JPS62280379A - Etching device - Google Patents

Etching device

Info

Publication number
JPS62280379A
JPS62280379A JP12334386A JP12334386A JPS62280379A JP S62280379 A JPS62280379 A JP S62280379A JP 12334386 A JP12334386 A JP 12334386A JP 12334386 A JP12334386 A JP 12334386A JP S62280379 A JPS62280379 A JP S62280379A
Authority
JP
Japan
Prior art keywords
substrate
electrode
electrodes
plasma
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12334386A
Other languages
Japanese (ja)
Inventor
Katsuhiro Iwashita
岩下 克博
Yasuhiro Yamaguchi
泰広 山口
Hideki Tateishi
秀樹 立石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12334386A priority Critical patent/JPS62280379A/en
Publication of JPS62280379A publication Critical patent/JPS62280379A/en
Pending legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To surely reduce an auto-bias voltage by surrounding a substrate electrode arranged in a vacuum chamber and loaded with a substrate, a counter electrode opposed to the substrate electrode, and the space between both electrodes by a cylindrical body to confine plasma between both electrodes. CONSTITUTION:The substrate electrode 7 and the counter electrode 8 are provided in a cover 10 communicating with the inside of a vacuum vessel 1, and an insulator is interposed between the bottom face of the electrode 7 and the cover 10. A cylindrical body 11 formed with an insulator such as quartz is furnished in the cover 10, and the electrodes 6 and 17 and the space 15 between both electrodes are surrounded by the cylinder. The inside of the vessel 1 is firstly evacuated, then an etching gas is introduced into the electrode 6 and injected into the space 15 to keep the space 15 in a specified pressure atmosphere. A high-frequency power is impressed on the electrode 7 by a high-frequency power source 12 to generate plasma in the space 15, and the substrate is etched. At this time, the diffusion of plasma into the vessel 1 is prevented by the cylindrical body 11, hence the plasma density is increased, and the auto- bias voltage on the substrate 8 can be reduced.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、プラズマにより基板を処理するエツチング装
置に係り、特に基板表面t\のイオン衝突によるダメー
ジを少な(するために好適なエツチング装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Industrial Field of Application] The present invention relates to an etching apparatus that processes a substrate using plasma, and particularly to an etching apparatus that reduces damage caused by ion collisions on the substrate surface t\. The present invention relates to an etching apparatus suitable for etching.

〔従来の技術〕[Conventional technology]

この種、プラズマにより基板を処理する従来技術として
は、特開昭60−74456号公報に開示されている技
術かある。
As a conventional technique of this kind for processing a substrate with plasma, there is a technique disclosed in Japanese Patent Application Laid-open No. 74456/1983.

この従来技術では、真空室内に、基板ケ威直するスパッ
タエツチング電極としての基板ttiと、これに対向す
る対回戒ネとを設け、前記基板電極に高周波電力として
のDCあるいは凡F電力を与え、前記対向電極ン電気的
にフローティング区位状、態とし、両tf+間にプラズ
マを収束させ、プラズマ密度を高めるようにしている。
In this conventional technique, a substrate tti as a sputter etching electrode for resetting the substrate and a counter-recirculating electrode facing the substrate are provided in a vacuum chamber, and DC or approximately F power as high frequency power is applied to the substrate electrode. , the counter electrode is placed in an electrically floating state, and the plasma is focused between both tf+ and the plasma density is increased.

また、この従来技術では前記基板電極と対向電極とに磁
石を配置し、両を極間の空間の側方の開放部に磁場を形
放し、両電極と磁場とで囲まれた空間にプラズマを収束
させ、より一層プラズマ密度を高めるようにしている。
In addition, in this conventional technology, a magnet is placed between the substrate electrode and the opposing electrode, and a magnetic field is released to the side open part of the space between the two electrodes, and plasma is generated in the space surrounded by both electrodes and the magnetic field. The aim is to converge the plasma and further increase the plasma density.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前記従来技術における両電極に磁石を配置しな
い技術では、両電極間に発生させたプラズマが真空室内
に拡散し、プラズマに供給される電力がアースに接続さ
れた真空容器を伝わって外に逃げる。このため、効率よ
(高い密度のプラズマを発生させることができず、基板
に衝突するイオンのエネルギーに相当する自己バイアス
ぽ圧を低減する効果が少なかった。
However, in the above-mentioned conventional technology in which a magnet is not placed between both electrodes, the plasma generated between the two electrodes is diffused into the vacuum chamber, and the power supplied to the plasma is transmitted through the vacuum vessel connected to ground and is then released outside. run away. For this reason, it was not possible to generate high-density plasma efficiently, and the effect of reducing the self-bias pressure corresponding to the energy of ions colliding with the substrate was small.

また、前記従来技術に′?iける両ぽ極に磁石を配置し
た技術では、自己バイアス底圧を低減できるものと考え
られるが、自己バイアス直圧の低減の程匿を予測しに(
い間頃がある。
In addition, the above-mentioned prior art '? It is thought that the technique of arranging magnets at bipolar poles can reduce the self-bias bottom pressure.
There is a period of time.

前記自己バイアス′成圧が高いと、プラズマ中のイオン
が刀口還され、基板に4fr突するエネルギーが太き(
なる。その結果、例えば半導体基板表面の素子に与える
ダメージが大きくなり、基板に形成する素子の特性の劣
化、およびパターンの損傷等の問題が発生する。
When the self-bias pressure is high, the ions in the plasma are returned to the surface, and the energy that hits the substrate by 4fr becomes large (
Become. As a result, for example, damage to elements on the surface of the semiconductor substrate increases, causing problems such as deterioration of characteristics of elements formed on the substrate and damage to patterns.

本発明の目的は、前述の問題を解決すべく、自己バイア
ス電圧を確実に低減し得るエツチング装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an etching apparatus that can reliably reduce the self-bias voltage in order to solve the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的は、真空室内に配[tされかつ基板を載置する
基板電極と、これに対向させて配置された対向電極と、
両電極間とを含む空間部ケ筒体で囲み、両X極間にプラ
ズマを閉じ込めるように構成したことにより、達成され
る。
The purpose is to provide a substrate electrode disposed in a vacuum chamber on which a substrate is placed, and a counter electrode disposed opposite thereto;
This is achieved by surrounding the space between the two electrodes with a cylindrical body and confining the plasma between the two X-poles.

〔作用〕[Effect]

前記本発明では、基板tlL極と、対向電極と、両電極
間とを含む空間部を筒体で囲み、両電極間にプラズマχ
閉じ込めるようにしている。
In the present invention, the space including the substrate tlL pole, the counter electrode, and the space between the two electrodes is surrounded by a cylinder, and the plasma χ is formed between the two electrodes.
I'm trying to lock it up.

したがって、両電極間に発生するプラズマが両電極間の
側部および対向電極から漏れて真空室内に拡散するのを
無くすことができる。それによって、プラズマ密度乞高
めろことができ、基板側の自己バイアス電圧?確実に低
減することができる。
Therefore, it is possible to prevent the plasma generated between the two electrodes from leaking from the sides between the two electrodes and the opposing electrode and diffusing into the vacuum chamber. Thereby, the plasma density can be increased and the self-bias voltage on the substrate side? This can be definitely reduced.

そのため、基板に入射するイオンのエネルギーが小さく
なり、基板に形成する素子へのダメージによる特性の劣
化、およびパターンの損傷等のトラブル 〔実施例〕 以下、本発明の実施例7図面により説明する。
Therefore, the energy of ions incident on the substrate is reduced, causing damage to the elements formed on the substrate, resulting in deterioration of characteristics, damage to patterns, and other troubles [Example] Embodiment 7 of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す縦断面図、第2図は基
板′電極側の直圧について対回成憚を磁気的に70一テ
イング心位状態にした時と、アースにした時の測定結果
の一例?示すグラフである。
Fig. 1 is a vertical cross-sectional view showing an embodiment of the present invention, and Fig. 2 shows the direct pressure on the electrode side of the substrate when the regeneration structure is magnetically brought to the 70-degree center position and when it is grounded. An example of time measurement results? This is a graph showing.

その第1図に示す実施例のエツチング袈1では。In the etched shank 1 of the embodiment shown in FIG.

真空容器1に真空配管2が娶続されている。この真空配
管2には、真空パルプ3と、真空ポンプ4とが設けられ
ていて、真空容器1内を真空排気し得ろようになってい
る。また、真空容器1の下部には開口部5が設けられて
いる。さらに、真空容器1の下部にはカバー10か収り
付けられており、カバー10の内部は前記開口部5を通
じて真空容器1の内部に連通している。
A vacuum pipe 2 is connected to the vacuum container 1. This vacuum piping 2 is provided with a vacuum pulp 3 and a vacuum pump 4, so that the inside of the vacuum container 1 can be evacuated. Further, an opening 5 is provided at the bottom of the vacuum container 1 . Further, a cover 10 is housed in the lower part of the vacuum container 1, and the inside of the cover 10 communicates with the inside of the vacuum container 1 through the opening 5.

前記真空容器1内に連通ずるカバー10の内部には、基
板電極7と、これに対向させて配置された対向電極6と
か設けられている。
Inside the cover 10 communicating with the vacuum vessel 1, there are provided a substrate electrode 7 and a counter electrode 6 disposed opposite thereto.

前記基板電極7の上面には、基板8が載置されている。A substrate 8 is placed on the upper surface of the substrate electrode 7 .

前記基板電極7の底面とカバー10間には、四フッ化エ
チレン重合の合成樹脂等の絶縁物が介装されている。ま
た、基板区fiji7には高周波電源12を通じて高周
波(力を供給するようになっている。
An insulating material such as a synthetic resin made of polytetrafluoroethylene is interposed between the bottom surface of the substrate electrode 7 and the cover 10. Furthermore, high frequency power (power) is supplied to the substrate section fiji7 through a high frequency power source 12.

a記対向′心極6は、この実施例ではメタルで形成され
ている。また、対向電極6は固定用部材14に取り付け
られ、この固定用部材14と、前記絶縁物9と同様の絶
縁物13とを介して真空容器1の底部に固定され、前記
真空容器1の開口部5i111Iに配置されている。さ
らに、この対向電極6は一気的に70−ティング電位状
態とされている。そして、この対1o1戒極6には基板
電極7側に向かってArガス等のエツチングガスを噴出
する複数1固の噴出口(図示せず)か設けられている。
In this embodiment, the opposing center poles 6 are made of metal. Further, the counter electrode 6 is attached to a fixing member 14 and fixed to the bottom of the vacuum vessel 1 via the fixing member 14 and an insulator 13 similar to the insulator 9, and It is arranged in section 5i111I. Furthermore, this counter electrode 6 is brought to a 70-Ting potential state all at once. The pair 1:1 electrode 6 is provided with a plurality of ejection ports (not shown) for ejecting etching gas such as Ar gas toward the substrate electrode 7 side.

前記カバー10の内部には、筒体11が設置されている
。この筒体11は、この実施例では石英等の絶縁物によ
り形成されている。また、この筒体11は対向電極6と
、基板電極7と、両電極間15とを含む空間部を囲む形
状に形成されており、この筒体11により両電極間15
にプラズマを閉じ込め得るようになっている。
A cylindrical body 11 is installed inside the cover 10. In this embodiment, the cylinder 11 is made of an insulating material such as quartz. Further, this cylindrical body 11 is formed in a shape that surrounds a space including the counter electrode 6, the substrate electrode 7, and a space 15 between the two electrodes, and the cylindrical body 11 defines the space 15 between the two electrodes.
It is possible to confine plasma within the space.

前記対向を極6には、ガス配管17か接続されている。A gas pipe 17 is connected to the opposing pole 6.

このガス配v17には、真空バルブ1日と、ガスボンベ
19とが設けられており、対向電極6内にArガス等の
エツチングガスを供給し、対向電極6に設けりれた噴出
口から両電極間15に噴出させるようになっている。な
お、真空容器1におけるガス配管17の導入部には、前
記絶縁物9と同様の絶縁物16が設けられている。
This gas distribution v17 is provided with a vacuum valve 1 and a gas cylinder 19, and supplies an etching gas such as Ar gas into the counter electrode 6, and from a spout provided in the counter electrode 6 to both electrodes. It is designed to erupt during 15 minutes. Note that an insulator 16 similar to the insulator 9 is provided at the inlet of the gas pipe 17 in the vacuum vessel 1 .

前記実施例のエツチング装置は、次のように使用され、
作用する。
The etching apparatus of the above embodiment is used as follows,
act.

まず、真空容器1内を、真空配管2および真空バルブ3
を介して真空ポンプ4により真空排気する。
First, inside the vacuum container 1, the vacuum piping 2 and the vacuum valve 3 are
It is evacuated by a vacuum pump 4 via.

前記真空容器1を真空排気後、ガス配管17および真空
バルブ18を通じてガスボンベ19によりArガス等の
エツチングガスを対向゛醒極6に導入し、対向電極6に
投けら九た噴出口より両を極間15に前記エツチングガ
スを噴出し、前記両電極間15を所定の圧力雰囲気に保
つ。
After the vacuum container 1 is evacuated, an etching gas such as Ar gas is introduced into the opposing electrode 6 from the gas cylinder 19 through the gas pipe 17 and the vacuum valve 18, and the etching gas is ejected onto the opposing electrode 6 from the outlet. During the interval 15, the etching gas is ejected to maintain a predetermined pressure atmosphere between the two electrodes 15.

なお、前記エツチングガスは対向電極6と筒体11との
隙間を通り、前記真空配管2および真空バルブ5を通っ
て真空ポンプ4で排気される。
The etching gas passes through the gap between the counter electrode 6 and the cylindrical body 11, passes through the vacuum pipe 2 and the vacuum valve 5, and is exhausted by the vacuum pump 4.

前記両、[i執間15か処理圧力になった時、高周波電
源12により基板電極7に高周波電力7印710し、両
を噛間15にプラズマを発生させ、基板8のエツチング
処理を行う。
When the processing pressure is reached between the two spaces 15, high frequency power 710 is applied to the substrate electrode 7 by the high frequency power source 12, plasma is generated between the two spaces 15, and the substrate 8 is etched.

前述のごと(、対向電極6と、基板〔1と、両′を極間
15とを含む空間部を筒体11で囲み、両電極間15に
発生したプラズマの真空容器1内への拡散を無くするこ
とができる。これにより、プラズマ密度を高めることが
でき、基板8側の自己バイアス電圧を低減できる。その
結果、基板8に入射するイオンのエネルギーを小さくで
き、したがって木板8に形成する素子へのダメージによ
る損傷を低減することができる。
As described above, the space including the counter electrode 6, the substrate 1, and the gap 15 between both electrodes is surrounded by the cylinder 11, and the plasma generated between the electrodes 15 is prevented from diffusing into the vacuum vessel 1. As a result, the plasma density can be increased and the self-bias voltage on the substrate 8 side can be reduced.As a result, the energy of ions incident on the substrate 8 can be reduced, and therefore the elements formed on the wooden board 8 can be reduced. Damage caused by damage to can be reduced.

第2図に、基板8の自己バイアス電圧として、基板電極
7側のα位を測定した結果をホす。
FIG. 2 shows the results of measuring the α position on the substrate electrode 7 side as the self-bias voltage of the substrate 8.

この第2図中、線Aは対向電極6を)a−ティング電位
にした場合を示し、線Bは対向電極6をアースにした場
合を示す。この時の測定条件は、両電極laj + 5
の間隔3Qm)、高層及電力(R,F’電力)500W
である。対向電極6をアースにした場合、例えば真空容
器1内の圧力10mTorrで148Kvであり、対向
電極6をフローティング′亀誼にした場合にはα16K
vであり、約1/10以上低くなることが分かる。
In FIG. 2, line A shows the case where the counter electrode 6 is set to the a-ting potential, and line B shows the case when the counter electrode 6 is set to the ground potential. The measurement conditions at this time are both electrodes laj + 5
interval 3Qm), high-rise power (R, F' power) 500W
It is. For example, when the counter electrode 6 is grounded, the voltage is 148 Kv at a pressure of 10 mTorr in the vacuum vessel 1, and when the counter electrode 6 is made floating, the voltage is α16 Kv.
v, which is about 1/10 or more lower.

なお、対向電極6と部体11間の隙間を大きくてろと、
プラズマがその隙間を通って真空容器1内にも発生する
ため、前記自己バイアス電圧の低減の効果は少なかった
In addition, please make the gap between the counter electrode 6 and the part 11 large.
Since plasma was also generated within the vacuum vessel 1 through the gap, the effect of reducing the self-bias voltage was small.

次に、第5図は本発明の他の実施例を示す離断面図であ
る。
Next, FIG. 5 is a separated sectional view showing another embodiment of the present invention.

この第3図に示す実施例では、対向電極6に電源20が
接続されている。この構成によっても、艙記第1図に示
す実施例と:0.1様な効果がある。
In the embodiment shown in FIG. 3, a power source 20 is connected to the counter electrode 6. In the embodiment shown in FIG. This configuration also provides an effect similar to that of the embodiment shown in FIG. 1.

なお、この第3図に示す実施例の他の傭成2作用につい
ては、前記第1図に示す実施例と同様である。
The other functions of the embodiment shown in FIG. 3 are the same as those of the embodiment shown in FIG. 1.

また、本発明では次の実施例によっても、前記第1図に
示¥央m例と同様の効果を得ることかできろ。
Further, according to the present invention, the same effect as the example shown in FIG. 1 can be obtained by the following embodiment.

(1)対向電極6を70一テイングtwにし、筒体11
をメタルで形成し、この筒体11を70−ティングα位
にしてもよい。
(1) The counter electrode 6 is set to 70 mm and the cylindrical body 11
may be made of metal, and the cylindrical body 11 may be set at the 70-ring α position.

(II)対向電極6を絶縁物で形放し、筒体11乞メタ
ルで形成し、二〇筒体11?:フローテイングイ位にし
てもよい。
(II) The counter electrode 6 is made of an insulator, and the cylindrical body 11 is made of metal. :Can be placed in a floating position.

filll対同電4L、6と筒体11ともe綴物で形成
してもよい。
The fill pair 4L, 6 and the cylinder 11 may also be formed of e-binding material.

〔発明の効果〕〔Effect of the invention〕

以上説明した本発明によれば、真空室内に配置されかつ
基板を載置する基板電極と、これに対向させて配置dさ
れた対向1極と、両電極間とを営む空1間部を筒体で囲
み、画電極間にプラズマを閉じ込めるように構成してお
り、回置極間に発生するプラズマが両art間の側部お
よび対向電極から漏れて真空1内に拡散するのを無くす
ことができるので、プラズマ密度を高めることができ、
基板側の自己バイアス電圧を確実に低減し得る効果があ
り、ひいては基板に入射するイオンのエネルギーが小さ
くなり、基板に形成する素子へのダメージによる特性の
劣化、およびパターンの損傷等のトラブルを解消し得る
効果がある。
According to the present invention described above, the space between the substrate electrode placed in the vacuum chamber and on which the substrate is placed, the opposing electrode placed opposite to the substrate electrode, and both electrodes is formed into a cylinder. The structure is such that the plasma is enclosed between the image electrodes, and the plasma generated between the rotating electrodes is prevented from leaking from the sides between the two art and the opposing electrode and diffusing into the vacuum 1. Therefore, the plasma density can be increased,
It has the effect of reliably reducing the self-bias voltage on the substrate side, which in turn reduces the energy of ions incident on the substrate, eliminating problems such as deterioration of characteristics due to damage to elements formed on the substrate and damage to patterns. There is a potential effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す縦断面図、42図は基
板峨極側の成正について対向4極をイ気的にフローティ
ング電位状態にした時と、アースにした時の測定結果の
一例を示すグラフ、第5図は本発明の他の、51!施例
を示す縦断面図である。 1・・・真空容器、2・・・真空配・U、4・・・真空
ポンプ、6・・・対向!電極、7・・・基板tIL極、
8・・・基板、10・・・カバー、11・・・筒体、1
2・・・高層V心源、15・・・対向電極と基板1極と
の両′電極間、17・・・ガス配管、19・・・ガスボ
ンベ I
Fig. 1 is a longitudinal cross-sectional view showing an embodiment of the present invention, and Fig. 42 shows the measurement results when the four opposing poles are brought to an electrically floating potential state and when they are grounded, regarding the formation of the polarization side of the substrate. A graph showing an example, FIG. 5, shows another 51! of the present invention! It is a longitudinal cross-sectional view showing an example. 1...Vacuum container, 2...Vacuum distribution/U, 4...Vacuum pump, 6...Opposing! Electrode, 7... Substrate tIL pole,
8... Board, 10... Cover, 11... Cylindrical body, 1
2...High-rise V core source, 15...Between both electrodes of the counter electrode and one pole of the substrate, 17...Gas piping, 19...Gas cylinder I

Claims (1)

【特許請求の範囲】 1、真空容器内に、基板を載置する基板電極と、これに
対向させて配置された対向電極とを設け、前記基板電極
に高周波電力を印加し、プラズマにより基板を処理する
エッチング装置において、前記基板電極と、対向電極と
、両電極間とを含む空間部を筒体で囲み、両電極間にプ
ラズマを閉じ込めるように構成したことを特徴とするエ
ッチング装置。 2、特許請求の範囲第1項において、前記対向電極と筒
体とのいずれか一方をメタルで形成するとともに電気的
にフローティング電位状態とし、他方を絶縁物で形成し
たことを特徴とするエッチング装置。 3、特許請求の範囲第1項において、前記対向電極と筒
体とを絶縁物で形成したことを特徴とするエッチング装
置。 4、特許請求の範囲第1項、第2項または第3項におい
て、対向電極に電源を接続したことを特徴とするエッチ
ング装置。
[Claims] 1. A substrate electrode on which a substrate is placed and a counter electrode placed opposite to the substrate electrode are provided in a vacuum container, and high frequency power is applied to the substrate electrode to cause the substrate to be heated by plasma. An etching apparatus for processing, characterized in that a space including the substrate electrode, a counter electrode, and a space between the two electrodes is surrounded by a cylindrical body, so that plasma is confined between the two electrodes. 2. The etching apparatus according to claim 1, characterized in that either one of the counter electrode and the cylindrical body is made of metal and is in an electrically floating potential state, and the other is made of an insulating material. . 3. The etching apparatus according to claim 1, wherein the opposing electrode and the cylindrical body are made of an insulator. 4. An etching apparatus according to claim 1, 2, or 3, characterized in that a power source is connected to the opposing electrode.
JP12334386A 1986-05-30 1986-05-30 Etching device Pending JPS62280379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12334386A JPS62280379A (en) 1986-05-30 1986-05-30 Etching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12334386A JPS62280379A (en) 1986-05-30 1986-05-30 Etching device

Publications (1)

Publication Number Publication Date
JPS62280379A true JPS62280379A (en) 1987-12-05

Family

ID=14858214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12334386A Pending JPS62280379A (en) 1986-05-30 1986-05-30 Etching device

Country Status (1)

Country Link
JP (1) JPS62280379A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421430A2 (en) 1989-10-03 1991-04-10 Applied Materials, Inc. A plasma process, method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421430A2 (en) 1989-10-03 1991-04-10 Applied Materials, Inc. A plasma process, method and apparatus
EP0421430B2 (en) 1989-10-03 2003-12-10 Applied Materials, Inc. A plasma process, method and apparatus

Similar Documents

Publication Publication Date Title
US4960073A (en) Microwave plasma treatment apparatus
US4624767A (en) Sputter etching apparatus having a second electrically floating electrode and magnet means
US4891095A (en) Method and apparatus for plasma treatment
KR910005733B1 (en) Plasma treating method and apparatus
JPH0228881B2 (en)
JP3640204B2 (en) Plasma processing apparatus and plasma processing method
KR100196038B1 (en) Helison wave plasma processing method and device therefor
JPS62280379A (en) Etching device
US4946537A (en) Plasma reactor
JPS6187869A (en) Sputter device
JPH1140398A (en) Plasma producing device
JPS59144133A (en) Plasma dry processing apparatus
JP2819559B2 (en) Sputtering equipment
EP0154078A2 (en) Plasma treatment apparatus
JP3509343B2 (en) Ion source
JPH0717147Y2 (en) Plasma processing device
JP3010059B2 (en) Ion source
JP3071450B2 (en) Microwave plasma processing equipment
JPH02156526A (en) Microwave plasma treating system
JPH0222486A (en) Microwave plasma treating equipment
JPS6342707B2 (en)
JPH07245194A (en) Method and device for plasma processing
JPH07326495A (en) Microwave plasma generator
JPS5959884A (en) Dry etching device
JP2717421B2 (en) Vacuum processing equipment