JPS62280154A - Tension control device for restraining variation in tension - Google Patents

Tension control device for restraining variation in tension

Info

Publication number
JPS62280154A
JPS62280154A JP12287086A JP12287086A JPS62280154A JP S62280154 A JPS62280154 A JP S62280154A JP 12287086 A JP12287086 A JP 12287086A JP 12287086 A JP12287086 A JP 12287086A JP S62280154 A JPS62280154 A JP S62280154A
Authority
JP
Japan
Prior art keywords
tension
deceleration
acceleration
speed
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12287086A
Other languages
Japanese (ja)
Inventor
Hiroaki Hamamoto
浜本 浩明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP12287086A priority Critical patent/JPS62280154A/en
Publication of JPS62280154A publication Critical patent/JPS62280154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Controlling Rewinding, Feeding, Winding, Or Abnormalities Of Webs (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)

Abstract

PURPOSE:To prevent a web-like material from being damaged, by estimating a proportion- integration correcting value to be delivered after shift into a steady-state condition, when the web-like material stretched between two rolls, to be controlled in its tension and speed, is accelerated or decelerated. CONSTITUTION:A tension control section 2 drives a motor 3 to control the tension of a web- like material in accordance with a speed instruction 16 delivered from a linear acceleration and deceleration unit 1. Further, a detector 4 detects the speed of the web-like material and delivers a feed-back signal to the tension control section 2. Further, a drive roll 10 is driven by means of a speed control section 5 and a motor 6 in accordance with an instruction from the linear acceleration and deceleration unit 1 in order to convey the web-like material 12. Further, a tension detector 11 delivers a feed-back signal to the tension control section 2. When the linear acceleration and deceleration unit 1 delivers an acceleration signal 24, a deceleration signal 25 and acceleration and deceleration rate signal 26 to a control section 8 for restraining variations in tension, the control section 8 calculates an integration correcting value to be delivered after shift into a steady-state condition, and delivers a tension correcting signal 22 and a speed correcting signal 23. With this arrangement, it is possible to prevent the web-like material 12 from wrinkling and being broken.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、金属板4紙、フィルム等の帯状材料加工設備
の張力制御方式に関し、更に詳しくは、ライン加減速開
始時、完了時あるいはライン加減速中の加減速レート変
更時の張力変動を抑制する張力制御方式に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a tension control system for processing equipment for strip-shaped materials such as metal plates, paper, films, etc. The present invention relates to a tension control method for suppressing tension fluctuations at the time of starting, completing, or changing acceleration/deceleration rates during line acceleration/deceleration.

〔従来の技術〕[Conventional technology]

従来のこの種の帯状材料の加工設備においては、定常偏
差を零にするために、各駆動ロールの速度制御、張力制
御は比例積分制御(pH御)で行われている。このpr
制御は、過渡変動時、積分制御量の変化が遅いため、こ
の積分側′a景が却って外乱となる。したがって、PI
制御によってライン加減速開始時、完了時あるいは加減
速中の加減速レート変更時の張力補正を行うとき、積分
制御量変化遅れによる張力変動により、帯状材料にしわ
や切れが現れ、製品の品質に悪影響を与えるという問題
があった。
In conventional processing equipment for this type of strip material, the speed control and tension control of each drive roll is performed by proportional-integral control (pH control) in order to make the steady-state deviation zero. This pr
In control, since the integral control amount changes slowly during transient fluctuations, this integral side'a view actually becomes a disturbance. Therefore, P.I.
When tension is corrected by control at the start and end of line acceleration/deceleration, or when the acceleration/deceleration rate is changed during acceleration/deceleration, wrinkles or cuts may appear in the strip material due to tension fluctuations due to a delay in the change in integral control amount, which may impair the quality of the product. The problem was that it had a negative impact.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

PI制御においては、定常偏差の補正は、積分制御によ
って行われる。したがって、ラインの加減速等によって
制御の状態が変化したとき、積分器に蓄積された補正量
が積分時定数の影響でなかなか変化せず、かえってこの
積分補正量が外乱となって、張力制御時に張力変動が発
生するという欠点があった。
In PI control, correction of steady-state deviation is performed by integral control. Therefore, when the control state changes due to line acceleration or deceleration, etc., the correction amount accumulated in the integrator does not change easily due to the influence of the integration time constant, and on the contrary, this integral correction amount becomes a disturbance during tension control. There was a drawback that tension fluctuations occurred.

この問題を解消するために、従来においても、8字加減
速による方法が採られていた。
In order to solve this problem, a method using 8-character acceleration/deceleration has been adopted in the past as well.

すなわち、8字加減速とは、速度指令の変化率を連続に
して速度変化の開始と終了時点を滑らかにするライン加
減速方法である。しかしながら、この方法の場合、速度
変化の開始と終了部(S字部)の時間だけ、加減速時間
が長くなることになる。さらに、8字加減速演算は、直
線加減速演算に比べると複雑になる。
That is, the figure-8 acceleration/deceleration is a line acceleration/deceleration method that makes the rate of change of the speed command continuous and smoothes the start and end points of speed change. However, in the case of this method, the acceleration/deceleration time becomes longer by the time between the start and end portion (S-shaped portion) of the speed change. Furthermore, the figure-8 acceleration/deceleration calculation is more complicated than the linear acceleration/deceleration calculation.

本発明は、このような従来の問題点に鑑みてなされたも
のであり、ライン加減速開始時、完了時あるいは加減速
中の加減速レート変更時の張力変動を速やかに抑制する
ことを目的とする。
The present invention has been made in view of such conventional problems, and an object of the present invention is to quickly suppress tension fluctuations when line acceleration/deceleration is started, when line acceleration/deceleration is completed, or when acceleration/deceleration rate is changed during acceleration/deceleration. do.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明の張力制御方式は、張
力制御部及び第1の電動機で駆動される第1のロールと
速度制御部及び第2の電動機で駆動される第2のロール
との間が帯状材料で連結され、各ロールが直線加減速器
によって一斉に加減速され、第2の駆動ロールについて
速度制御、第1の駆動ロールについて張力制御あるいは
その逆の制御が行われる帯状材料加工設備において、直
線加減速器から加減速指令が出されたとき、定常状態移
行後に張力制御部及び速度制御部が出力すべき比例積分
制御部の積分補正量を張力制御部及び速度制御部からの
信号に基づいて准定し、ライン加減速開始、完了信号又
は加減速中の加減速レート変更信号と同時に、速度制御
部と張力制御部の各積分器に、該推定量をフィードフォ
ワード的にセットしてライン加減速開始時、完了時又は
加減速中の加減速レート変更時の張力変動を抑制するこ
とを特徴とする。
To achieve this objective, the tension control method of the present invention includes a tension control section and a first roll driven by a first electric motor, and a speed control section and a second roll driven by a second electric motor. Strip-shaped material processing in which the rolls are connected by a strip-shaped material, each roll is accelerated or decelerated at the same time by a linear accelerator/deceleration, and the speed of the second drive roll is controlled, and the tension of the first drive roll is controlled or vice versa. In equipment, when an acceleration/deceleration command is issued from a linear accelerator/decelerator, the integral correction amount of the proportional-integral control unit that should be output by the tension control unit and speed control unit after transition to a steady state is calculated from the tension control unit and speed control unit. The estimated amount is determined based on the signal, and is set in the integrators of the speed control section and tension control section in a feedforward manner at the same time as the line acceleration/deceleration start or completion signal or the acceleration/deceleration rate change signal during acceleration/deceleration. It is characterized by suppressing tension fluctuations at the time of starting or completing line acceleration or deceleration, or when changing the acceleration/deceleration rate during acceleration or deceleration.

〔作用〕[Effect]

第1図は本発明の制御構成図である。張力制御されてい
る系からは、トルク指令T+、速度偏差Δvl+ 張力
偏差ΔFを検出する。速度制御されている系からは、ト
ルク指令T2を検出する。また、ラインの加減速レート
による各機械に必要な慣性による加減速分トルクは、C
D”が既知のため、加減速レート信号26により計算す
ることができる。また、直線加減速器よりライン加減速
開始。
FIG. 1 is a control configuration diagram of the present invention. From the tension-controlled system, torque command T+, speed deviation Δvl+, and tension deviation ΔF are detected. A torque command T2 is detected from the speed controlled system. In addition, the acceleration/deceleration torque due to inertia required for each machine due to the acceleration/deceleration rate of the line is C
Since D'' is known, it can be calculated using the acceleration/deceleration rate signal 26. Also, the linear acceleration/deceleration starts line acceleration/deceleration.

完了信号とライン加減速レートが、張力変動抑制制御部
へ与えられるようになっている。ライン制御状態が定常
状態になっていることを張力偏差ΔFが十分に小さいこ
とより検出して、ライン加減速開始、完了信号又は加減
速中の加減速レート変更が発生すると同時に、各ドライ
ブ装置から検出している信号と、加減速トルクとから次
の定常状態の各制御系のPI制御部の積分補正量を准定
して、この推定値を張力制御部、速度制御部の各P■制
′4Hの積分器にパルス信号で1回だけセフ)する。
The completion signal and the line acceleration/deceleration rate are given to the tension fluctuation suppression control section. It is detected that the line control state is in a steady state because the tension deviation ΔF is sufficiently small, and at the same time a line acceleration/deceleration start, completion signal, or change in acceleration/deceleration rate during acceleration/deceleration is generated, each drive device The integral correction amount of the PI control section of each control system in the next steady state is determined from the detected signal and acceleration/deceleration torque, and this estimated value is applied to each P control of the tension control section and speed control section. Set the 4H integrator only once with a pulse signal.

すなわち、次の定常状態での各PI制御部の積分補正量
を推定して、ライン加減速開始、完了あるいは加減速中
の加減速レート変更と同時に、この推定量を積極的に積
分器にセフ)するので、推定量が正しければ、加減速開
始、完了あるいは加減連中の加減速レート変更時の張力
変動をほぼ零にすることができる。
In other words, the integral correction amount of each PI control unit in the next steady state is estimated, and this estimated amount is actively sent to the integrator at the same time as the line acceleration/deceleration starts, completes, or changes the acceleration/deceleration rate during acceleration/deceleration. ) Therefore, if the estimated amount is correct, it is possible to reduce the tension fluctuation to almost zero when acceleration/deceleration is started or completed or when the acceleration/deceleration rate is changed during acceleration/deceleration.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて具体的に説
明する。
Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings.

第2図が代表的実施例である。FIG. 2 shows a typical embodiment.

張力変動抑制部8への人力は、張力制御系では、■ 速
度制御部33の出力45(トルク七令Tl)■ 速度偏
差出力44(Δv+) ■ 張力偏差出力42(ΔF+) 速度制御系では、 ■ 速度制御部35の出力46(トルク指令Tz)であ
る。
In the tension control system, the human power applied to the tension fluctuation suppressing unit 8 is: ■ Output 45 of the speed control unit 33 (Torque 7-force Tl) ■ Speed deviation output 44 (Δv+) ■ Tension deviation output 42 (ΔF+) In the speed control system, (2) Output 46 (torque command Tz) of the speed control section 35.

信号47.48がライン加減速開始、完了あるu%&よ
加減連中の加減速レート変更時、PI制御部32゜35
内の積分器にセットされる信号で、上記タイミングで1
回だけセットされる。
Signals 47 and 48 indicate the start and completion of line acceleration/deceleration. When changing the acceleration/deceleration rate of u% & Yo acceleration/deceleration, PI control unit 32°35
This is the signal set to the integrator in the above timing.
It is set only once.

■) 一定速度で定常運転中からライン加減速に入る時
、 (Δv1−Δvatx) ・K t−T + +  C
dv / d L]:会・・・・(11(Δv、−Δv
Ata)4z=T+  [dv/dtl雷、−fil’
ΔTas* −Tz ” [dv/dt]:::  ・
・−・・−−−−−(21ΔT□ −T8− [dv/
d【]:=:  ・・・・・・・・・・(2) ′ΔF
−40・・・・・・・・・・・(3)ΔV、4110 
         ・・・・・・・・・・・(4)ΔV
ary  : ATRTa205分器出力ΔV^ロ :
ASR部35の積分器出力[dv/dL]:会:張力制
御系の加速骨トルり絶対値[dv/dt]”、”、::
張力制御系の減速骨トJレク絶対値[dv/dt]七−
:速度制御系の加速骨トJレク絶対値[dv/ at〕
:S: ’速度制御系の減速骨トルり絶対(直なお、+
11. +21式は加速を、+1) ’ 、 +2) 
’式は減速をそれぞれ表し、単位はすべてCP、11.
)で記す。
■) When starting line acceleration/deceleration from steady operation at a constant speed, (Δv1-Δvatx) ・K t-T + + C
dv / d L]: Meeting... (11 (Δv, -Δv
Ata)4z=T+ [dv/dtl lightning, -fil'
ΔTas* −Tz” [dv/dt]::: ・
・−・・−−−−−(21ΔT□ −T8− [dv/
d[]:=: ・・・・・・・・・・(2) ′ΔF
-40・・・・・・・・・・・・(3) ΔV, 4110
・・・・・・・・・・・・(4)ΔV
ary: ATRTa205 divider output ΔV^ro:
Integrator output of ASR section 35 [dv/dL]: Absolute value of acceleration bone torque of tension control system [dv/dt]",",::
Absolute value of deceleration bone torque of tension control system [dv/dt]7-
: Absolute value of acceleration bone torque of speed control system [dv/at]
:S: 'Absolute deceleration bone torque of speed control system (directly, +
11. +21 formula is acceleration, +1) ', +2)
'Equations each represent deceleration, all units are CP, 11.
).

したがって、積分器セット値は、加速時はΔyA、、m
Δv+−L−(Tt −[dv/dtl雷)−・+51
’に: ΔTAsm  : +2)、 +2) ’式と同じで与
えられる。
Therefore, the integrator set value is ΔyA,, m
Δv+-L-(Tt-[dv/dtl lightning)-・+51
': ΔTAsm: +2), +2) ' is given in the same way as the formula.

(2)一定加減速中の定常状態から定速運転に入る時、 ΔVA?1”Δ■+  ’ (Tt +[dv/dt]
雷) 、・、、(61’に! ΔTA!11−Tz   [dv/dt]:::  −
−−−・−・−(71ΔTA311 ”Tz ” [d
シフ dt ] D E :  ・・・・・・・・・・
(7)′(ただし、+61. +71式は加速完了を、
+61 ’ 、 fi+ ’式は減速完了をそれぞれ表
す、) で与えられる。
(2) When entering constant speed operation from a steady state during constant acceleration/deceleration, ΔVA? 1"Δ■+' (Tt +[dv/dt]
Lightning) ,,,, (at 61'! ΔTA!11-Tz [dv/dt]::: -
---・-・-(71ΔTA311 “Tz” [d
Shift dt] DE: ・・・・・・・・・・・・
(7)' (However, +61. +71 formula indicates completion of acceleration,
+61' and fi+' expressions respectively represent the completion of deceleration.

(3)  一定加速中の定常状態から即座に減速運転。(3) Immediate deceleration operation from a steady state during constant acceleration.

あるいは一定減速中の定常状態から即座に加速運転に入
る時、 Δ V Al1− Δ v +   ”  (Tt−[
、dv/dt]七:   [dv/dtコニ七)g ・・・・・・・・・・(8) Δ V ATR−Δ V、−1(τ、+[dv/dtコ
::: +[:dv/dtl:Er:)K。
Or, when accelerating operation immediately starts from a steady state during constant deceleration, Δ V Al1− Δ v + ” (Tt− [
, dv/dt] 7: [dv/dt 7) g ・・・・・・・・・・(8) Δ V ATR−Δ V, −1(τ, +[dv/dt ko::: + [:dv/dtl:Er:)K.

・・・・・・・・・・(8)′ Δ ”As5−Tx   [dv/dtl:::−[d
v/dt]’、:’、  +・・+・’to)ΔV a
ss−Tt + [dv/dt]::: +[dv/d
t]:tJニー・−(9ビ(ただし、(81,(91式
は加速から減速、 +81 ’ 、(9)′式は減速か
ら加速の場合を表す、) で与えられる。
・・・・・・・・・・・・(8)′ Δ”As5-Tx [dv/dtl:::-[d
v/dt]', :', +・・+・'to)ΔV a
ss-Tt + [dv/dt]::: +[dv/d
t]: tJ knee - (9 Bi (however, (81, (Equation 91 represents the case from acceleration to deceleration, +81', Equation (9)' represents the case from deceleration to acceleration).

(4)一定加減速中の定常状態から加減速レートを変更
する場合 A VA?11”  Δ v +−g、(Tu[dV/
dt]:::”   [dv/dt]雷)・・・・・・
・・・・OI Δ V ATII−Δ V 、−土(Tt−[dv/d
tコ:::”+[dv/dtコニ;オにオ ・・・・・・・・・・αQ′ Δ’V ass ” T z ” [dv/dtl七:
”−[dv/dtl:::・”’αυΔ VA31−T
t   [dv/dt]:::”+[:dv/dt]:
::・−−−αD ′(ただし、fl凱Qυ式は加速レ
ート変更、(II’。
(4) When changing the acceleration/deceleration rate from a steady state during constant acceleration/deceleration AVA? 11” Δ v +−g, (Tu[dV/
dt]:::” [dv/dt] thunder)...
・・・・OI Δ V ATII−Δ V , −Sat (Tt−[dv/d
tko:::”+[dv/dtkoni;Onio・・・・・・・αQ′ Δ'V ass ” T z ” [dv/dtl7:
”-[dv/dtl:::・”'αυΔ VA31-T
t [dv/dt]:::”+[:dv/dt]:
::・---αD ′ (However, the fl Kai Qυ formula changes the acceleration rate, (II'.

Q9′は減速レート変更をそれぞれ示す。)[dv/d
tl:::”  ’加速レート変更後の張力制御系の加
速骨トルク絶対値 [、dv/dtl:::”  、減速レート変更後の張
力制御系の減速骨トルク絶対値 cdv/dtl:::” ;加速レート変更後の速度制
御系の加速骨トルク絶対値 [d、v/dt]:::X  、減速レート変更後の速
度制御系の減速骨トルク絶対値 で与えられる。
Q9' indicates a change in deceleration rate. ) [dv/d
tl:::” 'Absolute value of acceleration bone torque of tension control system after changing acceleration rate [, dv/dtl:::', Absolute value of deceleration bone torque of tension control system after changing deceleration rate cdv/dtl::: ”; Absolute value of acceleration bone torque of the speed control system after changing the acceleration rate [d, v/dt]:::X, given by the absolute value of the deceleration bone torque of the speed control system after changing the deceleration rate.

したがって、現在のトルク指令より、加減速トルクを考
慮すれば、次の定常状態のトルク指令が推定でき、この
ときの各PI制御部積分器出力が計算できる。ただし、
この補正が有効になるのは、(3)式が成立していると
きで、(3)式のインタロックをとることが必要である
。その意味で、張力変動抑制装置8には、信号42(Δ
F、)が必要である。
Therefore, by considering the acceleration/deceleration torque from the current torque command, the next steady-state torque command can be estimated, and the output of each PI control part integrator at this time can be calculated. however,
This correction becomes effective when equation (3) holds true, and it is necessary to interlock equation (3). In this sense, the tension fluctuation suppressing device 8 has a signal 42 (Δ
F,) is required.

これらの推定式の使い分けは、直線加減速器1より出力
される信号24.25のステータス信号と加減速レート
信号26とで行う、信号24.25の内容は、第3図に
示す信号又はこれと同等のものとなる。
The use of these estimation formulas is done using the status signal 24.25 output from the linear accelerator/deceleration 1 and the acceleration/deceleration rate signal 26.The content of the signal 24.25 may be the signal shown in FIG. It will be equivalent to

以上より、信号24.25の立ち上がり、立ち下がり信
号と加減速レート信号26で、前記(21,(21’ 
From the above, with the rising and falling signals of the signals 24 and 25 and the acceleration/deceleration rate signal 26, the above (21, (21')
.

(5)〜αυ′式を使って、各制御部のP[tli制御
の中の積分器のセット値を演算し、積分器にこの値を一
回だけセントする。これにより、次のモード時の定常状
態におけるpr制御中の積分器出力が直ちにセットされ
るので、積分器の積分時間による変化の遅れによる不具
合が解消され、張力変動を抑制することができる。こら
の演算回路及び制御回路はすべてディジタル回路で構成
されている。また、各制御系よりの入力情報(”r、、
ΔF+、Δv、。
Using equations (5) to αυ', calculate the set value of the integrator in the P[tli control of each control section, and enter this value into the integrator only once. As a result, the integrator output during pr control in the steady state in the next mode is immediately set, so problems caused by a delay in change due to the integration time of the integrator are eliminated, and tension fluctuations can be suppressed. All of these arithmetic circuits and control circuits are constructed of digital circuits. In addition, input information from each control system ("r,,
ΔF+, Δv,.

Tz)は、実際はバラつくので、移動平均法などを使っ
て平滑した値を使うようにしている。
Since Tz) actually varies, a value smoothed using a moving average method or the like is used.

第4図は他の実施例を示す、この第4図は、張力制御系
に速度マイナー制御がなく、材料の伸びがほとんど無視
できる場合の構成例である。張力制御系の方は、加減速
トルクが信号56によって与えられており、速度指令と
ロール9の実際の速度偏差Δv1がトルクに及ぼす影響
はほとんど無視できるので、張力制御系側への張力変動
抑制の信号は不要である。速度制御系側のみに張力変動
抑制信号を加えることになる。
FIG. 4 shows another embodiment. This FIG. 4 is an example of a configuration in which the tension control system does not have speed minor control and the elongation of the material can be almost ignored. For the tension control system, the acceleration/deceleration torque is given by the signal 56, and the influence of the speed command and the actual speed deviation Δv1 of the roll 9 on the torque can be almost ignored, so tension fluctuations on the tension control system are suppressed. signal is not required. The tension fluctuation suppression signal is applied only to the speed control system side.

第5図は、張力制御系に速度マイナー制御がなく、材料
の伸びが無視できない場合の構成例である。この場合、
材料の伸びによるロール9とロールIOの周速差すなわ
ち第2図におけるΔV、を求める必要がある。というの
は、加減速分トルクは信号56で与えられるが、ライン
加減速レートに相当したトルクで与えられる。したがっ
て、張力制御系の補正信号43と張力分トルク指令57
を切って、ライン加減速した場合、メカニカルロスがな
いとすれば、ロール9とロール10の周速は、定常加減
速中で一致する。また、張力発生メカニズムは、材料の
両端にあるロールの周速差で発生することで、一般に考
えられている。、シたがって、第5図のような張力制御
系では、加減速トルクでロール間周速差がなくなる状態
を張力制御部32で補正してやることで、ロール間周速
差を発生し、設定張力を確保していることになる。この
補正量ΔTctは次式で表される。
FIG. 5 shows an example of a configuration in which the tension control system does not have speed minor control and the elongation of the material cannot be ignored. in this case,
It is necessary to determine the peripheral speed difference between roll 9 and roll IO due to elongation of the material, ie, ΔV in FIG. 2. This is because the acceleration/deceleration torque is given by the signal 56, but it is given by a torque corresponding to the line acceleration/deceleration rate. Therefore, the correction signal 43 of the tension control system and the tension torque command 57
When the line acceleration/deceleration is performed by cutting the rotation speed, assuming that there is no mechanical loss, the circumferential speeds of the rolls 9 and 10 are the same during steady acceleration/deceleration. Furthermore, it is generally believed that the tension generation mechanism is caused by the difference in circumferential speed between the rolls at both ends of the material. Therefore, in the tension control system as shown in FIG. 5, the tension control unit 32 corrects the state in which the difference in circumferential speed between rolls disappears due to acceleration/deceleration torque, thereby generating a difference in circumferential speed between rolls and adjusting the set tension. This means that the This correction amount ΔTct is expressed by the following equation.

ΔT(真;−ΔV電・[dv/dt]AT11・・・・
・・・・・・(Uシ)ここで、単位はCP、tl、]で
考えている。
ΔT (true; -ΔV voltage・[dv/dt] AT11...
......(Ushi) Here, the units are CP, tl, ].

また、ΔV、はロール9の軸の周速が検出できない場合
、以下のように推定する。張力発生メカニズムは、一般
に1次遅れでモデル化でき、各ロール周速差と張力の関
係は、定常状態ではE −S/V・Δy w F   
   ・・・・・・・・・・αコここで、E:ヤング率
(kir/WjA”)S:材料断面積〔f12〕 ■:材料速度(m/5ee) ΔV:ロール周速差(m/5ec) F;発生張力〔k「〕 となる。したがって、ロール10の周速と速度指令発生
器1が一致していれば、Δv、−Δv / vl。。
Further, ΔV is estimated as follows when the circumferential speed of the shaft of the roll 9 cannot be detected. The tension generation mechanism can generally be modeled as a first-order lag, and the relationship between the circumferential speed difference of each roll and tension is E - S / V · Δy w F in a steady state.
・・・・・・・・・α Here, E: Young's modulus (kir/WjA") S: Material cross-sectional area [f12] ■: Material speed (m/5ee) ΔV: Roll circumferential speed difference (m /5ec) F: Generated tension [k'']. Therefore, if the circumferential speed of the roll 10 and the speed command generator 1 match, Δv, -Δv/vl.

となる、よって、α1弐より、 Δv、−Δv/V100−F/ES ・V/V+o。Therefore, from α12, Δv, -Δv/V100-F/ES・V/V+o.

・・・・・・・・自・・・・・・圓 (ここで、■、。。:定格ライン速度(m/5ec))
となって、F、E、S、V、V、。。はすべで既知であ
るので、計算によってΔv1を求めることができる。
・・・・・・・・・Auto・・・・・・Round (where ■,.: Rated line speed (m/5ec))
So, F, E, S, V, V. . Since all of the values are known, Δv1 can be determined by calculation.

このようにして、この場合のライン加減速開始、完了又
は加減速中の加減速レート変更時の積分器へのセット値
は次式で与えられる。
In this way, the value set to the integrator at the time of starting or completing line acceleration/deceleration or changing the acceleration/deceleration rate during acceleration/deceleration in this case is given by the following equation.

■ 加速開始時 Δ TATI  −Δ Tt   + Δ v+  ・
 [dv/dtコニ;:ΔTa s m −T z ”
 [d V / d t ] :: m■ 加速完了時 ΔTATI  −Δ T、  −Δ v I ・ [d
v/dtコニ会ΔTAs* −Tt  [dv/dt]
:::■ 減速開始時 ΔTATl −aTl  −Δ v 、  ・ [dv
/dtコXtr:ΔThs* −Tz −[dv/dt
]:::■ 減速完了時 ΔTATK  −Δ T1  + Δ V  +  ・
 [:dv/dtコ:クコΔTas*  −Tt  +
[dv/dtコニ=:■ 加速中から減速 Δ T aTl−ΔT、−Δ V + ・([dV/d
tコ::: +[dV/dtコニ;:)Δ Tas++
=Tz   ([dv/dtコニsニー[dv/dtコ
:::)■ 減速中から加速 Δ T A丁、”  Δ T1 + Δ v + ・(
[dv/dtコ::: + [:(By/dj]4y*
)Δ T ass −T ! + ([dv/dt]:
:: + [dv/dtコ:::)■ 加速中、加速レ
ート変更 ΔTATげΔTl+ ([dv/dt]:::”−[d
v/dtl七:)ΔT as++ = T ! + (
[dv/dtコAC:X    [dv/ dt14(
(>■ 減速中、減速レート変更 Δ T kT@−Δ T+    ([dv/dtコ:
::X    [:dv/dt]:::)Δ T A3
1− T z −([dv/d tコ:::”  +[
dv/dtコ:::)ここで、 ΔTAfl  :張力制御系ATR部32内積分器出力
ΔT、:張力制御系ATR部32出力 〔発明の効果〕 以上に述べたように、本発明によれば、ライン加減速を
行っても、張力変動が抑制できるので、製品にしわや切
れが生じることを防止でき、製品の品質を確保すること
ができる。また、張力変動を抑えることができるので、
8字加減速する必要がなくなり、加減速時間が短縮でき
、生産性が上がり、速度調整も8字加減速に比べて楽に
なる。
■ At the start of acceleration Δ TATI −Δ Tt + Δ v+ ・
[dv/dtconi;:ΔTa s m −T z ”
[d V / d t ] :: m■ At the end of acceleration ΔTATI −Δ T, −Δ v I ・[d
v/dt Konikai ΔTAs* -Tt [dv/dt]
:::■ At the start of deceleration ΔTATl −aTl −Δ v , ・[dv
/dt Xtr:ΔThs* −Tz −[dv/dt
]:::■ At the end of deceleration ΔTATK −Δ T1 + Δ V + ・
[:dv/dtko:CucoΔTas* −Tt +
[dv/dtconi=: ■ Deceleration from acceleration Δ T aTl−ΔT, −Δ V + ・([dV/d
tco::: +[dV/dtconi;:)Δ Tas++
=Tz ([dv/dtcony [dv/dtco:::)■ Acceleration from deceleration Δ T A,” Δ T1 + Δ v + ・(
[dv/dtco::: + [:(By/dj]4y*
) Δ T ass −T ! + ([dv/dt]:
:: + [dv/dt:::) ■ During acceleration, change the acceleration rate ΔTAT increase ΔTl+ ([dv/dt]:::”-[d
v/dtl7:)ΔT as++ = T! + (
[dv/dt AC:X [dv/dt14(
(>■ During deceleration, change the deceleration rate Δ T kT@−Δ T+ ([dv/dt:
::X [:dv/dt]:::)ΔT A3
1-Tz-([dv/dtco:::”+[
dv/dt:::) Here, ΔTAfl: Output of the integrator in the tension control system ATR section 32 ΔT,: Output of the tension control system ATR section 32 [Effects of the Invention] As described above, according to the present invention, Even if the line is accelerated or decelerated, tension fluctuations can be suppressed, so wrinkles and cuts can be prevented from occurring in the product, and the quality of the product can be ensured. In addition, tension fluctuations can be suppressed, so
It eliminates the need for figure-8 acceleration/deceleration, shortens acceleration/deceleration time, increases productivity, and makes speed adjustment easier than with figure-8 acceleration/deceleration.

更に、ラインの加減速レート変更にも対応でき、操作性
の向上を図ることができる。
Furthermore, it is possible to respond to changes in the acceleration/deceleration rate of the line, thereby improving operability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本的構成を示ブロック図、第2図は
本発明の実施例を示すブロック図、第3図は第2図の実
施例におけるライン加減速開始又は完了信号の状態の説
明図、第4図及び第5図は本発明の他の例を示すブロッ
ク図である。 1:直線加減速器  2:張力制御部 3.6:電動機   4.7=速度検出器5:速度制御
部   8:張力変動抑制制御部9.10:駆動ロール
 11:張力検出器12:材料 16:速度指令    17:張力検出信号18.19
:速度検出信号 20:張力制御部よりの検出信号 21:速度制御部よりの検出信号 22.23:積分補正量セント値信号 24ニライン加速信号 25ニライン減速信号26:加
減速レート信号 31:張力設定器   32:張力制御器33.35:
速度制御部 34,36:パワー変換部41:張力指令
    42:張力偏差43:張力制御補正出力 44;速度偏差    45.46: )ルク指令47
.48:張力変動抑制信号 51:ロール入側張力設定部 52:張力−トルク変換部 53:加減速トルク演夏部 55:速度変化率信号 56:加減速トルク指令57:
張力分トルク指令
Fig. 1 is a block diagram showing the basic configuration of the present invention, Fig. 2 is a block diagram showing an embodiment of the invention, and Fig. 3 shows the state of the line acceleration/deceleration start or completion signal in the embodiment of Fig. 2. The explanatory drawings, FIGS. 4 and 5 are block diagrams showing other examples of the present invention. 1: Linear accelerator/decelerator 2: Tension control unit 3.6: Electric motor 4.7 = Speed detector 5: Speed control unit 8: Tension fluctuation suppression control unit 9.10: Drive roll 11: Tension detector 12: Material 16 : Speed command 17: Tension detection signal 18.19
: Speed detection signal 20: Detection signal from tension control section 21: Detection signal from speed control section 22.23: Integral correction amount cent value signal 24 2-line acceleration signal 25 2-line deceleration signal 26: Acceleration/deceleration rate signal 31: Tension setting Device 32: Tension controller 33.35:
Speed control section 34, 36: Power conversion section 41: Tension command 42: Tension deviation 43: Tension control correction output 44; Speed deviation 45.46: ) Luk command 47
.. 48: Tension fluctuation suppression signal 51: Roll entry side tension setting section 52: Tension-torque conversion section 53: Acceleration/deceleration torque calculation section 55: Speed change rate signal 56: Acceleration/deceleration torque command 57:
Tension torque command

Claims (1)

【特許請求の範囲】 1、張力制御部及び第1の電動機で駆動される第1のロ
ールと速度制御部及び第2の電動機で駆動される第2の
ロールとの間が帯状材料で連結され、各ロールが直線加
減速器によって一斉に加減速され、第2の駆動ロールに
ついて速度制御、第1の駆動ロールについて張力制御あ
るいはその逆の制御が行われる帯状材料加工設備におい
て、 直線加減速器から加減速指令が出されたとき、定常状態
移行後に張力制御部及び速度制御部が出力すべき比例積
分制御部の積分補正量を張力制御部及び速度制御部から
の信号に基づいて推定し、ライン加減速開始、完了信号
又は加減速中の加減速レート変更信号と同時に、速度制
御部と張力制御部の各積分器に、該推定量をフィードフ
ォワード的にセットしてライン加減速開始時、完了時又
は加減速中の加減速レート変更時の張力変動を抑制する
ことを特徴とする張力変動抑制のための張力制御方式。
[Claims] 1. A first roll driven by a tension control unit and a first electric motor and a second roll driven by a speed control unit and a second electric motor are connected by a band-shaped material. , in strip material processing equipment in which each roll is accelerated or decelerated all at once by a linear accelerator/decelerator, the speed of the second drive roll is controlled, the tension of the first drive roll is controlled, or vice versa. When an acceleration/deceleration command is issued from the controller, the integral correction amount of the proportional-integral control unit to be outputted by the tension control unit and the speed control unit after transition to a steady state is estimated based on the signals from the tension control unit and the speed control unit, At the same time as the line acceleration/deceleration start and completion signal or the acceleration/deceleration rate change signal during acceleration/deceleration, the estimated amount is set in the integrators of the speed control section and the tension control section in a feedforward manner, and when the line acceleration/deceleration starts, A tension control method for suppressing tension fluctuations, characterized by suppressing tension fluctuations when changing acceleration/deceleration rates at the time of completion or during acceleration/deceleration.
JP12287086A 1986-05-27 1986-05-27 Tension control device for restraining variation in tension Pending JPS62280154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12287086A JPS62280154A (en) 1986-05-27 1986-05-27 Tension control device for restraining variation in tension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12287086A JPS62280154A (en) 1986-05-27 1986-05-27 Tension control device for restraining variation in tension

Publications (1)

Publication Number Publication Date
JPS62280154A true JPS62280154A (en) 1987-12-05

Family

ID=14846668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12287086A Pending JPS62280154A (en) 1986-05-27 1986-05-27 Tension control device for restraining variation in tension

Country Status (1)

Country Link
JP (1) JPS62280154A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208957A (en) * 2008-03-06 2009-09-17 Yaskawa Electric Corp Tension control device and its control method, and transfer device with tension control device
US7891276B2 (en) 2007-08-31 2011-02-22 Kimbelry-Clark Worldwide, Inc. System and method for controlling the length of a discrete segment of a continuous web of elastic material
CN103072841A (en) * 2013-01-09 2013-05-01 安徽马钢工程技术有限公司 Tension roll control device for plate and strip processing line and tension control method
WO2016113994A1 (en) * 2015-01-14 2016-07-21 株式会社Ihi Tension control device and conveying device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7891276B2 (en) 2007-08-31 2011-02-22 Kimbelry-Clark Worldwide, Inc. System and method for controlling the length of a discrete segment of a continuous web of elastic material
US8196497B2 (en) 2007-08-31 2012-06-12 Kimberly-Clark Worldwide, Inc. System and method for controlling the length of a discrete segment of a continuous web of elastic material
JP2009208957A (en) * 2008-03-06 2009-09-17 Yaskawa Electric Corp Tension control device and its control method, and transfer device with tension control device
CN103072841A (en) * 2013-01-09 2013-05-01 安徽马钢工程技术有限公司 Tension roll control device for plate and strip processing line and tension control method
CN103072841B (en) * 2013-01-09 2015-04-01 安徽马钢工程技术集团有限公司 Tension roll control device for plate and strip processing line and tension control method
WO2016113994A1 (en) * 2015-01-14 2016-07-21 株式会社Ihi Tension control device and conveying device
JP2016130163A (en) * 2015-01-14 2016-07-21 株式会社Ihi Tension control device and conveying device
US9914610B2 (en) 2015-01-14 2018-03-13 Ihi Corporation Tension control device and conveying device

Similar Documents

Publication Publication Date Title
JPS62280154A (en) Tension control device for restraining variation in tension
JPH027276B2 (en)
JP2906838B2 (en) Tension control device for winding / unwinding machine
JP4498730B2 (en) Elevator abnormal vibration detection device
JPH06261574A (en) Control device of servomotor
JPH07323312A (en) Speed controller of motor and tension controller of rolling stock
JPH0219710B2 (en)
JPH01278905A (en) Device for controlling tension in continuous rolling mill
JPH0937582A (en) Variable-speed control equipment for induction motor
JPH0857510A (en) Method for controlling speed of deflector roll
JPS59193709A (en) Speed control device of rolling mill
JP2000086037A (en) Rewinder sizing controller
JPH04296A (en) Speed controller for motor
JPH11235077A (en) Conveyance control for band-shaped plate and controller therewith
JPH0593389A (en) Controller for motor used in paper machine
JP2860045B2 (en) Winding tension control device
JPH0213554A (en) Control device for winder
JPS63256209A (en) Device for controlling elongation percentage in rolling mill
JPS6361093B2 (en)
JPS60158911A (en) Control device of loop in rolling mill
JPH0431771B2 (en)
JPH04111914A (en) Device for controlling catenary of continuous line
JPH0342108A (en) Learning method for starting point of control for tube end in reducing mill
JPH02290610A (en) Controller of rolling mill
JPH05285519A (en) Method for controlling tension between stands in continuous rolling