JPS62280818A - Illuminating optical system - Google Patents

Illuminating optical system

Info

Publication number
JPS62280818A
JPS62280818A JP12510086A JP12510086A JPS62280818A JP S62280818 A JPS62280818 A JP S62280818A JP 12510086 A JP12510086 A JP 12510086A JP 12510086 A JP12510086 A JP 12510086A JP S62280818 A JPS62280818 A JP S62280818A
Authority
JP
Japan
Prior art keywords
electro
laser
optical element
optical
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12510086A
Other languages
Japanese (ja)
Inventor
Kazutane Oouchi
千種 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12510086A priority Critical patent/JPS62280818A/en
Publication of JPS62280818A publication Critical patent/JPS62280818A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce a speckle generated on the irradiated surface by placing an electro-optical element having a prism type electro-optical crystal and an electrode in a luminous flux between a light source and an illuminating lens system, and varying a voltage impressed to the electro-optical element within a pulse light emission time of the light source. CONSTITUTION:A laser luminous flux 11 which has been oscillated from an eximer laser 1 is made incident on an electro-optical element 31, and the electro- optical element 31 is constituted of two prism type electro-optical crystals whose optical axes are orthogonal to each other, makes an emitted laser luminous flux 12 pass through an electro-optical element 32, and thereafter, light-leads it to an illuminating lens system 5. Also, when a luminous flux whose coherent range is large, what is called, whose interference property is good, such as laser, etc. is used, an uneven illumination caused by a speckle becomes large. Therefore, by varying continuously and quickly a voltage applied to an electrode within the pulse light emission time in the course of oscillation of the laser, a wave front of the laser luminous flux is inclined continuously by DELTAtheta radians. In this way, intensity of the speckle can be reduced.

Description

【発明の詳細な説明】 本発明の詳細な説明 (産業上の利用分野) 本発明は照明光学系に関し\特に半導体製造<オイて可
干渉性の良い高輝度のレーザー等の光源音用いて被照射
面である電子回路等の微細パターンが形成されているマ
スク面やレチクル面等全照明する際に光の干渉により生
ずる被照射面上の干渉縞所謂スペックルによる照明ムラ
を軽減し、均一なる照明を行った照明光学系に関するも
のである。
Detailed Description of the Invention Detailed Description of the Invention (Industrial Field of Application) The present invention relates to illumination optical systems, particularly in semiconductor manufacturing, and in applications where light sources such as high-intensity lasers with good coherence are used. It reduces uneven illumination caused by interference fringes on the irradiated surface, so-called speckles, that occur due to light interference when illuminating the entire irradiated surface, such as a mask surface or reticle surface on which fine patterns such as electronic circuits are formed. This relates to an illumination optical system that performs illumination.

(従来の技術) 最近の半導体製造技術(け電子回路の高集積化に伴い、
高密展の電子回路パターンが形成可能のリングラフィ技
術が要求されている。
(Conventional technology) Recent semiconductor manufacturing technology (with the increasing integration of electronic circuits)
There is a need for phosphorography technology that can form highly dense electronic circuit patterns.

一般にマスク又はレチクル面上の電子回路バターンをウ
ニ八面上に転写する場合、ウニ八面上に転写される電子
回路パターンの解tilj!@は光源の波長に比例して
くる。この為波長200〜300 n@ の遠紫外(デ
ィープUV領域)の短い波長を発振する例えば超高圧水
銀灯やキセノン水銀ランプ等が用いられている。しかし
ながらこれらの光源は低輝度で指向性もなくしかもウニ
八面上に塗布するフォトレジストの感光性も低い為露光
時間が長くなタスループソト全低下させる原因となって
い九。
Generally, when an electronic circuit pattern on a mask or reticle surface is transferred onto the eight surfaces of the sea urchin, the solution of the electronic circuit pattern to be transferred onto the eight surfaces of the sea urchin is tilj! @ is proportional to the wavelength of the light source. For this purpose, for example, ultra-high pressure mercury lamps, xenon mercury lamps, etc., which oscillate short wavelengths in the far ultraviolet (deep UV region) of 200 to 300 n@, are used. However, these light sources have low brightness and no directionality, and the photoresist applied to the eight surfaces of the sea urchins has low photosensitivity, resulting in a long exposure time and a reduction in overall photoresist quality.

一万最近エキンマ(exekmar )レーザーという
ディープUV領域に発振及長金有する光源が開発され、
その高輝度性1単色性、指向性等の良さからリングラフ
ィ技術への応用がね々研究されている。しかしながらエ
キシマレーザ−を用いると多くの場合レーザー特有の可
干渉性によりマスク面やウニへ面の不完全さや照明系の
光字特性等が原因して1マスク面やウニ八面上に不規則
な干渉縞でめる所謂スペックルが発生してくる。
Recently, a light source called exekmar laser, which has oscillation and long metal in the deep UV region, has been developed.
Due to its high brightness, monochromaticity, and good directivity, its application to phosphorography technology has been extensively studied. However, when using an excimer laser, in many cases irregularities may occur on one mask surface or eight surfaces due to imperfections on the mask surface or the surface of the sea urchin or the optical characteristics of the illumination system due to the unique coherency of the laser. So-called speckles, which are caused by interference fringes, occur.

このスペックルは照明ムラや焼付は誤差を起こしマスク
バター/1象の解諌カテ低下させる大きな原因となって
くる。
These speckles cause uneven lighting and burn-in errors, and are a major cause of deterioration in the interpretation of mask butter/1 elephant.

(発明が解決しようとする問題点) 本発明はレーザー等の可干渉性の良い高f4叢の光源を
用いた際に生じるスペックルの軽減を図υ被照1′J而
の均一照明を可能とし次照明光学系の提供を目的とする
(Problems to be Solved by the Invention) The present invention reduces speckles that occur when using a high-f4 light source with good coherence such as a laser, and enables uniform illumination of the illuminated area 1'J. The purpose is to provide a Toshiji illumination optical system.

本発明の更なる目的はエキシマレーザ−等ノ可干渉性の
良いパルス光を発振する光源を用いた際にマスク面やウ
ニへ面に生ずるスペックルの軽減化全図クマスクパター
ン像の高解像力化を可能とした半導体人造用の露光vc
fiLに好適な照明光学系の提供にある。
A further object of the present invention is to reduce speckles that occur on the mask surface and the surface of the sea urchin when using a light source that oscillates pulsed light with good coherence, such as an excimer laser. Exposure VC for semiconductor manufacturing that made it possible to
An object of the present invention is to provide an illumination optical system suitable for fiL.

(問題点全解決する九めの手段) 可干渉性の良い光源からの光束を用いて照明用レンズ系
により被照射面上を照明する際1前記光源と前記照明用
レンズ系との間の光束中にプリズム型電気光学結晶と電
極と?有する電気光学素子全配置し・該電気光学素子に
印加する電圧を前記光源のパルス発光時間内で変化させ
ることにより前記被照射面に生ず−るスペックル′t−
軽減させたことである。
(Ninth means to solve all problems) When illuminating a surface to be illuminated by an illumination lens system using a light beam from a light source with good coherence, 1. The light beam between the light source and the illumination lens system. Prism type electro-optic crystal and electrode inside? Speckles generated on the irradiated surface by changing the voltage applied to the electro-optical elements within the pulse emission time of the light source.
This has been reduced.

この他本発明の特徴は実施例において記載されている。Other features of the invention are described in the Examples.

(実施列) 第1図は本発明の一実施例の光学系の概略図である。図
中1は光源としてエキシマレーザ−を用いたときのレー
ザー発振器S31 、32け各々電気光学素子、41は
電気光学素子31の電極、42Fi電気光学素子32の
電極、5は半導体露光装置の被照射面であるマスク面若
しくけレチクル面等(以下1−マスク面」という。)を
照明する為の照明用レンズ系・6は電極41用の高電圧
発振器、7は電極42用の高電圧発生器、II 、 1
2 、13h各々レ一ザー光束である。
(Implementation row) FIG. 1 is a schematic diagram of an optical system according to an embodiment of the present invention. In the figure, 1 is a laser oscillator S31 when an excimer laser is used as a light source, 32 are each electro-optical elements, 41 is an electrode of the electro-optic element 31, 42 is an electrode of the Fi electro-optic element 32, and 5 is an irradiated object of a semiconductor exposure device. An illumination lens system for illuminating a mask surface, a reticle surface, etc. (hereinafter referred to as 1-mask surface). 6 is a high voltage oscillator for the electrode 41, and 7 is a high voltage generator for the electrode 42. Vessel, II, 1
2 and 13h are each a laser beam.

本実施例でけエキシマレーザ−1から発mしたレーザー
元束llを電気光学素子31に入射させている。″ト気
光学素子31は光学@が互いに直交している2つのプリ
ズム型電気光学結晶より構成さnている。
In this embodiment, the laser beam ll emitted from the excimer laser 1 is made incident on the electro-optical element 31. ``The optical element 31 is composed of two prism-type electro-optic crystals whose optics are orthogonal to each other.

そして電気光学素子31ヲ射出したレーザー光束L2i
電気光学素子32’t ’)’r した後照明用レンズ
系5に導光している。電気光学素子32け直気光学素子
31ヲレーザー光束の進行光束の中心に対して90度可
回転た構造を有している。
And the laser beam L2i emitted from the electro-optical element 31
After passing through the electro-optical element 32't')'r, the light is guided to the illumination lens system 5. The electro-optical element 32 and the direct-air optical element 31 have a structure in which the electro-optical element 32 and the direct-air optical element 31 are rotatable by 90 degrees with respect to the center of the traveling beam of the laser beam.

本実施しリでは電気(光学素子31全通過するレーザー
元来の板面を区極且に高電圧発生器6により発生した高
電圧V 7.c−印加さぞることに:り同図に示すX 
−1−″P−曲内で扇回させている。
In this implementation, electricity (the original plate surface of the laser that passes through the entire optical element 31 is divided into polar regions and the high voltage V7.c- generated by the high voltage generator 6 is applied) is shown in the figure. X
-1-''P- Fanning is performed within the song.

このときの晴同月tθとすると となる。ここでn。は′邂気光学結晶の常光線の屈折率
1γはポッケルス係数・■は印刀Ll電圧・tは1億間
距離、tとWは各々電気光学素子の長さと幅である。
Let tθ be the clear month in this case. Here n. is the refractive index of the ordinary ray of the optical crystal, 1γ is the Pockels coefficient, ■ is the Ll voltage, t is the distance between 100,000,000, and t and W are the length and width of the electro-optical element, respectively.

一般に可干渉性の良い光束を用いたとき被照射面である
マスク面上にスペックルが生じる原因はこれらの光束の
うち空間的に可干渉な範囲内にある光束が相互に不規則
ではあるが照射時間内で一定の位相差を持って重なり合
う為である。従ってレーザー等の可干渉範囲の大きい・
所謂干渉性の良い光束を用いる程スペックルによる照明
ムラは大きくなってくる。
In general, when using light beams with good coherence, the reason why speckles occur on the mask surface, which is the irradiated surface, is that among these light beams, the light beams within the spatially coherent range are irregular with each other. This is because they overlap with a certain phase difference within the irradiation time. Therefore, the coherence range of lasers etc. is large.
The more a so-called coherent light beam is used, the more uneven illumination caused by speckles becomes.

そこで本実施例ではレーザー発振中のパルス発光時間内
で連続的にしかも迅速に電極に印加する電圧全変化させ
ること仄よpレーザー光束の波面を連続的にΔθラジア
ン傾むけている。
Therefore, in this embodiment, the wavefront of the p laser beam is continuously tilted by Δθ radians by changing the voltage applied to the electrode continuously and quickly within the pulse emission time during laser oscillation.

即ち・レーザー光束の波面tΔθだけ偏向させている。That is, the laser beam is deflected by the wavefront tΔθ.

これにより例えばレーザー光束の横断面上で距離dだけ
隔つ九2点の位相差をレーザー光束の改良tλとすると
2rd・△θ/λだけ変化させている。
As a result, for example, if the phase difference of 92 points separated by a distance d on the cross section of the laser beam is defined as the improvement tλ of the laser beam, then it is changed by 2rd·Δθ/λ.

そこで本実施例ではd〉λ/Δθ とし・位相変化量が
2に以上となるようにし前述の2点金通る光束が1九と
えマスク面上で重なったとしても干渉により強め合う時
間と弱め合う時間と?混合させ・互いに強度を相殺し合
い、結果的に前記2点を通る光束が全んど干渉しないの
と同じ効果を得るようにしている。
Therefore, in this embodiment, d>λ/Δθ is set, and the amount of phase change is set to be 2 or more. A suitable time? They are mixed and their intensities cancel each other out, resulting in the same effect as if the light beams passing through the two points do not interfere at all.

部ちレーザー光束の発振中のパルス発光時間内に電気光
学素子31により偏向角θが運、続的にΔθだけ変化す
るようにして・X方向の干渉範囲をλ/Δθとなったの
と実質的に略等価にしている。従ってレーザー光束11
の干渉範囲全りとすると被照射面であるマスク面上での
スペックル強度は約(λ/Δθ)/Lとなる。
The deflection angle θ is continuously changed by Δθ by the electro-optical element 31 during the pulse emission time during oscillation of the laser beam, and the interference range in the X direction is effectively changed to λ/Δθ. are roughly equivalent. Therefore, the laser beam 11
Speckle intensity on the mask surface, which is the irradiated surface, is approximately (λ/Δθ)/L over the entire interference range.

例えば電気光学結晶としてKDP (IJン酸二水素カ
リウム)を用いれば r −18−9,7X 10−12m/Vno−1,6 である。w −t −1crt: * L −2cm 
+λ−248n@とするとV −15KV で λ/Δθ−0,25m となる。レーザー光束11の断面がl cm X L 
cmで1この範囲内で空間的にコヒーレントでらつ九場
合は本実施例によればスペックル強度全豹A(−G、2
5crIT/ 1m )に軽減させることが出来る。
For example, if KDP (IJ potassium dihydrogen phosphate) is used as the electro-optic crystal, r -18-9,7X 10-12 m/Vno-1,6. w −t −1crt: * L −2cm
+λ-248n@, then λ/Δθ-0.25m at V-15KV. The cross section of the laser beam 11 is l cm
If the speckle intensity is spatially coherent within this range, the total speckle intensity A(-G, 2
5crIT/1m).

更に本実施例では電気光学素子31を進行光束中心に対
して90度回転した宿造を有する電気光学素子32全介
することによってY方向の干渉範囲も同様に等測的に短
くしている。これによシ更ニスヘックル強度を約楓に軽
減させている。
Furthermore, in this embodiment, the interference range in the Y direction is similarly shortened isometrically by interposing the electro-optical element 31 entirely through the electro-optical element 32 having a dot rotated by 90 degrees with respect to the center of the traveling light beam. This reduces the heckle strength of the varnish to about that of maple.

第2図は本発明の他の実施例の一部分の説明図で1ちる
。本実施列ではレーザー光束の空間的なX方向の可干渉
範囲がレーザー光束幅よりも短い場合(本実施例でけ猶
)の−例である。
FIG. 2 is a partial explanatory diagram of another embodiment of the present invention. This embodiment is an example in which the spatial coherence range of the laser beam in the X direction is shorter than the width of the laser beam (this is the case in this embodiment).

本実施り1jでは第1図と同様の電気光学素子33を3
つ入射レーザー光束21のX方向の可干渉範囲毎に並列
に配置している。これにより各々のを間範囲において射
出するレーザー光束22によジ生ずるスペックル強it
−軽減させている。又(1)式より明らかのように電気
光学素子の長さtを小さく(本実施列では穐)すること
Kより製造全容易にし、更に結晶によるレーザー光束の
吸収損失金少なくしている。
In this implementation 1j, three electro-optical elements 33 similar to those shown in FIG.
Two laser beams 21 are arranged in parallel for each coherent range of the incident laser beam 21 in the X direction. As a result, the speckle intensity caused by the laser beam 22 emitted in the range between each
-Reduced. Furthermore, as is clear from equation (1), by making the length t of the electro-optical element small (in this embodiment, it is a length), it is easier to manufacture, and furthermore, the absorption loss of the laser beam by the crystal is reduced.

尚8は高電圧発生器、43は電極である。Note that 8 is a high voltage generator and 43 is an electrode.

尚以上の実施例において電気光学素子による偏向角量が
不十分な場合は複数個、直列に並べて史用しても良い。
In the above embodiments, if the amount of deflection angle by the electro-optical element is insufficient, a plurality of electro-optical elements may be arranged in series.

(発明の効果) 本発明によればプリズム型電気光学結晶から成る電気光
学素子に印加する直圧に制御することにより、レーザー
光束の横方向の可干渉範囲?等価的に短くすることが出
来・スペックルの影響による被11べ射面上のH(1度
ムラ全改良した1特に半4本露元装虚に好適な照明光学
系を達成することができる。
(Effects of the Invention) According to the present invention, by controlling the direct pressure applied to the electro-optic element made of a prism-type electro-optic crystal, the lateral coherence range of the laser beam can be increased. It is possible to achieve an illumination optical system that is suitable for 1, especially half-four exposure illumination, which completely improves the H (1 degree unevenness) on the illuminated surface due to the influence of speckle. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は不発明の一実施し1」の9迂路図、第2図は本
発明の池の英鳳りlの一部分の説明スである。 図中1はレーザー発振器、31 、32 、33d谷々
′亀気元′?素子・6,7.8は各々高4圧発生器、4
1 、42 、43は各々4甑、5は照明用ンンズ系、
11 、12 、13 、21 、22はレーザー光束
でろる。
FIG. 1 is a 9-detour diagram of ``Embodiment 1'' of the present invention, and FIG. 2 is a partial explanation of the Ike no Eiho I of the present invention. In the figure, 1 is a laser oscillator, 31, 32, 33d Taniya'Kamekigen'? Elements 6, 7.8 are high 4 pressure generators, 4
1, 42, 43 are each 4 koshi, 5 is a lighting system,
11, 12, 13, 21, and 22 are laser beams.

Claims (4)

【特許請求の範囲】[Claims] (1)可干渉性の良い光源からの光束を用いて照明用レ
ンズ系により被照射面上を照明する際、前記光源と前記
照明用レンズ系との間の光束中にプリズム型電気光学結
晶と電極とを有する電気光学素子を配置し、該電気光学
素子に印加する電圧を前記光源のパルス発光時間内で変
化させることにより前記被照射面に生ずるスペックルを
軽減させたことを特徴とする照明光学系。
(1) When illuminating a surface to be illuminated by an illumination lens system using a light beam from a light source with good coherence, a prismatic electro-optic crystal is included in the light beam between the light source and the illumination lens system. An illumination device characterized in that speckles occurring on the irradiated surface are reduced by arranging an electro-optical element having an electrode and changing the voltage applied to the electro-optical element within the pulse emission time of the light source. Optical system.
(2)前記電気光学素子は互いに光学軸が直交している
2個のプリズム型電気光学結晶を有していることを特徴
とする特許請求の範囲第1項記載の照明光学系。
(2) The illumination optical system according to claim 1, wherein the electro-optic element has two prism-type electro-optic crystals whose optical axes are orthogonal to each other.
(3)前記光源にレーザーを用い、前記電気光学素子を
前記レーザーの進行光束中心に対して互いに90度回転
した位置となるように2個配置したことを特徴とする特
許請求の範囲第1項若しくは第2項記載の照明光学系。
(3) A laser is used as the light source, and two of the electro-optical elements are arranged at positions rotated 90 degrees from each other with respect to the center of the traveling light beam of the laser. Or the illumination optical system according to item 2.
(4)前記光源からの光束の横方向の可干渉範囲に従っ
て、前記電気光学素子を並列に複数個配置したことを特
徴とする特許請求の範囲第1項記載の照明光学系。
(4) The illumination optical system according to claim 1, wherein a plurality of the electro-optical elements are arranged in parallel according to the lateral coherence range of the light beam from the light source.
JP12510086A 1986-05-30 1986-05-30 Illuminating optical system Pending JPS62280818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12510086A JPS62280818A (en) 1986-05-30 1986-05-30 Illuminating optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12510086A JPS62280818A (en) 1986-05-30 1986-05-30 Illuminating optical system

Publications (1)

Publication Number Publication Date
JPS62280818A true JPS62280818A (en) 1987-12-05

Family

ID=14901853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12510086A Pending JPS62280818A (en) 1986-05-30 1986-05-30 Illuminating optical system

Country Status (1)

Country Link
JP (1) JPS62280818A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0516916A2 (en) * 1991-06-03 1992-12-09 Sumitomo Electric Industries, Ltd. Reflectometer for monitoring the fabrication of optical fiber couplers
JP2006126838A (en) * 2004-10-26 2006-05-18 Asml Holding Nv System and method for utilizing electrooptic modulator
JP2010093263A (en) * 2004-12-07 2010-04-22 Asml Holding Nv System utilizing electrooptic modulator
JP2011147178A (en) * 2011-03-30 2011-07-28 Casio Computer Co Ltd Imaging apparatus
US8115938B2 (en) 2008-03-04 2012-02-14 Asml Netherlands B.V. Method of providing alignment marks, device manufacturing method and lithographic apparatus
WO2012137784A1 (en) * 2011-04-05 2012-10-11 株式会社ブイ・テクノロジー Laser illumination device
JP2012220589A (en) * 2011-04-05 2012-11-12 V Technology Co Ltd Laser illumination device
JP2013156555A (en) * 2012-01-31 2013-08-15 V Technology Co Ltd Laser illumination apparatus
KR20190098763A (en) * 2017-01-16 2019-08-22 사이머 엘엘씨 How to reduce speckle in excimer light sources

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0516916A2 (en) * 1991-06-03 1992-12-09 Sumitomo Electric Industries, Ltd. Reflectometer for monitoring the fabrication of optical fiber couplers
US5329600A (en) * 1991-06-03 1994-07-12 Sumitomo Electric Industries, Ltd. Reflection monitor optical fiber coupler manufacturing system and method
JP2006126838A (en) * 2004-10-26 2006-05-18 Asml Holding Nv System and method for utilizing electrooptic modulator
JP4721870B2 (en) * 2004-10-26 2011-07-13 エーエスエムエル ホールディング エヌ.ブイ. System and method utilizing electro-optic modulator
JP2010093263A (en) * 2004-12-07 2010-04-22 Asml Holding Nv System utilizing electrooptic modulator
US7876420B2 (en) 2004-12-07 2011-01-25 Asml Holding N.V. System and method utilizing an electrooptic modulator
US8879045B2 (en) 2004-12-07 2014-11-04 Asml Holding N.V. Method utilizing an electrooptic modulator
US8115938B2 (en) 2008-03-04 2012-02-14 Asml Netherlands B.V. Method of providing alignment marks, device manufacturing method and lithographic apparatus
JP2011147178A (en) * 2011-03-30 2011-07-28 Casio Computer Co Ltd Imaging apparatus
JP2012220589A (en) * 2011-04-05 2012-11-12 V Technology Co Ltd Laser illumination device
WO2012137784A1 (en) * 2011-04-05 2012-10-11 株式会社ブイ・テクノロジー Laser illumination device
CN103703408A (en) * 2011-04-05 2014-04-02 株式会社V技术 Laser illumination device
CN103703408B (en) * 2011-04-05 2016-01-13 株式会社V技术 Laser illuminator system
US9134537B2 (en) 2011-04-05 2015-09-15 V Technology Co., Ltd. Laser lighting device
JP2013156555A (en) * 2012-01-31 2013-08-15 V Technology Co Ltd Laser illumination apparatus
KR20190098763A (en) * 2017-01-16 2019-08-22 사이머 엘엘씨 How to reduce speckle in excimer light sources
JP2020507099A (en) * 2017-01-16 2020-03-05 サイマー リミテッド ライアビリティ カンパニー Speckle reduction in excimer light sources
US11054665B2 (en) 2017-01-16 2021-07-06 Cymer, Llc Reducing speckle in an excimer light source
KR20210103000A (en) * 2017-01-16 2021-08-20 사이머 엘엘씨 Reducing speckle in an excimer light source
KR20220110600A (en) * 2017-01-16 2022-08-08 사이머 엘엘씨 Reducing speckle in an excimer light source
US11686951B2 (en) 2017-01-16 2023-06-27 Cymer, Llc Reducing speckle in an excimer light source

Similar Documents

Publication Publication Date Title
KR100484457B1 (en) Semiconductor exposure apparatus and exposure method, circuit pattern manufacturing method, micro device manufacturing method and exposure device manufacturing method
US4937619A (en) Projection aligner and exposure method
US5048926A (en) Illuminating optical system in an exposure apparatus
JP3007163B2 (en) Photolithography method and apparatus
JP4699908B2 (en) System and method using electro-optic regulator
JPH0561602B2 (en)
JP2005340826A (en) Helical optical pulse stretcher
JPS62280818A (en) Illuminating optical system
KR101109354B1 (en) System for reducing the coherence of laser radiation
JPS61169815A (en) Lighting optical device
US5198837A (en) Laser beam harmonics generator and light exposing device
JPS61212816A (en) Lighting equipment
JPH05166698A (en) Projection photolithographing system
JPH03215930A (en) Lighting device
KR20010025044A (en) Laser pattern generator
JPH07263315A (en) Projection aligner
JP3452057B2 (en) Laser beam harmonic generation apparatus, exposure apparatus using the same, laser beam harmonic generation method, exposure method using the same, and device manufacturing method using the same
JPS61279822A (en) Illuminating optical system
JPS62265722A (en) Optical system for illumination
JP2679337B2 (en) Illumination optical device, exposure apparatus including the same, and exposure method
Allen Laser scanning for semiconductor mask pattern generation
JP2021534460A (en) Pulse stretcher and method
JPH09248686A (en) Laser beam transfer machining device and method therefor
JP2770984B2 (en) Illumination apparatus, projection exposure apparatus, and element manufacturing method
JPS60168133A (en) Illuminating optical device