JPS6228015Y2 - - Google Patents

Info

Publication number
JPS6228015Y2
JPS6228015Y2 JP11318181U JP11318181U JPS6228015Y2 JP S6228015 Y2 JPS6228015 Y2 JP S6228015Y2 JP 11318181 U JP11318181 U JP 11318181U JP 11318181 U JP11318181 U JP 11318181U JP S6228015 Y2 JPS6228015 Y2 JP S6228015Y2
Authority
JP
Japan
Prior art keywords
layer
cable
power cable
insulator
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11318181U
Other languages
Japanese (ja)
Other versions
JPS5819419U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11318181U priority Critical patent/JPS5819419U/en
Publication of JPS5819419U publication Critical patent/JPS5819419U/en
Application granted granted Critical
Publication of JPS6228015Y2 publication Critical patent/JPS6228015Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【考案の詳細な説明】 この考案は、比較的硬質の保護層を必要とする
単心電力ケーブル、例えば防蟻シースケーブル、
外傷防止に優れた単心電力ケーブルに関するもの
で、この単心電力ケーブルは、トリプレツクス形
ケーブル(単心3個撚合せ形ケーブル)として使
用されることが多い。
[Detailed description of the invention] This invention is applicable to single-core power cables that require a relatively hard protective layer, such as termite-proof sheathed cables.
This article relates to a single-core power cable that is excellent in preventing trauma, and this single-core power cable is often used as a triplex type cable (three single-core cables twisted together).

防蟻シースケーブルは従来、シース(保護層)
に防蟻剤、例えば有機塩素系の薬剤を配合したも
のがよく用いられてきたが、近年薬剤等の毒性公
害等の問題から、薬剤を用いずに、シース材料そ
のものを白蟻などに食われにくい硬いプラスチツ
ク材料、例えば高密度ポリエチレン、ナイロンが
使用される様になつた。通常の電力ケーブルにお
いても、マンホールからケーブルを引き込んで、
布設するときに、マンホールの縁によりケーブル
に傷が付き、その為、摩耗性の強い比較的硬質の
保護層を設けることが要請されている。
Termite-proof sheathed cables are conventionally coated with a sheath (protective layer).
Termite repellents, such as those containing organic chlorine-based chemicals, have been often used in the past, but in recent years, due to problems such as toxic pollution caused by chemicals, it has become possible to make the sheath material itself less susceptible to being eaten by termites, etc., without using chemicals. Hard plastic materials such as high density polyethylene and nylon have come into use. Even with normal power cables, the cables are pulled in through the manhole,
During installation, the cable is damaged by the edge of the manhole, which requires the provision of a relatively hard protective layer that is highly abrasive.

ところが、比較的硬質の保護層を有する単心電
力ケーブルに於て、通常の低密度ポリエチレンや
PVCと言つた柔らかい材料を用いた保護層を有
するケーブルには見られない問題が発生すること
が見出された。
However, in single-core power cables with relatively hard protective layers, ordinary low-density polyethylene or
It has been discovered that cables with protective layers made of soft materials such as PVC suffer from problems that are not present.

その問題とは、以下に説明する様なものであ
る。通常、電力ケーブルに於ては、導体に通電す
ることにより導体温度が90℃で使用できる様に設
計されている。停電時は常温まで戻ることにな
り、実使用に際しては、ケーブルは90℃或は過電
流が流れた場合のそれ以上の温度と常温の間のヒ
ートサイクルがかかることになる。
The problem is as explained below. Normally, power cables are designed so that they can be used at a conductor temperature of 90°C by energizing the conductor. During a power outage, the cable will return to normal temperature, and in actual use, the cable will undergo a heat cycle between 90°C or higher when an overcurrent flows and normal temperature.

考案者は比較的硬質のシースを有する防蟻シー
スケーブルを導体通電により導体105℃と室温の
間で、通電停電のヒートサイクルを行つたとこ
ろ、ケーブル絶縁体の外方に巻いてある遮蔽銅テ
ープにケーブル長さ方向に縦じわが発生すること
を見出した。ひどいものでは、しわが絶縁体に食
い込み、テープを剥がすと絶縁体に凹みが発生し
たものもあつた。テープに縦じわが発生する理由
は次の様に考えられる。導体温度が上昇するにつ
れて、絶縁体が膨張し、それに伴い銅テープが伸
ばされる。ところが停電になり、絶縁体が冷却
し、元の径に収縮する時に、シースも同様に冷
却、収縮するが、銅テープは一旦伸ばされると、
元に戻らず、外側のシースの締付け力により、座
屈するためと考えられる。実際、通常の低密度ポ
リエチレン、PVCといつた柔らかい材料をシー
スに用いたケーブルに於ては、この様な現象は見
られない。この現象はまた3心形一括シースケー
ブルの場合にも見られない。その理由は介在層又
はコア間の間隙によつてシースの締付け力が緩和
されるためと考えられる。
The inventor conducted a heat cycle of a termite-proof sheathed cable with a relatively hard sheath between 105℃ and room temperature by energizing the conductor, and found that the shielding copper tape wrapped around the outside of the cable insulation It was found that vertical wrinkles occur in the length direction of the cable. In some cases, the wrinkles dug into the insulation, and when the tape was removed, the insulation was dented. The reason why vertical wrinkles occur on the tape is considered as follows. As the conductor temperature increases, the insulation expands and the copper tape stretches accordingly. However, when the power goes out and the insulator cools and contracts to its original diameter, the sheath also cools and contracts, but once the copper tape is stretched,
This is thought to be because it does not return to its original state and buckles due to the tightening force of the outer sheath. In fact, this phenomenon is not observed in cables whose sheaths are made of soft materials such as ordinary low-density polyethylene or PVC. This phenomenon is also not observed in the case of three-core bulk sheathed cables. The reason for this is thought to be that the intervening layer or the gap between the cores relaxes the tightening force of the sheath.

硬さの尺度として、常温での曲げ弾性率を見る
と、通常の低密度ポリエチレンシースが20Kg/mm2
であるのに対し高密度ポリエチレンは50Kg/mm2
上、ナイロン66で140Kg/mm2以上、ナイロン610で
120Kg/mm2以上である。
Looking at the bending elastic modulus at room temperature as a measure of hardness, a normal low-density polyethylene sheath is 20Kg/mm 2
In contrast, high-density polyethylene is 50Kg/mm 2 or more, nylon 66 is 140Kg/mm 2 or more, and nylon 610 is 140Kg/mm 2 or more.
It is 120Kg/mm2 or more .

考案者は、上記の点に鑑み、比較的硬質のシー
スを有し、且つ導体通電、停電により銅テープ遮
蔽層にしわの入らない単心電力ケーブルについ
て、鋭意検討を進め、この考案を完成するに至つ
た。
In view of the above, the inventor conducted extensive research into a single-core power cable having a relatively hard sheath and in which the copper tape shielding layer does not wrinkle when current is passed through the conductor or during a power outage, and has now completed this invention.

この考案の要旨とするところは、導体、絶縁
体、外部半導電層から成る絶縁コア上に設けた銅
テープ遮蔽層の外方に、圧縮したときに厚みが前
記絶縁体厚みの4.5%以上減少する緩衝層を設
け、その外方に曲げ弾性率50Kg/mm2以上の熱可塑
性樹脂から成る保護層を設けた単心電力ケーブル
にある。
The gist of this invention is that when compressed, the thickness of a copper tape shielding layer provided on an insulating core consisting of a conductor, an insulator, and an external semiconducting layer decreases by at least 4.5% of the thickness of the insulator. A single-core power cable is provided with a buffer layer, and a protective layer made of a thermoplastic resin with a bending modulus of elasticity of 50 kg/mm 2 or more is provided on the outer side of the buffer layer.

この考案を図面に基づき説明する。図はこの考
案の単心電力ケーブルの横断面図を示し、1は導
体、2は絶縁体、3は外部半導電層で、これらか
ら絶縁コアが形成される。この絶縁コア、即ち外
部半導電層3上に銅テープ遮蔽層4が設けられて
いる。銅テープ遮蔽層4の外方には、圧縮したと
きに厚みが絶縁体2厚みの5%以上減少する緩衝
層5が設けられており、その外方には曲げ弾性率
50Kg/mm2以上の熱可塑性樹脂から成る保護層6が
設けられている。
This idea will be explained based on the drawings. The figure shows a cross-sectional view of a single-core power cable of the invention, in which 1 is a conductor, 2 is an insulator, and 3 is an outer semiconducting layer, from which an insulating core is formed. A copper tape shielding layer 4 is provided on this insulating core, ie the outer semiconducting layer 3. A buffer layer 5 whose thickness decreases by 5% or more of the thickness of the insulator 2 when compressed is provided on the outside of the copper tape shielding layer 4, and the buffer layer 5 has a flexural modulus of elasticity.
A protective layer 6 made of a thermoplastic resin of 50 kg/mm 2 or more is provided.

この考案の単心電力ケーブルは上記の構造に成
つているから、銅テープが絶縁体の熱膨脹により
弾性限界以上で5%以上に延ばされる。この場合
常温に冷却されたとき銅テープ遮蔽層の外方の保
護層の収縮による締付け力は緩衝層の圧縮により
弱められ、銅テープにしわは発生しない。圧縮に
よる緩衝層の厚みの減少が絶縁体厚の4.5%以上
である理由は、4.5%未満ならば、保護層の収縮
が緩衝層の圧縮可能の範囲を越えたときに、保護
層の収縮による締付け力が銅テープ遮蔽層にかか
り、しわを発生させる可能性があるためである。
The single-core power cable of this invention has the above structure, so that the copper tape is stretched by 5% or more beyond its elastic limit due to the thermal expansion of the insulation. In this case, when cooled to room temperature, the clamping force caused by the contraction of the protective layer outside the copper tape shielding layer is weakened by the compression of the buffer layer, and no wrinkles are generated in the copper tape. The reason why the reduction in thickness of the buffer layer due to compression is 4.5% or more of the insulation thickness is that if it is less than 4.5%, when the contraction of the protective layer exceeds the compressible range of the buffer layer, the clamping force caused by the contraction of the protective layer is applied to the copper tape shielding layer, which may cause wrinkles.

以下、実施例を示し、この考案の有意性を明ら
かにする。
Examples will be shown below to clarify the significance of this invention.

実施例 1 導体外径17mm、絶縁体厚4.5mmの絶縁コア上の
銅テープ遮蔽層上に、多心ケーブルの介在として
よく用いられるジユートを余り締付けずに巻い
て、緩衝層を設け、次いで、ジユートがばらけな
いように綿テープを巻いた後、ナイロン66(曲げ
弾性率130Kg/mm2)を厚さ2.5mmを押出被覆し、保
護層(内径40mm)を設け、6KV用の架矯ポリエチ
レン単心電力ケーブルを作成した。
Example 1 A buffer layer was provided by wrapping a jute, which is often used as an intermediary in multi-core cables, without much tightening, on the copper tape shielding layer on the insulating core with a conductor outer diameter of 17 mm and an insulator thickness of 4.5 mm, and then After wrapping the juute with cotton tape to prevent it from coming apart, it was extruded and coated with nylon 66 (flexural modulus 130Kg/mm 2 ) to a thickness of 2.5mm, a protective layer (inner diameter 40mm) was applied, and a 6KV-strength polyethylene film was applied. Created a single core power cable.

このケーブルの緩衝層を圧縮して、その厚みの
減少を調べたところ絶縁体厚の約5%であつた。
このケーブルを導体温度105℃と常温の間で通電
ヒートサイクルを10回加えた後、このケーブルを
解体したが、銅テープ遮蔽層にはしわが全く見ら
れなかつた。
When the buffer layer of this cable was compressed and its thickness reduced, it was found to be about 5% of the insulator thickness.
After this cable was subjected to 10 electrical heat cycles between the conductor temperature of 105°C and room temperature, the cable was disassembled, but no wrinkles were observed in the copper tape shielding layer.

実施例 2 実施例1で使用した絶縁コア上に銅テープ遮蔽
層を巻き、その上にポリエステル不織布をつき合
わせ巻きした後、以下実施例1と同様の保護層を
設けて、6KV−200mm2ケーブルを作成した、導体
温度105℃−常温のヒートサイクルを行つた後、
このケーブルを解体して、銅テープ遮蔽層を見た
が、これもしわが全く認められなかつた。
Example 2 A copper tape shielding layer was wound on the insulating core used in Example 1, and a polyester nonwoven fabric was butt-wound on it, and then a protective layer similar to Example 1 was provided, and a 6KV-200mm 2 cable was prepared. After conducting a heat cycle between the conductor temperature of 105℃ and room temperature,
When this cable was disassembled and the copper tape shielding layer was examined, no wrinkles were observed.

尚、このポリエステル不織布は圧縮により絶縁
体厚の約4.5%(約0.2mm)厚みが減少した。
The thickness of this polyester nonwoven fabric was reduced by about 4.5% (about 0.2 mm) of the insulator thickness by compression.

実施例 3 実施例2の保護層材(ナイロン66)に代つて、
高密度ポリエチレン(曲げ弾性率50Kg/mm2)を用
いて、同様のケーブルを作成した。同様のヒート
サイクル試験を行つたが、銅テープにはしわは見
られなかつた。
Example 3 Instead of the protective layer material (nylon 66) of Example 2,
A similar cable was made using high-density polyethylene (flexural modulus 50 Kg/mm 2 ). A similar heat cycle test was conducted, but no wrinkles were observed in the copper tape.

比較例 実施例1と同様の絶縁コア上に銅テープを巻い
て遮蔽層を設け、その上に綿テープ(0.2mm厚)
を巻き、その上に高密度ポリエチレン(曲げ弾性
率50Kg/mm2)の保護層を押出被覆した。同様のヒ
ートサイクルを行ない、ケーブルを解体したとこ
ろ銅テープに縦方向のしわが見られた。尚、圧縮
による綿テープの厚みの減少は1.0mm以下(絶縁
体層の約2%以下)であつた。
Comparative example A shielding layer was provided by wrapping copper tape on the same insulating core as in Example 1, and cotton tape (0.2 mm thick) was placed on top of it.
A protective layer of high-density polyethylene (flexural modulus of elasticity 50 Kg/mm 2 ) was extruded thereon. When the cable was disassembled after a similar heat cycle, vertical wrinkles were observed in the copper tape. The thickness of the cotton tape decreased by 1.0 mm or less (approximately 2% or less of the insulating layer) due to compression.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの考案の単心電力ケーブルの横断面図で
ある。 1……導体、2……絶縁体、3……外部半導電
層、4……銅テープ遮蔽層、5……緩衝層、6…
…保護層。
The figure is a cross-sectional view of the single-core power cable of this invention. DESCRIPTION OF SYMBOLS 1...Conductor, 2...Insulator, 3...Outer semiconducting layer, 4...Copper tape shielding layer, 5...Buffer layer, 6...
…protective layer.

Claims (1)

【実用新案登録請求の範囲】 (1) 導体、絶縁体、外部半導電層から成る絶縁コ
ア上に設けた銅テープ遮蔽層の外方に、圧縮し
たときに厚みが前記絶縁体の厚みの4.5%以上
減少する緩衝層を設け、その外方に曲げ弾性率
50Kg/mm2以上の熱可塑性樹脂から成る保護層を
設けた単心電力ケーブル。 (2) 緩衝層が不織布、ジユート、発泡ポリウレタ
ンテープ又は発泡ポリウレタン押出被覆層から
成る実用新案登録請求の範囲第(1)項記載の単心
電力ケーブル。 (3) 曲げ弾性率50Kg/mm2以上の熱可塑性樹脂が高
密度ポリエチレン又はナイロンである実用新案
登録請求の範囲第(1)項記載の単心電力ケーブ
ル。
[Claims for Utility Model Registration] (1) A copper tape shielding layer provided on the outer side of an insulating core consisting of a conductor, an insulator, and an external semiconductive layer, whose thickness when compressed is 4.5 times the thickness of the insulator. Provide a buffer layer that reduces the bending elastic modulus by more than %.
Single core power cable with a protective layer made of thermoplastic resin of 50Kg/mm2 or more . (2) The single-core power cable according to claim (1), in which the buffer layer is made of nonwoven fabric, jute, foamed polyurethane tape, or foamed polyurethane extrusion coating layer. (3) The single-core power cable according to claim 1, wherein the thermoplastic resin having a bending modulus of elasticity of 50 Kg/mm 2 or more is high-density polyethylene or nylon.
JP11318181U 1981-07-29 1981-07-29 single core power cable Granted JPS5819419U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11318181U JPS5819419U (en) 1981-07-29 1981-07-29 single core power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11318181U JPS5819419U (en) 1981-07-29 1981-07-29 single core power cable

Publications (2)

Publication Number Publication Date
JPS5819419U JPS5819419U (en) 1983-02-05
JPS6228015Y2 true JPS6228015Y2 (en) 1987-07-18

Family

ID=29907489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11318181U Granted JPS5819419U (en) 1981-07-29 1981-07-29 single core power cable

Country Status (1)

Country Link
JP (1) JPS5819419U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6269667U (en) * 1985-10-22 1987-05-01
JP2011223723A (en) * 2010-04-08 2011-11-04 Sei Optifrontier Co Ltd Bird injury prevention cable

Also Published As

Publication number Publication date
JPS5819419U (en) 1983-02-05

Similar Documents

Publication Publication Date Title
JP2001526453A (en) Discharge protection coating for power lines
US5807507A (en) Self-fusing conductive silicone rubber composition
JPS6228015Y2 (en)
US3101845A (en) Stretchable mica-containing insulating sheet materials and products insulated therewith
US3031523A (en) Aluminum sheathed cable
NZ199724A (en) Insulated electric cable
JP2011172313A (en) Straight connection for power cable
JP2913639B2 (en) Rubber and plastic insulated power cable with metal sheath using semiconductive cushion tape
JPS58135514A (en) Highly flexible submarine cable
JPH08237831A (en) Formation method of insulating covering of cable conductor connection part
JPS628094Y2 (en)
FR2420191A1 (en) Very high tension plastics-insulated electric cable proof - is damp resistant and has metal envelope with metal tape-winding underneath, and gap filled with petroleum jelly
JPH05274924A (en) Underground power transmission cable
JPS6335453Y2 (en)
JPH1021758A (en) Power cable with tension member
JPS5840890B2 (en) Cable connection
JPS6033519A (en) Optical fiber unit
JPH0517849U (en) Impermeable power cable
JPH033975Y2 (en)
JP2000299018A (en) Power submarine cable with lead sheath of each core
JP2504873Y2 (en) Heat resistant cable branch connection
JP2684797B2 (en) Water running prevention type metal sheath cable with wave
JPH0725512U (en) Power cable
SU817834A1 (en) Method of preparing wires in fluoroplastic sheath insulation and protective sheathon fibrous and cloth base for wiring
JPH025457Y2 (en)