JPS62280505A - Feedwater heater - Google Patents
Feedwater heaterInfo
- Publication number
- JPS62280505A JPS62280505A JP12125786A JP12125786A JPS62280505A JP S62280505 A JPS62280505 A JP S62280505A JP 12125786 A JP12125786 A JP 12125786A JP 12125786 A JP12125786 A JP 12125786A JP S62280505 A JPS62280505 A JP S62280505A
- Authority
- JP
- Japan
- Prior art keywords
- steam
- tube
- feed water
- water heater
- drain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 53
- 238000010438 heat treatment Methods 0.000 description 13
- 230000007423 decrease Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Resistance Heating (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
3、発明の詳細な説明
〔産業上の利用分野〕
本発明は火力及び原子カプラントの給水加熱器に係り、
肩体内圧力損失が低減され、底部ドレン水位が安定する
事により熱交換性能が大幅に改善された給水加熱器に関
するものである。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a feed water heater for thermal power and nuclear couplants,
This invention relates to a feed water heater that has greatly improved heat exchange performance by reducing pressure loss within the shoulder body and stabilizing the bottom drain water level.
従来の火力、原子カプラントにおける給水加熱器は特願
昭58−35395号に記載の如く管支持板が上下に交
互に設置され、胴体内を蒸気が蛇行して流れる構造とな
っていた。本構造においては蒸気側の圧力損失が大きく
、熱交換性能が大幅に低下するという不具合が有った。As described in Japanese Patent Application No. 58-35395, a conventional feed water heater for a thermal power or atomic couplant has a structure in which tube support plates are alternately installed above and below, and steam flows in a meandering manner within the body. This structure had a problem in that the pressure loss on the steam side was large and the heat exchange performance was significantly reduced.
従来技術による給水加熱器の1例を第4図について説明
する。図において給水は給水入口管台2から水室1内に
入り、U字形加熱管5を通って給水出口管台3から送出
される様になっている。上記U字形加熱管5は複数本設
けられて管群を形成しており、管板4を貫通して水室1
に開口すると共に、管支持板6,6′およびタイロッド
7によって、胴体9に対して支持されている。管支持板
6.6′は1個おきに上下に設置され、管群を支持する
と共に蒸気流路を蛇行流となる様に案内する役目を有し
ている。よってタービンから抽気された加熱蒸気は蒸気
入口管台1oから器内に入り、胴体前後方向に2分され
た流れとなって各々の終端ベント排出口8,8′まで流
動する。これらの加熱蒸気は管群の各管5の表面に接触
して、管中を流れる給水との間で熱交換を行ない凝縮し
てドレン12となって器内底部に溜り、ドレン出口14
から排出される。An example of a feed water heater according to the prior art will be described with reference to FIG. In the figure, the water supply enters the water chamber 1 from the water supply inlet nozzle 2, passes through the U-shaped heating pipe 5, and is sent out from the water supply outlet nozzle 3. A plurality of the U-shaped heating tubes 5 are provided to form a tube group, and penetrate through the tube plate 4 into the water chamber 1.
It is open to the body 9 and supported by tube support plates 6, 6' and tie rods 7. Tube support plates 6,6' are placed one above the other and have the role of supporting the tube group and guiding the steam flow path so that it becomes a meandering flow. Therefore, the heated steam extracted from the turbine enters the vessel from the steam inlet nozzle 1o, becomes a flow divided into two in the longitudinal direction of the fuselage, and flows to each terminal vent outlet 8, 8'. These heated steam comes into contact with the surface of each tube 5 of the tube group, exchanges heat with the feed water flowing through the tubes, condenses, becomes drain 12 and accumulates at the bottom of the vessel, and drains through drain outlet 14.
is discharged from.
上記従来構造の給水加熱器では、蒸気流入量の約半分の
大量蒸気が胴体前後の管巣内に向って流動する為、蒸気
側の圧力損失が大きくなり器内圧力の低下と胴体下部ド
レンの水位勾配置5を発生させる。In the feedwater heater with the conventional structure described above, a large amount of steam, which is about half of the steam inflow, flows into the tube nests at the front and rear of the fuselage, resulting in a large pressure loss on the steam side, resulting in a decrease in the internal pressure and a decrease in the lower fuselage drain. A water level gradient position 5 is generated.
第9図に示した温度線図において、器内圧力の低下は抽
気圧力の本来の圧力に対する飽和温度TSから飽和温度
TS’ に低下させ、給水との温度差を減少させる、給
水加熱器の伝熱容量はこの温度差の対数平均値に比例す
る為器内圧力の低下は給水加熱器性能の低下を招く。よ
って圧力損失は出来るだけ少なくする事が性能改善の為
に有効である。また胴体下部ドレンの水位勾配の発生は
水位高の個所にて加熱管の没水を招き、加熱面積の減少
となる為、器内圧力低下と共に給水加熱器の性能低下要
因となる。In the temperature diagram shown in Fig. 9, the decrease in pressure inside the vessel causes the bleed pressure to drop from the saturation temperature TS to the saturation temperature TS' with respect to the original pressure, reducing the temperature difference with the feed water heater. Since the heat capacity is proportional to the logarithmic average value of this temperature difference, a decrease in the internal pressure causes a decrease in the performance of the feed water heater. Therefore, it is effective to reduce pressure loss as much as possible to improve performance. In addition, the occurrence of a water level gradient in the lower fuselage drain causes the heating tube to be submerged in water at locations where the water level is high, reducing the heating area, which causes a decrease in the internal pressure and a decrease in the performance of the feedwater heater.
これら性能低下要因をM消すべく蒸気流動を蛇行流とせ
ず、各管巣セクションに等分に分配する平行流の採用を
計る工夫も為されているが、平行流においても加熱蒸気
が胴体内断面積の慣性力によって蒸気入口直下の胴体底
部に衝突し、圧力損失の増大ならびに水位勾配を発生さ
せる事が判明した。In order to eliminate these performance deterioration factors, efforts have been made to adopt a parallel flow that distributes the steam evenly to each tube nest section instead of making it a meandering flow. It was found that due to the inertial force of the area, it collided with the bottom of the fuselage directly below the steam inlet, causing an increase in pressure loss and a water level gradient.
蒸気の流入時慣性力による圧力損失増大と水位勾配発生
について第5図及び第6図を参照して説明する。The increase in pressure loss and the generation of a water level gradient due to inertial force when steam flows in will be explained with reference to FIGS. 5 and 6.
@5図は、第4図について既に述べたように蒸気管台1
0から導入した加熱蒸気を蛇行させるように管支持板6
,6′を交互に上下にズラせて配列した給水加熱器を模
式的に描いである。11は、加熱蒸気が直接的に伝熱管
5に衝突しないように設けた衝撃防止板である。@Figure 5 shows the steam pipe stand 1 as already mentioned in Figure 4.
Pipe support plate 6 so as to meander the heated steam introduced from 0
, 6' are schematically arranged in such a way that they are alternately arranged vertically. Reference numeral 11 denotes an impact prevention plate provided to prevent heated steam from directly colliding with the heat exchanger tubes 5.
第6図は前述の平行流式に工夫を施した給水加熱器を模
式的に描いである。FIG. 6 schematically depicts a feed water heater modified from the parallel flow type described above.
第6図に示すごとく、加熱蒸気は蒸気入口管台10から
胴体内に流入し、その流速は50〜60m/sと高速で
ある。各管巣セクション16が消費する蒸気量は決まっ
ている為、蒸気が胴体内に流入した後は胴体の長手方向
に速やかに分配されて各管巣に吸収されるものと考えら
れていたが、蒸気流動実験を実施した結果、蒸気は流入
時の50〜60m/sの高速による慣性力のため、全量
に近い蒸気17が蒸気流入個所直下の管巣セクション1
6に一旦流入し1M4体下部において衝突した後、各管
巣セクションに再分配される事が判明した。更に、この
現象の為、胴体内圧力損失が増大し、かつ、蒸気入口直
下のドレン水位が局部的に低下してその他の個所の水位
を上昇させ、加熱管の1部を没水させる事が判明した。As shown in FIG. 6, heated steam flows into the body from the steam inlet nozzle 10, and its flow velocity is as high as 50 to 60 m/s. Since the amount of steam consumed by each tube nest section 16 is fixed, it was thought that once the steam entered the fuselage, it would be quickly distributed in the longitudinal direction of the fuselage and absorbed into each tube nest. As a result of a steam flow experiment, it was found that due to the inertial force caused by the high speed of 50 to 60 m/s when steam flows in, nearly the entire amount of steam 17 flows into tube nest section 1 directly below the steam inflow point.
It was found that after entering the 1M4 body and colliding with the lower part of the 1M4 body, it was redistributed to each tube nest section. Furthermore, due to this phenomenon, the pressure loss inside the fuselage increases, and the drain water level directly below the steam inlet drops locally, causing the water level in other locations to rise, causing a portion of the heating tube to be submerged. found.
本発明は上述の研究結果に基づいて為されたもので、導
入した高速蒸気流の慣性による悪影響を防止して、蒸気
入口直下のドレンを局部的に低下させて其他個所のドレ
ン水位を上昇させる虞れが無く、しかも胴体内における
圧力損失の少ない給水加熱器を提供しようとするもので
ある。The present invention was made based on the above research results, and prevents the adverse effects of the inertia of the introduced high-speed steam flow, thereby locally lowering the drain directly below the steam inlet and raising the drain water level in other locations. It is an object of the present invention to provide a feed water heater that is safe and has less pressure loss in the body.
f55図の蛇行流形に比して第6図の平行流形は胴体内
の圧力損失が少ないが、加熱蒸気入口直下のドレン水面
を押し下げるという不具合が顕著である。本発明は、上
記のドレン水面押し下げ現象が、「管巣の閉じら九た部
屋jに加熱蒸気が流入することに起因するとの推定に基
づき、管巣側部の蒸気流路断面積を変化させて実験した
ところ。Compared to the meandering flow type shown in Fig. f55, the parallel flow type shown in Fig. 6 has less pressure loss in the body, but it has a noticeable problem of pushing down the drain water level directly below the heating steam inlet. The present invention changes the cross-sectional area of the steam flow path on the side of the tube nest based on the assumption that the above-mentioned phenomenon of pushing down the drain water level is caused by heated steam flowing into the closed chamber of the tube nest. I did an experiment.
該流路断面が成る値(ITFJの断面積に対する比率)
以上となったとき圧力損失が著しく改善されることを発
見した。この法則性について、第7図及び@8図を参照
しつつ、次に詳述する。Value of the cross section of the flow path (ratio to the cross-sectional area of ITFJ)
It was discovered that when the above conditions were met, the pressure loss was significantly improved. This law will be described in detail below with reference to FIGS. 7 and 8.
7図の平行斜線ハツチング部分30(管群31とドレン
32とを除いた胴体内断面′!1t)をパラメータA3
と呼ぶ。第8図蒸気通路ハツチング部33(管支持板6
とドレン32とを除いた胴体内断面積)をパラメータA
4と呼ぶ。A4とA3との比率α= A 4 / A
aは、実験結果圧力損失の増減に関係する事が判明した
。Parallel hatched part 30 in Figure 7 (fuselage internal cross section '!1t excluding tube group 31 and drain 32) is set to parameter A3.
It is called. FIG. 8 Steam passage hatching part 33 (pipe support plate 6
and the internal cross-sectional area of the fuselage excluding the drain 32) is defined as parameter A.
Call it 4. Ratio α of A4 and A3 = A 4 / A
As a result of experiments, it was found that a is related to an increase or decrease in pressure loss.
第10図は実験結果の一例を示す、蒸気流入個所(矢印
で示す)の直下部付近では圧力が上昇し、その他の個所
にて圧力勾配を生じている事がわかる。なお圧力変動量
は前述パラメータ(α= A 4/Aδ)が小さい程大
きくなり、α値が大きい程小さくなり、α値の増大つま
り蒸気側部通路面積A4が増大するにつれ圧力損失が緩
和されるという事がわかる。そこで、α値の経済的な適
値を求めるべく、α値と圧力損失との関係を第11図の
如く整理する事により、α値を約0.24以上にすると
圧力損失が大幅に解消する事が判明した。FIG. 10 shows an example of the experimental results. It can be seen that the pressure increases near the point directly below the steam inflow point (indicated by the arrow), and a pressure gradient occurs at other points. Note that the amount of pressure fluctuation increases as the aforementioned parameter (α = A4/Aδ) is smaller, and decreases as the α value increases, and as the α value increases, that is, the steam side passage area A4 increases, the pressure loss is alleviated. I understand that. Therefore, in order to find an economically appropriate value for the α value, we organized the relationship between the α value and the pressure loss as shown in Figure 11, and found that when the α value is set to approximately 0.24 or more, the pressure loss is largely eliminated. It turned out.
よっである給水加熱器管巣に対し圧力損失を充分低減出
来る最適胴体直径を決定するにはα=0.24を勘考し
て設計すれば良い事がわかる。Therefore, it can be seen that in order to determine the optimum body diameter that can sufficiently reduce the pressure loss for a given feed water heater tube nest, it is sufficient to design it by considering α=0.24.
なお、従来における火力及び原子力発電プラントにおけ
る給水加熱器の胴長と胴径の比率は一般に5倍から8倍
程度であり、側部蒸気流路比は0.1〜0.17程度で
あるから、これらにおいてα=0.24 という条件
は適用可能である。Note that the ratio of the body length and body diameter of feed water heaters in conventional thermal and nuclear power plants is generally about 5 to 8 times, and the side steam flow path ratio is about 0.1 to 0.17. , the condition α=0.24 is applicable in these cases.
また給水加熱器は経済性を考慮して胴体内に出来るだけ
多量の加熱管を設置する為、一般に管巣外周は胴体内径
に沿って円柱面状に構成される。In addition, in order to install as many heating tubes as possible in the body of the feed water heater considering economic efficiency, the outer periphery of the tube nest is generally configured in a cylindrical shape along the inner diameter of the body.
この為、管巣外周部の蒸気通路面積が減少しており、そ
れに加えて管支持板によって更に蒸気通路面精が減少さ
れる為、側部蒸気流路比は従来一般4、:0.10−0
.17 (10%〜17%)程度となっている。For this reason, the steam passage area on the outer periphery of the tube nest is reduced, and in addition, the steam passage area is further reduced by the tube support plate, so the side steam passage ratio is conventionally 4:0.10. -0
.. 17 (10% to 17%).
これら条件の給水加熱器を側部蒸気流路比α=0.24
(24%)以上に改善すれば1本発明が目的とする
効果であるところの、胴内圧力損失の非常に少ない高性
能の給水加熱器が得られる。The feed water heater under these conditions has a side steam flow path ratio α=0.24.
(24%) or more, a high-performance feed water heater with extremely low in-shell pressure loss, which is the desired effect of the present invention, can be obtained.
上に述べたように側路蒸気流路比を従来よりも大きくと
ると、第6図における側部蒸気流34の流量が大となる
。この流量を適正に設定すると。As described above, if the side steam flow path ratio is made larger than the conventional one, the flow rate of the side steam flow 34 in FIG. 6 becomes large. If you set this flow rate appropriately.
蒸気入口から流入した蒸気が蒸気入口直下の管巣セクシ
ョンに流入した時、動圧を上昇させる前に十分な面積を
有する側部流路に蒸気が移動分配されることになり、こ
の結果圧力損失の増大ならびに水位勾配の増大が解消さ
れ、性能効率の大幅な改善である平行流構造が採用可能
となる。When steam inflows from the steam inlet and flows into the tube nest section directly below the steam inlet, the steam is moved and distributed to the side passages with sufficient area before increasing the dynamic pressure, resulting in a pressure loss. This eliminates the increase in water level as well as the increase in water level gradient, making it possible to adopt a parallel flow structure which significantly improves performance efficiency.
第1図は本発明の1実施例の横断面図、第2図は同じく
縦断面図である。FIG. 1 is a cross-sectional view of one embodiment of the present invention, and FIG. 2 is a longitudinal cross-sectional view of the same.
第1図に示すごとく、給水加熱器胴体9内の管群31が
設置され、該管群31の上部には蒸気入口管台10から
流入する蒸気によって加熱管が損傷するのを防止する為
、衝撃防止板11が設置されている。As shown in FIG. 1, a group of tubes 31 is installed in the body 9 of the feed water heater, and in the upper part of the group of tubes 31, in order to prevent the heating tubes from being damaged by the steam flowing in from the steam inlet nozzle holder 10. A shock prevention plate 11 is installed.
管巣内中央にはベント板母管2oが設けられ、管巣内に
流入した蒸気の終端部として不凝縮ガスの集合排出の機
能を果たしている。該ベント抜母管にはベント誘導バッ
フル21が取り付けられ、蒸気及び不凝縮ガスをベント
抜母管に確実に誘導する役目を果たしている。本ベント
抜構造により、ベントは管巣内に滞流することなく完全
に排出され、性能改善に寄与している。管支持板6の外
周には切り欠き22が設けられ、管巣セクションに流入
する蒸気を速やかに長手方向各管巣セクションに分配し
て、圧力損失が増大する事を防止している。なお上記の
管支持板外周部切り欠き22を含め、側部蒸気流路比は
24%以上(本例において約30%)としである。A vent plate main pipe 2o is provided at the center of the tube nest, and serves as the terminal end of the steam that has flowed into the tube nest, and serves to collect and discharge non-condensable gas. A vent guide baffle 21 is attached to the vent main pipe, and serves to reliably guide steam and non-condensable gas to the vent main pipe. With this vent extraction structure, the vent is completely discharged without stagnation in the tube cavity, contributing to improved performance. A notch 22 is provided on the outer periphery of the tube support plate 6 to quickly distribute steam flowing into the tube bundle section to each tube bundle section in the longitudinal direction, thereby preventing pressure loss from increasing. Including the tube support plate outer circumferential notch 22, the side steam flow path ratio is 24% or more (approximately 30% in this example).
第2図に示すごとく、複数の管支持板6を等高に配列し
て、平行流形の給水加熱器を構成している。そして、各
管巣セクション16の上部には蒸気流動部23が形成さ
れている。蒸気流の1部は各管巣セクションに分配流2
4の如く流入するが、各管巣セクションは管巣偏部流2
5としても蒸気流の1部が供給され、圧力損失の少ない
運転が可能となる。As shown in FIG. 2, a parallel flow type feed water heater is constructed by arranging a plurality of tube support plates 6 at equal heights. A steam flow section 23 is formed in the upper part of each tube nest section 16. A portion of the steam flow is distributed to each tube nest section 2.
4, each tube nest section has a tube nest partial flow 2.
5, a portion of the steam flow is supplied, allowing operation with less pressure loss.
第3図は前記と異なる実施例を示す。本例の給水加熱器
は、側部蒸気流路を更に十分に確保する為、管巣形状を
四角形に配置しである。このように構成すると側部通路
面積を大きく取り易い。FIG. 3 shows a different embodiment from the above. In the feed water heater of this example, the tube nest shape is arranged in a rectangular shape in order to further secure a sufficient side steam flow path. With this configuration, it is easy to increase the area of the side passage.
蒸気側部流路比αをo、24以上とした設計例により性
能改善した試算例を以下に説明する。A trial calculation example in which performance is improved by a design example in which the steam side flow path ratio α is o, 24 or more will be described below.
第9図は従来形給水加熱器の温度線図を示す。FIG. 9 shows a temperature diagram of a conventional feed water heater.
給水は温度T1にて流入し温度T2にて器外に流出する
。給水流量はGWであり、蒸気側は胴体内飽和圧力に対
する飽和温度TSにて一定温度を維持している。かかる
条件の給水加熱器において、必要加熱面積5ex(n(
)は下式で表わされる。The feed water flows in at a temperature T1 and flows out of the vessel at a temperature T2. The water supply flow rate is GW, and the steam side maintains a constant temperature at the saturation temperature TS relative to the saturated pressure inside the fuselage. In the feed water heater under these conditions, the required heating area is 5ex(n(
) is expressed by the following formula.
KCKo■
ここに、h2 :出口給水温度tzに相当するエンタル
ピ (KcaQ/kg)
hl :入口給水温度tlに相当するエンタルピ (K
ca n / kg)
Kcze熱貫流率 (Kca Q / rd h ”C
)θ、:対数平均温度差 (’C)
また
2 、 3 Q og(Ts’ −t 1)/ (Ts
’ t z)として表わされ必要加熱面積Sczは
対数平均温度差θ、に反比例する。更にθ、は上式の如
く、器内飽和温度Ts’ (タービンよりの抽気圧力
から圧力損失を減じた圧力の飽和温度)の増加により増
加する為、器内圧力損失の低減により必要加熱面積が減
少可能となる。KCKo■ Here, h2: Enthalpy corresponding to outlet water supply temperature tz (KcaQ/kg) hl: Enthalpy corresponding to inlet water supply temperature tl (K
can / kg) Kcze thermal conductivity (Kca Q / rd h ”C
) θ,: Logarithmic average temperature difference ('C) Also, 2, 3 Q og (Ts' - t 1) / (Ts
'tz), and the required heating area Scz is inversely proportional to the logarithmic average temperature difference θ. Furthermore, as shown in the above equation, θ increases due to an increase in the chamber saturation temperature Ts' (the saturation temperature of the pressure obtained by subtracting the pressure loss from the extraction pressure from the turbine), so the required heating area is reduced by reducing the chamber pressure loss. It becomes possible to decrease.
原子カプラントの給水加熱器の一例について、従来形と
α値を0.24以上とした新形との性能比較をした例を
下記に示す。An example of performance comparison between a conventional type and a new type with an α value of 0.24 or more is shown below as an example of an atomic couplant feed water heater.
油気蒸気圧力(kg/an”a) : 0.4給水量
(ton/hr) : 2200給水入ロ出ロ
温度(”C) : 48.3/71.2上記の如く
、α=0.3 とすることによって、加熱面積(伝熱管
面積)が12%低減された。Oil vapor pressure (kg/an"a): 0.4 Water supply amount (ton/hr): 2200 Water supply temperature ("C): 48.3/71.2 As mentioned above, α=0. 3, the heating area (heat exchanger tube area) was reduced by 12%.
以上詳述したように、本発明を適用すると、給水加熱器
内における加熱蒸気の圧力損失を低減し、かつ、加熱蒸
気流入部の直下におけるドレン水面の低下やこれに伴う
不具合の発生を防止することが出来る。As detailed above, when the present invention is applied, the pressure loss of the heated steam in the feed water heater is reduced, and the drop in the drain water level directly below the heated steam inflow section and the occurrence of problems associated with this can be prevented. I can do it.
第1図及び第2図は本発明の1実施例を示し。
第1図は横断面図、第2図は縦断面図である。第3図は
上記と異なる実施例の横断面図である。第4図は従来例
の給水加熱器の横断面図である。第5図は蛇行流形給水
加熱器の説明図、第6図は平行流形給水加熱器の説明図
である。第7図及び第8図は側部流路比の説明図である
。第9図は前記実施例の作用、効果を説明する為の温度
線図である。第10図及び第11図は偏部流路比の影響
を説明する為の図表である。
5・・・U字形加熱管、6・・・管支持板、7・・・タ
イロッド、8・・・終端ベント排出0.10・・・蒸気
入口管台、15・・・水位勾配、16・・・各管巣セク
ション、17・・・蒸気、18・・・下部蒸気流路、1
9・・・閉じられた部屋、20・・・ベント抜母管、ベ
ント誘導バックル、22・・・管支持板の切り欠き、2
3・・・蒸気流動部、24・・・分配流、25・・・管
巣側部流、31・・・管群、34・・・側部蒸気流路部
。1 and 2 show one embodiment of the invention. FIG. 1 is a cross-sectional view, and FIG. 2 is a longitudinal cross-sectional view. FIG. 3 is a cross-sectional view of an embodiment different from the above. FIG. 4 is a cross-sectional view of a conventional feed water heater. FIG. 5 is an explanatory diagram of a meandering flow type feed water heater, and FIG. 6 is an explanatory diagram of a parallel flow type feed water heater. FIG. 7 and FIG. 8 are explanatory diagrams of the side flow passage ratio. FIG. 9 is a temperature diagram for explaining the functions and effects of the embodiment. FIGS. 10 and 11 are charts for explaining the influence of the uneven flow path ratio. 5... U-shaped heating tube, 6... Pipe support plate, 7... Tie rod, 8... Terminal vent discharge 0.10... Steam inlet nozzle stand, 15... Water level gradient, 16... ...Each tube nest section, 17...Steam, 18...Lower steam flow path, 1
9... Closed room, 20... Vent removal main pipe, vent guide buckle, 22... Notch in pipe support plate, 2
3... Steam flow section, 24... Distribution flow, 25... Tube bundle side flow, 31... Tube group, 34... Side steam flow path section.
Claims (1)
た胴体と、上記胴体内にその長手方向に設けた複数個の
U字形伝熱管と、上記U字形伝熱管を支承する管支持板
とを有する給水加熱器において、上記管支持板の周囲の
少なくとも1部に蒸気を通過せしめる切欠を設け、 a、胴体の垂直断面の内腔面積からドレンの占める部分
を差引いた面積をA_δとし、 b、胴体の内面と管支持板との間隙面積からドレンの占
める部分を差引いた面積をA_4とし、上記A_4/A
_δの比率αを0.24以上に設定したことを特徴とす
る給水加熱器。[Claims] 1. A body having an inlet for introducing heated steam and a drain outlet, a plurality of U-shaped heat exchanger tubes provided in the body in the longitudinal direction thereof, and supporting the U-shaped heat exchanger tubes. In a feed water heater having a pipe support plate, at least a part of the periphery of the pipe support plate is provided with a notch for allowing steam to pass through, and a) an area obtained by subtracting the portion occupied by the drain from the internal cavity area of the vertical cross section of the body; is A_δ, b, the area obtained by subtracting the area occupied by the drain from the gap area between the inner surface of the body and the tube support plate is A_4, and the above A_4/A is
A feed water heater characterized in that a ratio α of _δ is set to 0.24 or more.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61121257A JPH076603B2 (en) | 1986-05-28 | 1986-05-28 | Water heater |
CN 87103831 CN87103831A (en) | 1986-05-28 | 1987-05-27 | Feed-water heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61121257A JPH076603B2 (en) | 1986-05-28 | 1986-05-28 | Water heater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62280505A true JPS62280505A (en) | 1987-12-05 |
JPH076603B2 JPH076603B2 (en) | 1995-01-30 |
Family
ID=14806777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61121257A Expired - Lifetime JPH076603B2 (en) | 1986-05-28 | 1986-05-28 | Water heater |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPH076603B2 (en) |
CN (1) | CN87103831A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107300330B (en) * | 2017-07-26 | 2023-05-09 | 杭州国能汽轮工程有限公司 | Tube distribution structure of lateral steam inlet condenser |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56117003A (en) * | 1980-02-18 | 1981-09-14 | Tokyo Shibaura Electric Co | Feed water heater |
-
1986
- 1986-05-28 JP JP61121257A patent/JPH076603B2/en not_active Expired - Lifetime
-
1987
- 1987-05-27 CN CN 87103831 patent/CN87103831A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56117003A (en) * | 1980-02-18 | 1981-09-14 | Tokyo Shibaura Electric Co | Feed water heater |
Also Published As
Publication number | Publication date |
---|---|
JPH076603B2 (en) | 1995-01-30 |
CN87103831A (en) | 1987-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4191246A (en) | Device to reduce local heat flux through a heat exchanger tube | |
JP2007232726A (en) | Multiple and variably-spaced intermediate flow mixing vane grids for fuel assembly | |
ITMI20071686A1 (en) | NUCLEAR REACTOR COOLED TO WATER IN PRESSURE, PROVIDED WITH COMPACT STEAM GENERATORS | |
JP2952102B2 (en) | Heat exchanger | |
US4254825A (en) | Multitubular heat exchanger | |
US4219077A (en) | Multitubular heat exchanger used in a power plant | |
US3182719A (en) | Multitubular heat exchanger | |
US9534779B2 (en) | Steam generator tube lane flow buffer | |
US4226283A (en) | Multitubular heat exchanger | |
JPS5914682B2 (en) | feed water heater | |
JPS62280505A (en) | Feedwater heater | |
US4389310A (en) | Cold trap | |
US4541366A (en) | Feed water preheater | |
US4250841A (en) | Device for drying and superheating steam | |
US2994287A (en) | Baffle arrangement for chemical recovery boiler | |
US2914040A (en) | Vapor generator | |
JPS61250406A (en) | Feedwater heater for steam generator | |
JPS6337880B2 (en) | ||
JPS62245095A (en) | Heat exchanger | |
US2243913A (en) | Divided economizer and control | |
US2764137A (en) | Apparatus for modifying vapor super-heat temperatures | |
JP2511149B2 (en) | Water heater | |
JPS5886302A (en) | Feedwater heater | |
US3742915A (en) | Heat exchangers | |
JP3483697B2 (en) | Feed water heater for boiling water reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |