JPS62280626A - Spectrophotometer for polarized and modulated infrared ray - Google Patents

Spectrophotometer for polarized and modulated infrared ray

Info

Publication number
JPS62280626A
JPS62280626A JP12334786A JP12334786A JPS62280626A JP S62280626 A JPS62280626 A JP S62280626A JP 12334786 A JP12334786 A JP 12334786A JP 12334786 A JP12334786 A JP 12334786A JP S62280626 A JPS62280626 A JP S62280626A
Authority
JP
Japan
Prior art keywords
infrared ray
sample
output
detector
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12334786A
Other languages
Japanese (ja)
Other versions
JPH0663842B2 (en
Inventor
Kinya Eguchi
江口 欣也
Kikue Niitsuma
新妻 喜久枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61123347A priority Critical patent/JPH0663842B2/en
Publication of JPS62280626A publication Critical patent/JPS62280626A/en
Publication of JPH0663842B2 publication Critical patent/JPH0663842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure an infrared ray absorption spectrum with high accuracy by making a modulated infrared ray which is polarized horizontally and vertically by turns incident on a sample, and amplifying a difference in intensity between both polarized light components by a lock-in amplifier and performing data processing. CONSTITUTION:When an infrared ray from a light source 1 is made incident on an optical element 5, a vertical polarizer 5a polarizes the infrared ray linearly and a stress polarizing modulator 5b is subjected to modulation between horizontal polarization and vertical polarization. This modulated infrared ray is reflected by the sample 7 and detected by a detector 9. The output of a terminal 11b of a switch 11 for the output signal of the detector 9 is phase- detected and amplified by the lock-in amplifier 12 and inputted to an A/D converter 15 and the output of a terminal 11c is inputted to the converter 15 through an LPF 13. The inputs of the converter 15 are processed by Fourier transformation and processed by a data processor 17 to remove the influence of noises. Consequently, the infrared ray absorption spectrum of an extremely thin film is measured with high accuracy.

Description

【発明の詳細な説明】 五 発明の詳細な説明 〔産業上の利用分野〕 本発明は赤外分光光度計に係り、特に、摩さがナノメー
トル(nm)オーダの薄膜の赤外吸収スペクトルを測定
するのに好適な偏光fyA赤外分光元度計に関する。
[Detailed Description of the Invention] V. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an infrared spectrophotometer, and in particular, to a method for measuring the infrared absorption spectrum of a thin film with abrasion on the order of nanometers (nm). The present invention relates to a polarization fyA infrared spectrometer suitable for measuring polarization.

〔従来の技術」 第3図に、ロックインアンプを用いた従来の赤外分光光
度計を示す。第3囚において、赤外光源1から放射され
た赤外線は、2枚の平面反射鏡2゜2″で大々偏向され
、平面反射鏡2で偏向された赤外線は試料7で反射され
た後チョッピングミラー19に入射され、平面反射鏡2
′で偏向された赤外線は参照試料(通常は平面鏡)18
で反射された後チョッピングミラ−19に入射される。
[Prior Art] Figure 3 shows a conventional infrared spectrophotometer using a lock-in amplifier. In the third prisoner, the infrared rays emitted from the infrared light source 1 are largely deflected by two plane reflectors 2゜2'', and the infrared rays deflected by the plane reflectors 2 are reflected by the sample 7 and then chopped. The light is incident on the mirror 19, and the plane reflecting mirror 2
The infrared rays deflected by the reference sample (usually a plane mirror) 18
After being reflected by the beam, the beam is incident on the chopping mirror 19.

チョッピングミラー19は、斜線で示した部分が反射鏡
罠なっておシ、他の部分は光がそのまま透過するように
なっている。このチョッピングミラー19の回転により
、試料7からの赤外線と参照試料18からの赤外線とは
交互に回折格子20に入射される。回折格子20は赤外
光を各波長毎に分散し、検出器9は分散された赤外光を
検出する。即ち、試料7からの赤外線と参照試料18か
らの赤外線は光の強度が異なるため、検出器9は強度違
いが周期的に現われる信号を検出する。そして、ロック
インアンプ12がこの周期的に現れる信号を位相検波し
て増幅し、A/D変換器15とデータ処理器17でデー
タ処理をする・ 尚、ロックインアンプを用いる従来の赤外分光光度計に
関連するものとして、例えば特開昭57−+ 6558
号かめる。
In the chopping mirror 19, the hatched portion is a reflecting mirror trap, and the other portions are configured to allow light to pass through as is. Due to this rotation of the chopping mirror 19, the infrared rays from the sample 7 and the infrared rays from the reference sample 18 are alternately incident on the diffraction grating 20. The diffraction grating 20 disperses the infrared light into wavelengths, and the detector 9 detects the dispersed infrared light. That is, since the infrared rays from the sample 7 and the infrared rays from the reference sample 18 have different light intensities, the detector 9 detects a signal in which a difference in intensity appears periodically. Then, the lock-in amplifier 12 phase-detects and amplifies this periodically appearing signal, and the A/D converter 15 and data processor 17 process the data.In addition, conventional infrared spectroscopy using a lock-in amplifier Regarding photometers, for example, Japanese Patent Application Laid-open No. 57-+6558
Carry the number.

〔894が解決しようとする問題点〕 第6図に示す従来技術では、平面鏡2.2′を用いて元
w1を2分割し、−万の光路中に試料7を置き、他方の
光路中に参照試料18を置いている。
[Problems to be solved by 894] In the conventional technique shown in FIG. A reference sample 18 is placed.

これは、試料7を通る赤外線中Ktまれる試料信号及び
これに重畳するノイズから、参照試料を通る赤外線中に
會まれるノイズを相殺するためでるり、ロックインアン
プ12は試料信号に相当する光の強度差分たけ大きく増
幅する。
This is done in order to cancel out the noise generated in the infrared rays passing through the reference sample from the sample signal Kt generated in the infrared rays passing through the sample 7 and the noise superimposed thereon, and the lock-in amplifier 12 corresponds to the sample signal. It amplifies the difference in light intensity.

上記ノイズは、王として測定系に存在する水蒸気や炭酸
ガス等の様々な物質に起因し、2枚の分割ミラー2.2
′の反射率の不一致2分割した光路長の不一致、チ嘗ツ
ビングミラ−19の反射率等によって両党路中に含まれ
るノイズの大きさが異なってくる。上述し次光路長1反
対車の不一致等の問題は完全に除去することが困難であ
る〇このため、従来の赤外分元元置計では、厚さナノメ
ートル(nm)オーダの薄膜や吸着物について高精度の
赤外吸収スペクトルの測定ができないという問題がある
〇 本発明の目的は、測定系から生ずる試料に関係しない信
号を完全に除き、試料に係る信号による赤外吸収スペク
トルのみを高感度に測定する偏光変調赤外分光ill計
を提供することにある。
The above noise is mainly caused by various substances such as water vapor and carbon dioxide present in the measurement system.
The amount of noise contained in the two paths differs depending on the mismatch in the length of the optical path divided into two, the reflectance of the checking mirror 19, etc. It is difficult to completely eliminate the problems such as the discrepancy between the optical path length and the opposite wheel as described above.For this reason, conventional infrared spectrometers cannot handle thin films with a thickness on the order of nanometers (nm) or adsorption. There is a problem that it is not possible to measure infrared absorption spectra with high precision for objects.The purpose of the present invention is to completely eliminate signals that are generated from the measurement system and are not related to the sample, and to enhance only the infrared absorption spectra caused by signals related to the sample. An object of the present invention is to provide a polarization modulation infrared spectrometer that measures sensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、赤外線を水平偏光と垂直偏光に交互して変
調する光学素子と、該光学素子から射出した変調赤外層
を試料に当てて得られ九赤外線を検出して電気信号に換
える検出器と、該検出器から出力される信号を位相検波
して増幅する増幅手段と、前記検出器から出力される信
号のうち変調赤外線の変調周波数成分を除くフィルタ手
段と。
The above purpose is to provide an optical element that alternately modulates infrared rays into horizontally polarized light and vertically polarized light, and a detector that detects the nine infrared rays obtained by applying the modulated infrared layer emitted from the optical element to a sample and converts them into electrical signals. , an amplifying means for phase-detecting and amplifying a signal output from the detector, and a filter means for removing a modulated frequency component of modulated infrared rays from the signal output from the detector.

前記検出器の出力信号を前記増幅手段あるいは前記フィ
ルタ手段に交互に入力するスイッチ手段と。
switch means for alternately inputting the output signal of the detector to the amplification means or the filter means;

前記ロックインアンプの出力信号と前記フィルタ手段の
出力信号とから前記試料の赤外線吸収スペクトル信号を
取り出して処理するデータ処理手段とで赤外分光光度計
を構成することで達成される。
This is achieved by configuring an infrared spectrophotometer with data processing means for extracting and processing an infrared absorption spectrum signal of the sample from the output signal of the lock-in amplifier and the output signal of the filter means.

〔作用〕[Effect]

水平偏光と垂直偏光を交互にとる変調赤外線が試料に入
射すると、試料の化学構造に応じた波長の元の吸収が水
平偏光で起こり、垂直偏光と水平偏光との間に強度差が
生じる。この強度差を増幅手段1例えばロックインアン
プで増幅しデータ処理することで試料の赤外吸収スペク
トルが得られる。光学索子から射出される水平偏光と垂
直偏光の強度が全く同一であれは、この赤外吸収スペク
トルにはmj定系のノイズは含まれない。しかし、実際
には光学素子から射出される水平偏光と垂直偏光には強
度差がある丸め、fM記赤外吸収スペクトルにはノイズ
が重量されている。そこで、本発明では、フィルタ手段
により、変調周波数成分を除いた信号、即ち、試料信号
を含まない界囲気中の水蒸気、炭酸ガス等に起因するノ
イズのみを別に取り出し、これを考慮して増幅手段、例
えばロックインアンプの出力信号をデータ処理すること
で高精度な赤外吸収スペクトルを得る。
When modulated infrared light that alternates between horizontally and vertically polarized light is incident on a sample, the original absorption of the wavelength depending on the chemical structure of the sample occurs in the horizontally polarized light, creating an intensity difference between the vertically and horizontally polarized light. The infrared absorption spectrum of the sample can be obtained by amplifying this intensity difference using the amplifying means 1, such as a lock-in amplifier, and processing the data. If the intensities of the horizontally polarized light and the vertically polarized light emitted from the optical probe are exactly the same, this infrared absorption spectrum does not include mj-constant noise. However, in reality, the horizontally polarized light and the vertically polarized light emitted from the optical element are rounded and have a difference in intensity, and the fM infrared absorption spectrum is heavily contaminated with noise. Therefore, in the present invention, the signal excluding the modulation frequency component, that is, only the noise caused by water vapor, carbon dioxide gas, etc. in the surrounding air, which does not include the sample signal, is extracted separately by the filter means, and the amplification means takes this into account. For example, a highly accurate infrared absorption spectrum can be obtained by data processing the output signal of a lock-in amplifier.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図を参照して
説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明の一実施例に係る偏光変調赤外反射分光
光度針の構成図である。第1図において。
FIG. 1 is a configuration diagram of a polarization modulated infrared reflection spectrophotometer needle according to an embodiment of the present invention. In FIG.

光源1から出た赤外線は放物面反射鏡2で平行光にされ
、マイケルンル干渉計3に入る。マイヶルンン干渉計3
から射出された赤外縁は放物面反射vR4で集光され、
光学索子5に入射される。
Infrared light emitted from a light source 1 is made into parallel light by a parabolic reflector 2 and enters a Michael-Enle interferometer 3. Maikarun interferometer 3
The infrared edge emitted from is focused by parabolic reflection vR4,
The light is incident on the optical probe 5.

光学素子5は、本実施例では垂直偏光変光子5aと1例
えば複屈折性セレン化亜鉛の結晶で作られる応力偏光変
調子5bから成る。垂直偏光変光子5aは入射する赤外
光を直線偏光に整え、応力偏光変調子5bはこの直線偏
光の偏光面を回転させ、水平偏光と垂直偏光との間を変
調させる。
In this embodiment, the optical element 5 comprises a vertical polarization modulator 5a and a stress polarization modulator 5b made of birefringent zinc selenide crystal, for example. The vertical polarization modulator 5a arranges the incident infrared light into linearly polarized light, and the stress polarization modulator 5b rotates the plane of polarization of this linearly polarized light to modulate between horizontally polarized light and vertically polarized light.

この様に変調された赤外光は、次に、金属板上に被着さ
れた薄膜試料7に入射され、試料7で反射された赤外光
は放物面反射鏡8で再び集光されたあと検出器9で検出
される。
The infrared light modulated in this way is then incident on a thin film sample 7 deposited on a metal plate, and the infrared light reflected by the sample 7 is focused again by a parabolic reflector 8. After that, it is detected by the detector 9.

検出器9の出力信号は、プレアンプ10を介し同軸ケー
ブルでスイッチ11の入力端子leaに入力される。ス
イッチ11は2つの―力端子11b、++cを備え、後
述するデータ処理装置17からの制御信号により入力端
子+1aと出力端子Ml)またはllcとを切換接続す
る。
The output signal of the detector 9 is inputted to the input terminal lea of the switch 11 via a preamplifier 10 and a coaxial cable. The switch 11 has two - terminals 11b and ++c, and switches and connects the input terminal +1a and the output terminal Ml) or llc in response to a control signal from a data processing device 17, which will be described later.

スイッチ11の出力端子l11)から出力される検出器
9の出力信号は、ロックインアンプ12で位相検波され
増幅されてから、ポテンショスタット、可f抵抗器等で
構成したアッテネータ14を介してに/DK換器15に
入力される。−万、スイッチ11の出力端子+10から
出力される検出器9の出刃信号は、例えばI OKHz
以下を通すローパスフィルタ13を通った後、A/D変
換器15に入力される。
The output signal of the detector 9 output from the output terminal l11) of the switch 11 is phase-detected and amplified by the lock-in amplifier 12, and then outputted via the attenuator 14, which is composed of a potentiostat, a variable f resistor, etc. The signal is input to the DK converter 15. - 10,000, the output signal of the detector 9 output from the output terminal +10 of the switch 11 is, for example, I OKHz.
After passing through a low-pass filter 13 that passes the following, it is input to an A/D converter 15.

A/Di換器15に入力された信号はフーリエ変換処理
器16でフーリエ変換されデータ処理器17に送られて
処理される。
The signal input to the A/Di converter 15 is Fourier transformed by a Fourier transform processor 16 and sent to a data processor 17 for processing.

斯かる構成により、ニッケル金属板上に付けた厚さ5n
mのポリイミドインドロキナゾリンジオン試料の赤外吸
収スペクトルを調べた例について述べる。
With such a configuration, a thickness of 5 nm deposited on a nickel metal plate is obtained.
An example of investigating the infrared absorption spectrum of a polyimide indoloquinazolinedione sample of m.

試料7に光学索子5から射出したに調赤外元を照射する
と、変調赤外光のうち水平偏光では試料7の化学構造に
応じて光の吸収が起こり、垂直偏光では起きない。この
水平偏光、垂直偏光の測定系に存在する水蒸気や炭酸ガ
ス等の物質による吸収残置は同じである。従って、ロッ
クインアンプ12は、理想的にはノイズを増幅せず試料
信号のみを増幅することになるが、笑際には、光学索子
5から射出される変調赤外光の水平偏光と垂直偏光の@
度が同一でないので、ロックインアンプ12の出力をA
/Di換しフーリエ変換して得た赤外吸収スペクトルB
aaは、第3図に示すように、ノイズが重量した信号と
なる。
When the sample 7 is irradiated with the modulated infrared light emitted from the optical probe 5, horizontally polarized light of the modulated infrared light is absorbed depending on the chemical structure of the sample 7, but vertically polarized light is not absorbed. The absorption and residual absorption by substances such as water vapor and carbon dioxide gas present in the horizontally polarized light and vertically polarized light measurement systems is the same. Therefore, ideally, the lock-in amplifier 12 would amplify only the sample signal without amplifying noise, but in actuality, the lock-in amplifier 12 may Polarized @
Since the degrees are not the same, the output of lock-in amplifier 12 is set to A.
/Di exchange and Fourier transform infrared absorption spectrum B
As shown in FIG. 3, aa becomes a signal with heavy noise.

一力、検出器9の出力信号をローパスフィルタ13を通
すと、該信号から変調信号即ち試料信号を除いたノイズ
のみの信号が得られる。このため、ローパスフィルタ1
3の出力をA/D変換しフーリエ変換し良信号&icは
、第3図に示すような信号となる。
First, when the output signal of the detector 9 is passed through the low-pass filter 13, a signal containing only noise is obtained by removing the modulation signal, that is, the sample signal. Therefore, the low-pass filter 1
The output of No. 3 is A/D converted and Fourier transformed, resulting in a good signal &ic as shown in FIG.

そこで、データ処理装置17でBac / Bdcの値
をとることにより、ノイズの影響を排除することが可能
となる。第6図に示すように、本実施例によれば5nm
の超薄膜の測定ができる。
Therefore, by taking the value of Bac/Bdc in the data processing device 17, it becomes possible to eliminate the influence of noise. As shown in FIG. 6, according to this example, 5 nm
Ultra-thin films can be measured.

上述した測定において1例えば表面が黒い試料や凹凸が
大きい試料では、Bacに比べBacが著しく小さくな
シ、一般のフーリエ変換赤外分光々度計についたデータ
処理装置では対応出来なくなる。
In the above-mentioned measurement, for example, in the case of a sample with a black surface or a sample with large irregularities, Bac is significantly smaller than Bac, and the data processing device attached to a general Fourier transform infrared spectrophotometer cannot handle it.

斯かる場合は、アッテネータ14を調節してBaaを減
衰さぜることにより対処する。また、BacとBdcの
スペクトルは全く閤−の時間に測定することが好ましい
。しかし、現実には無理がある丸め、スイッチ11を切
換えてBaa、 Bacを夫々又互に数10(ロ)積算
することで測定精度の向上を図るようにしている。
Such a case can be dealt with by adjusting the attenuator 14 to attenuate Baa. Furthermore, it is preferable that the Bac and Bdc spectra be measured at exactly the same time. However, in reality, rounding is impossible, and the measurement accuracy is improved by switching the switch 11 and integrating Baa and Bac by a number of 10 (b).

〔発明の効果〕〔Effect of the invention〕

本発明によれば、光路を分割しないため薄膜試料以外の
反射鏡や大気中の水蒸気や炭酸ガス又は応力偏光変調子
などの影響を全く除く事ができるので、nmオーダーの
極めて薄い層の赤外吸収スペクトルでも高感度に測定す
ることが出来る効果がある。
According to the present invention, since the optical path is not divided, it is possible to completely eliminate the effects of reflective mirrors other than the thin film sample, atmospheric water vapor, carbon dioxide gas, stress polarization modulators, etc. It also has the effect of allowing highly sensitive measurement of absorption spectra.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る偏光変調赤外反射分光
光度計の構成図、第2図は第1図に示す偏光変調赤外反
射分光光度計で5run厚のポリイミドインドロキナゾ
リンジオン試料を測定したときの測定グラフ、第3図は
従来の赤外分光″It、度計の構成図である。 1・・・赤外光光源、2・・・放物面反射鏡、3・・・
マイケルンン干渉計、4・・・放物面反射鏡、5・・・
光学素子、5a・・・垂直偏光変元子、 ・・・応力偏
光変調子、7・・・試料、8・・・放物面反射鏡、9・
・・検出器、1゜・・・プレアンプ、11・・・自動切
換スイッチ、12・・・ロックインアンプ、16・・・
ローパスフィルタ、14・・・アッテネータ、15・・
・A/DK換器、16・・・フ−リエ変換器、17・・
・データ処理装置〇箪 1 図
FIG. 1 is a block diagram of a polarization modulation infrared reflection spectrophotometer according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a polarization modulation infrared reflection spectrophotometer shown in FIG. The measurement graph when measuring a sample, and Figure 3 is a configuration diagram of a conventional infrared spectrometer. 1. Infrared light source, 2. Parabolic reflector, 3.・・・
Michael interferometer, 4... parabolic reflector, 5...
Optical element, 5a... Vertical polarization variable element,... Stress polarization modulator, 7... Sample, 8... Parabolic reflector, 9...
...Detector, 1゜...Preamplifier, 11...Automatic changeover switch, 12...Lock-in amplifier, 16...
Low-pass filter, 14... Attenuator, 15...
・A/DK converter, 16...Fourier converter, 17...
・Data processing equipment 〇箪 1 diagram

Claims (1)

【特許請求の範囲】[Claims] 1、赤外線を水平偏光と垂直偏光との間で変調する光学
素子と、該光学素子から射出した変調赤外光を試料に当
てて得られた赤外光を検出する検出器と、該検出器出力
を位相検波して増幅する手段と、前記検出器出力のうち
変調赤外光の変調周波数成分を除去するフィルタ手段と
、前記検出器出力を前記増幅手段または前記フィルタ手
段に交互に入力するスイッチ手段と、前記増幅手段から
の出力と前記フィルタ手段からの出力より前記試料の信
号を取り出して処理するデータ処理手段とを備えてなる
ことを特徴とする偏光変調赤外分光光度計。
1. An optical element that modulates infrared light between horizontally polarized light and vertically polarized light, a detector that detects the infrared light obtained by applying the modulated infrared light emitted from the optical element to a sample, and the detector. means for phase-detecting and amplifying the output; filter means for removing the modulated frequency component of the modulated infrared light from the detector output; and a switch for alternately inputting the detector output to the amplification means or the filter means. A polarization modulation infrared spectrophotometer comprising: means for extracting and processing a signal of the sample from the output from the amplification means and the output from the filter means.
JP61123347A 1986-05-30 1986-05-30 Polarization modulation infrared spectrophotometer Expired - Lifetime JPH0663842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61123347A JPH0663842B2 (en) 1986-05-30 1986-05-30 Polarization modulation infrared spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61123347A JPH0663842B2 (en) 1986-05-30 1986-05-30 Polarization modulation infrared spectrophotometer

Publications (2)

Publication Number Publication Date
JPS62280626A true JPS62280626A (en) 1987-12-05
JPH0663842B2 JPH0663842B2 (en) 1994-08-22

Family

ID=14858316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61123347A Expired - Lifetime JPH0663842B2 (en) 1986-05-30 1986-05-30 Polarization modulation infrared spectrophotometer

Country Status (1)

Country Link
JP (1) JPH0663842B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216221A (en) * 1988-02-24 1989-08-30 Nec Corp Characteristic measuring instrument for semiconductor laser
WO1999030134A1 (en) * 1997-12-08 1999-06-17 The Government Of The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Multi-gas sensor
CN103048047A (en) * 2011-10-11 2013-04-17 中国科学院微电子研究所 Phase element containing normal incident broadband polarized spectrometer and optical measurement system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED SPECTROSCOPY=1979 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01216221A (en) * 1988-02-24 1989-08-30 Nec Corp Characteristic measuring instrument for semiconductor laser
WO1999030134A1 (en) * 1997-12-08 1999-06-17 The Government Of The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration (Nasa) Multi-gas sensor
CN103048047A (en) * 2011-10-11 2013-04-17 中国科学院微电子研究所 Phase element containing normal incident broadband polarized spectrometer and optical measurement system

Also Published As

Publication number Publication date
JPH0663842B2 (en) 1994-08-22

Similar Documents

Publication Publication Date Title
US6384916B1 (en) Parallel detecting, spectroscopic ellipsometers/polarimeters
US5737076A (en) Method and apparatus for determining substances and/or the properties thereof
US8049881B2 (en) Optical analysis system and methods for operating multivariate optical elements in a normal incidence orientation
US6052188A (en) Spectroscopic ellipsometer
US20050083523A1 (en) Light processor providing wavelength control and method for same
JP2000515247A (en) Broadband spectral rotation compensator ellipsometer
US5821536A (en) Solid state infrared gauge
WO2007061436A1 (en) Self calibration methods for optical analysis system
JPH054606B2 (en)
US4309110A (en) Method and apparatus for measuring the quantities which characterize the optical properties of substances
US5625455A (en) Rotating analyzer ellipsometer and ellipsometry technique
JP3311497B2 (en) Fourier transform spectral phase modulation ellipsometry
US7023546B1 (en) Real-time imaging spectropolarimeter based on an optical modulator
JPS62280626A (en) Spectrophotometer for polarized and modulated infrared ray
JPS62266439A (en) Spectral temporary optical analyzer
Chandrasekhar et al. Double-beam fourier spectroscopy with interferometric background compensation
JP2003139512A (en) Thickness and moisture measuring method and thickness and moisture measuring device
JP4195841B2 (en) Infrared circular dichroism spectrophotometer
JPH05196502A (en) Polarization-demodulation spectroscope
Vishnyakov et al. Measuring the angle of rotation of the plane of polarization by differential polarimetry with a rotating analyzer
US5210417A (en) Modulated high sensitivity infrared polarimeter
WO2004104563A1 (en) Spectrometer
JPS60117119A (en) Measurement and apparatus of reflected infrared absorption spectrum
WO2001063231A1 (en) Dual circular polarization modulation spectrometer
US4272197A (en) Apparatus and method for measuring the ratio of two signals