧で圧縮及び脱気し、細孔径分布
のうち細孔半径150Å以下の細孔が占める容積が
0.5c.c./g以上で、1次凝集粒子の粒子径が46μ
以下で且つ2次凝集粒子の粒子径が149μ〜6000
μのものを55%以上含む含水珪酸を得ることを特
徴とする含水珪酸の製造方法。 3 含水珪酸が細孔径分布のうち150Å以下の細
孔が占める容積が0.6c.c./g以上である特許請求
の範囲1記載の含水珪酸。 4 珪酸アルカリを酸で中和して得られる水和珪
酸が珪酸アルカリ水溶液に酸を多段で添加し、全
酸添加量に対する第1段の酸添加割合(A)が20〜50
%、第2段の酸を添加する時の珪酸アルカリ水溶
液中のシリカ濃度(C)が2〜6g/100c.c.及び反応温
度(T)が70〜100℃の範囲から選ばれ且つ式 X={1/T−65+(A/10)〓}/C〓 で表わされるXの値が1.28〜1.55となる条件で反
応させたものである特許請求の範囲2記載の含水
珪酸の製造方法。
[Scope of Claims] 1. The volume occupied by pores with a pore radius of 150 Å or less in the pore size distribution is 0.5 cc/g or more, the particle size of the primary agglomerated particles is 46 μ or less, and the particle size of the secondary agglomerated particles Hydrous silicic acid containing 55% or more of 149μ to 6000μ. 2. Neutralize an alkali silicate with an acid to produce hydrated silicic acid, and then process the cake containing the hydrated silicic acid or dried hydrated silicic acid with a jet pulverizer or an impact pulverizer so that the primary agglomerated particles are 46μ or less. Grind the pulverized material to 0.1~
By compressing and degassing at a compression pressure of 3 kg/ cm2 , the volume occupied by pores with a pore radius of 150 Å or less in the pore size distribution is
At 0.5cc/g or more, the particle size of primary agglomerated particles is 46μ
or less and the particle size of the secondary agglomerated particles is 149μ to 6000
A method for producing hydrated silicic acid, characterized by obtaining hydrated silicic acid containing 55% or more of μ. 3. The hydrated silicic acid according to claim 1, wherein the volume occupied by pores of 150 Å or less in the pore size distribution of the hydrated silicic acid is 0.6 cc/g or more. 4 Hydrated silicic acid obtained by neutralizing alkali silicate with acid is obtained by adding acid to an aqueous alkali silicate solution in multiple stages, so that the ratio of acid addition in the first stage (A) to the total amount of acid added is 20 to 50.
%, the silica concentration (C) in the aqueous alkali silicate solution when adding the second stage acid is selected from the range of 2 to 6 g / 100 c.c., the reaction temperature (T) is selected from the range of 70 to 100 ° C., and the formula The method for producing hydrated silicic acid according to claim 2, wherein the reaction is carried out under conditions such that the value of X expressed as ={1/T-65+(A/10)}/C is 1.28 to 1.55.
JP2200579A 1979-02-28 1979-02-28 Water-containing silicic acid and manufacture thereof Granted JPS55116614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2200579A JPS55116614A (en) 1979-02-28 1979-02-28 Water-containing silicic acid and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2200579A JPS55116614A (en) 1979-02-28 1979-02-28 Water-containing silicic acid and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS55116614A JPS55116614A (en) 1980-09-08
JPS6228085B2 true JPS6228085B2 (en) 1987-06-18

Family

ID=12070882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2200579A Granted JPS55116614A (en) 1979-02-28 1979-02-28 Water-containing silicic acid and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS55116614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415714C (en) * 2005-12-20 2008-09-03 常州市康瑞化工有限公司 Preparing process of 5-propionyl-2-thiophenyl phenylacetate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699138B2 (en) * 1989-12-25 1994-12-07 株式会社トクヤマ Method for producing metal oxide particles
WO1994011302A1 (en) * 1992-11-12 1994-05-26 Crosfield Limited Silicas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415714C (en) * 2005-12-20 2008-09-03 常州市康瑞化工有限公司 Preparing process of 5-propionyl-2-thiophenyl phenylacetate

Also Published As

Publication number Publication date
JPS55116614A (en) 1980-09-08

Similar Documents

Publication Publication Date Title
KR100476150B1 (en) Composition comprising a liquid absorbed on a support based on precipitate silica
EP1651566B1 (en) Highly oil absorbing amorphous silica particles
US20100331177A1 (en) Amorphous silica particles having high absorbing capabilities and high structural characteristics
JPH08502716A (en) Precipitated silica
JPH0246521B2 (en)
KR20040004474A (en) Method for preparing precipitated silica containing aluminium
US3875282A (en) Production of high bulk density spray dried hydrous sodium silicate
IL117915A (en) Amorphous precipitated silica having large liquid carrying capacity
US7731790B2 (en) Composition comprising a liquid absorbed on a support based on precipitated silica
JP4059368B2 (en) Fine particle silica gel and metal compound fine particle encapsulated particulate silica gel
KR100236861B1 (en) Alkali metal azide particles
JPS6228085B2 (en)
JP3454554B2 (en) Amorphous silica granules and production method thereof
EP3820945B1 (en) Surface-reacted calcium carbonate for stabilizing mint oil
RU2338687C2 (en) Method of obtaining silica from olivine
CN104703915B (en) Include the method for high-pressure solid step for prepare precipitated silica
CN115038342B (en) Anti-caking agent
US7153521B2 (en) Composition comprising a liquid absorbed on a support based on precipitated silica
JPS63260816A (en) Manufacture of fine grain calcium sulfate
JPH0116768B2 (en)
JPH0375215A (en) Preparation of porous silica
WO1999029623A1 (en) Precipitated amorphous silicas having improved physical properties
JP4597499B2 (en) Method for producing talc powder
JPH0437603A (en) Amorphous silica-based filler excellent in dispersibility
JPH0930810A (en) Production of silica gel whose surface is treated