JPS62278479A - Measurement of radiation distribution - Google Patents

Measurement of radiation distribution

Info

Publication number
JPS62278479A
JPS62278479A JP61121097A JP12109786A JPS62278479A JP S62278479 A JPS62278479 A JP S62278479A JP 61121097 A JP61121097 A JP 61121097A JP 12109786 A JP12109786 A JP 12109786A JP S62278479 A JPS62278479 A JP S62278479A
Authority
JP
Japan
Prior art keywords
radiation
measurement
measured
measuring time
counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61121097A
Other languages
Japanese (ja)
Inventor
Satoshi Kawasaki
川崎 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61121097A priority Critical patent/JPS62278479A/en
Publication of JPS62278479A publication Critical patent/JPS62278479A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To reduce the total measuring time, by controlling the measuring time relying on the counting dosage rate of radiation at a desired position in a perimeter of an object to be measured. CONSTITUTION:A radiation detector 3 is moved with a driver 4 along the length of a person 1 to be inspected to detect a primary radiation in a body-heightwise. Here, at M equally-divided positions in the height of the person, the radiations inputted from respective input units 11 are measured for a time T0 (fixed). An output of the detector 3 is analyzed in the pulse height with a counter 7 and the nuclide of the radiation existing in the person 1 being inspected is identified with an arithmetic unit 9 based on the resulting pulse height distributions. Then, the body-heightwise primary counting rate is calculated with an arithmetic unit 10 from the photoelectric peak area of the pulse height distributions obtained at respective positions and the measuring time and the results are displayed on a display unit 12. Thus, the dosage rate counting efficiency of the radiation is measured efficiently thereby reducing the total measuring time.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、放射能分布測定に係り、特に全測定時間を短
縮するのに好適な放射能分布測定方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to radioactivity distribution measurement, and particularly to a radioactivity distribution measurement method suitable for shortening the total measurement time.

〔従来の技術〕[Conventional technology]

81す定対象とする放射能強度が微弱である場合には、
特開昭57−175272号公報に記載のように、応答
関数法により、該測定対象内部の放射能分布を求める方
法が有効である。すなわち、該測定体周囲で放射線計数
率を測定し、該測定データをもとに予じめ求めておいた
応答関数により該測定体内部の放射能分布を解析で求め
る。しかし、該測定体周囲の任意の位置における放射線
測定時間については配慮されていなかった。
81 If the radioactivity intensity to be tested is weak,
As described in Japanese Unexamined Patent Publication No. 57-175272, an effective method is to obtain the radioactivity distribution inside the measurement object using the response function method. That is, the radiation count rate is measured around the object to be measured, and the radioactivity distribution inside the object to be measured is determined by analysis using a response function determined in advance based on the measurement data. However, no consideration was given to the radiation measurement time at any position around the object to be measured.

〔発明が解決しようとする間厘点〕[The problem that the invention attempts to solve]

上記従来技術は、被測定体周囲の任意の位置における放
射線測定時間の点について配慮されておらず、該測定体
内の放射能が局在しているような場合、該局在放射能か
ら離れた位置、すなわち。
The above-mentioned conventional technology does not take into account the radiation measurement time at any position around the object to be measured, and when the radioactivity within the object is localized, Position, ie.

計数率の低い位置における放射線測定時間と計数率の高
い位置(局在放射能に近い位1iりにおける測定時間を
同一にしてしまうという恐れがあり、全体の測定時間が
長くなってしまうという問題があった。
There is a risk that the radiation measurement time at a position with a low count rate and the measurement time at a position with a high count rate (close to localized radioactivity) will be the same, and the overall measurement time will become longer. there were.

本発明の目的は、上記欠点に鑑み、測定対象内の放射能
が局在しているような場合、放射線計数率を効率良く測
定し、全体の測定時間を短くすることのできる放射能分
布測定方法を毘供することにある。
In view of the above drawbacks, an object of the present invention is to provide a radioactivity distribution measurement method that can efficiently measure the radiation count rate and shorten the overall measurement time when the radioactivity within the measurement target is localized. The purpose is to provide the method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、被測定体周囲の任意の位置における放射線
計数率に依存して測定時間を制御することにより達成さ
れる。すなわち、計数率の低い位置では測定時間を短く
、逆に、計数率の高い位置では測定時間を長くする。
The above object is achieved by controlling the measurement time depending on the radiation count rate at any position around the object to be measured. That is, the measurement time is shortened at a position where the counting rate is low, and conversely, the measurement time is lengthened at a position where the counting rate is high.

〔作用〕[Effect]

単一核種の放射能分布は、最小二乗法の定理より次式を
最小にするAiとして求めることができる。
The radioactivity distribution of a single nuclide can be determined as Ai that minimizes the following equation using the least squares method theorem.

A;≧0                  ・・・
 (2)ここに、C,:j位置における計数率測定値A
凰 :被測定体内を仮想的に分割したときのi領域内の
放射能強度。
A;≧0...
(2) Here, C,: the count rate measurement value A at the j position
凰: Radioactivity intensity within i-region when the inside of the body to be measured is virtually divided.

RJI:応答関数(i領域に単位強度の放射能があると
きのj位置の検出器 の計数率で定義される値であり、 予じめ計算あるいは予備実験で求 めることができる) SJ:CJの統計誤差 したがって、放射能分布が局在しているとき、RJlの
小さい位置、jにおける測定値CJは、求めようとする
放射能分布A、に対する寄与は小さいので、この位置に
おける計数率測定値の精度をいくら高くしても、解析上
は無意味である。逆に言えば。
RJI: Response function (a value defined by the counting rate of the detector at position j when there is radioactivity of unit intensity in region i, and can be determined in advance by calculation or preliminary experiment) SJ: CJ's Statistical error Therefore, when the radioactivity distribution is localized, the measured value CJ at a position j where RJl is small has a small contribution to the radioactivity distribution A to be determined, so the count rate measurement value at this position is No matter how high the accuracy is, it is meaningless in terms of analysis. Conversely.

この位置における測定値の精度はある程度低くても、R
jtの大きい位置における計数率測定値が精度良く求ま
っていれば、放射能分布を精度よく求めることができる
Even if the accuracy of the measurement value at this position is low to some extent, R
If the count rate measurement value at the position where jt is large is determined with high precision, the radioactivity distribution can be determined with high precision.

ここに、Ta:j位置における測定時間であるので、 S、= −ミ;r−(一定)            
               ・・・ (4)という
設定値S(一定)を導入すれば、であり、Ciの小さい
位置における測定時間TJは短かく、CJの大きい位置
では測定時間TJは長くすることができる。したがって
、全体の測定時間は短くなる。
Here, since Ta: is the measurement time at the j position, S, = -mi;r- (constant)
... (4) If the set value S (constant) is introduced, the measurement time TJ can be shortened at a position where Ci is small, and the measurement time TJ can be lengthened at a position where CJ is large. Therefore, the overall measurement time is shortened.

〔実施例〕〔Example〕

以下1本発明の一実施例を図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明を実施例するための装置構成図であり
、人体内の放射能分布を身長方向−次元で求めるための
装置である。1は体内に放射性核種をもった被検者、2
は被検者1を支持するベッド、3は放射線検出器5例え
ばNaI(Te)検出器、4は放射線検出器3を被検者
1の身長方向に任意ステップで駆動するための駆動装置
、5は駆動袋ffi!4を支持するレール、6および6
′はレール5を支持する棒である。7は放射線検出器の
電気信号を計数する計数装置、8は駆動装置4を制御す
る制御装置である。9は計数装置7の出力信号と制御装
置8の出力信号とから被検者1の身長方向における放射
性核種の分布を算出する演算装置である。、10は被検
者1の身長方向位置における放射線測定時間を決定する
演算装置、11は測定時間等を入力する入力装置、12
は放射能分布等の演算結果を表示する表示装置である。
FIG. 1 is a block diagram of an apparatus for carrying out the present invention, and is an apparatus for determining the radioactivity distribution in the human body in the height direction. 1 is a test subject with radionuclides in the body, 2
3 is a bed that supports the subject 1; 3 is a radiation detector 5, for example, a NaI (Te) detector; 4 is a drive device for driving the radiation detector 3 in arbitrary steps in the height direction of the subject 1; 5; is the driving bag ffi! Rails supporting 4, 6 and 6
' is a rod that supports the rail 5. 7 is a counting device that counts electrical signals from the radiation detector, and 8 is a control device that controls the drive device 4. Reference numeral 9 denotes a calculation device that calculates the distribution of radionuclides in the height direction of the subject 1 from the output signal of the counting device 7 and the output signal of the control device 8. , 10 is an arithmetic device that determines the radiation measurement time at the height direction position of the subject 1, 11 is an input device that inputs the measurement time, etc., 12
is a display device that displays calculation results such as radioactivity distribution.

次に1本発明において最も重要となる演算装置9.10
の演算手順を詳細に説明する。
Next, the most important arithmetic device in the present invention 9.10
The calculation procedure will be explained in detail.

駆動装置4において放射線検出器3を身長方向に移動し
身長方向−次元の放射線を検出する。このとき、身長を
M等分割した位置においてそれぞれ入力装置!11より
入力されたTo待時間一定)放射線を測定する。放射線
検出器3の出力は計数装置7において波高解析され、こ
の波高分布をもとに、演算装置9では、被検者1内に存
在する放射性核種を同定する。次に、核種ごとに、身長
方向−次元の計数率を演算する該計数率は、各位置にお
ける波高分布の光電ピーク面積と測定時間とから計算で
きる。以下、被検体1内には、単一核種が存在する場合
について説明を限定する。なぜなら、複数核種について
は、それぞれ独立に計数率を求めることができるので、
単一核種の方法を複数回繰り返せば良いからである。
The driving device 4 moves the radiation detector 3 in the height direction to detect radiation in the height direction. At this time, input devices at the positions where the height is divided into M equal parts! To constant waiting time inputted from 11) radiation is measured. The output of the radiation detector 3 is subjected to pulse height analysis in the counting device 7, and based on this pulse height distribution, the arithmetic device 9 identifies the radioactive nuclide present in the subject 1. Next, for each nuclide, the counting rate in the height direction-dimension can be calculated from the photoelectric peak area of the wave height distribution at each position and the measurement time. Hereinafter, the explanation will be limited to the case where a single nuclide exists in the subject 1. This is because counting rates can be calculated independently for multiple nuclides.
This is because it is sufficient to repeat the single-nuclide method multiple times.

放射能分布は、最小二乗法の原理より次式を最小にする
Ai  (単一核種)として求めることができる。
The radioactivity distribution can be determined as Ai (single nuclide) that minimizes the following equation using the principle of least squares method.

ここに、添字Oは最初の粗測定を意味し、各変数の意味
は(1)式と同様である。但しM≧Nであり。
Here, the subscript O means the first rough measurement, and the meaning of each variable is the same as in equation (1). However, M≧N.

である。応答関数RJ 1は、被検体1を仮想的に身長
方向N等分割し、i領域に単位放射能強度が存在してい
るときのj位置の検出器に与える計数率として、予じめ
予備測定あるいは計算で求めることができる。すなわち
、検出器の計数効率とi領域からj位置の検出器を見込
む立体角で決まる幾可効率と被検体内における放射線透
過率との積で求めることができる。
It is. The response function RJ 1 is calculated in advance by preliminary measurement as the counting rate given to the detector at the j position when the subject 1 is virtually divided into N equal parts in the height direction and the unit radioactivity intensity is present in the i region. Or it can be calculated. That is, it can be determined by multiplying the counting efficiency of the detector, the geometric efficiency determined by the solid angle of looking into the detector at the j position from the i region, and the radiation transmittance within the subject.

したがって、粗測定により、被検体1内に存在する放射
能の総量Xとこのときの計数率統計誤差に起因する誤差
7■が次式で求まる。
Therefore, by rough measurement, the total amount X of radioactivity present in the subject 1 and the error 7 due to the counting rate statistical error at this time can be determined by the following equation.

ここで ここに、HIJは、(3)式の最小二乗法から求まる定
数であり、RJIの関数である。
Here, HIJ is a constant determined from the least squares method of equation (3), and is a function of RJI.

各測定位置における計数率測定値の統計誤差をS (一
定)とし、 (6)、  (7)式より、を得る。;7
/τを放射能分布を求める精度とじて入力袋ffi!1
1より入力すれば、上式より丁を決めることができる。
Letting the statistical error of the count rate measurement value at each measurement position be S (constant), the following is obtained from equations (6) and (7). ;7
/τ is the accuracy for determining the radioactivity distribution, and the input bag ffi! 1
If you input from 1, you can determine the number from the above formula.

次に、これをもとに、各位置における測定時間TJを、
次のように求める。
Next, based on this, the measurement time TJ at each position is
Find it as follows.

この測定時間に基づいて、再度、精密測定を実施し、す
なわち、CJ 1を求め、上記と同様の方法で放射能分
布Aiを求める。
Based on this measurement time, precision measurement is performed again, that is, CJ 1 is determined, and the radioactivity distribution Ai is determined in the same manner as above.

第2図は、被検体1内に点線源があるとしたときの、各
測定位置における測定時間を模式的に表わしたものであ
る。測定時間は、線源に近い位置で長くなり、遠く離れ
るに従って短くなる。
FIG. 2 schematically represents the measurement time at each measurement position, assuming that there is a point source within the subject 1. The measurement time is longer nearer to the source and shorter as it is farther away from the source.

以上の実施例では、各位置の測定時間を粗測定により演
算したが、予じめ(10)式の丁を、入力装置11より
入力しても良い。この場合には、粗測定が不必要になり
、測定時間をより短くすることがでる。
In the above embodiment, the measurement time for each position was calculated by rough measurement, but the value of equation (10) may be inputted in advance from the input device 11. In this case, rough measurement becomes unnecessary and the measurement time can be further shortened.

また、以上の実施例では、−次元分布測定のみを対象に
したが、放射線検出器を人体周方向にも移動可能とした
三次元分布測定にも適用することができる。この場合に
は、被検体1を三次元的に分割すれば良い。
Further, in the above embodiments, only -dimensional distribution measurement was targeted, but the present invention can also be applied to three-dimensional distribution measurement in which the radiation detector is movable in the circumferential direction of the human body. In this case, the subject 1 may be divided three-dimensionally.

また、上の実施例では、検出器を動かす構成となってい
るが、被検体1を動かす構成であっても放射能分布測定
上は同じことである。
Furthermore, although the above embodiment has a configuration in which the detector is moved, the measurement of the radioactivity distribution is the same even if the configuration is such that the subject 1 is moved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、放射能分布測定値の精度を大きく劣下
させることなく、全体の測定時間を短縮することができ
る。例えば、放射能が局在している場合には、特に大き
な効果があり、従来方法に比較して、全体の測定時間を
1/2以下にすることができる。
According to the present invention, the overall measurement time can be shortened without significantly deteriorating the accuracy of radioactivity distribution measurement values. For example, when the radioactivity is localized, this method has a particularly large effect, and the total measurement time can be reduced to 1/2 or less compared to conventional methods.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図、第2図は本発明に
よる測定時間の分布を示す線図である。 1・・・被検体、2・・・ベッド、3・・・放射線検出
器、4・・・駆動装置、7・・−計数装置、8・・駆動
制御装置、    ′9・・・放射能分布演算装置、i
o・・・測定時間演算装置・
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing the distribution of measurement times according to the present invention. DESCRIPTION OF SYMBOLS 1... Subject, 2... Bed, 3... Radiation detector, 4... Drive device, 7...-Counter, 8... Drive control device, '9... Radioactivity distribution computing device, i
o...Measurement time calculation device/

Claims (1)

【特許請求の範囲】[Claims] 1、放射線検出器を用いて被測定体周囲の計数率分布を
測定し、該測定値をもとに被測定体内部の放射能分布を
求める装置において、任意の位置における計数率測定値
の統計誤差が設定値以下になるように該測定体周囲の計
数率分布を測定することを特徴とする放射能分布測定方
法。
1. In a device that measures the count rate distribution around the object to be measured using a radiation detector and calculates the radioactivity distribution inside the object based on the measured value, statistics on the measured value of the count rate at any position. A radioactivity distribution measuring method characterized by measuring the count rate distribution around the measurement object so that the error is less than or equal to a set value.
JP61121097A 1986-05-28 1986-05-28 Measurement of radiation distribution Pending JPS62278479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61121097A JPS62278479A (en) 1986-05-28 1986-05-28 Measurement of radiation distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61121097A JPS62278479A (en) 1986-05-28 1986-05-28 Measurement of radiation distribution

Publications (1)

Publication Number Publication Date
JPS62278479A true JPS62278479A (en) 1987-12-03

Family

ID=14802802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61121097A Pending JPS62278479A (en) 1986-05-28 1986-05-28 Measurement of radiation distribution

Country Status (1)

Country Link
JP (1) JPS62278479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512531A (en) * 2011-03-31 2014-05-22 バブコック ナルサー リミテッド Improved methods and systems for investigating radiation sources in specific areas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512531A (en) * 2011-03-31 2014-05-22 バブコック ナルサー リミテッド Improved methods and systems for investigating radiation sources in specific areas

Similar Documents

Publication Publication Date Title
Schneider et al. Multiple Coulomb scattering and spatial resolution in proton radiography
Duggan et al. Small photon field dosimetry for stereotactic radiosurgery
US5689115A (en) Advanced nuclear medicine system
Bemporad et al. Experimental determination of the η lifetime by the measurement of the primakoff effect
JPS61204582A (en) Radioactivity distributing measuring method and instrument
Genzel et al. Proton Compton effect in the Δ (1232) energy region
KR20180056482A (en) 3d scattering radiation imager, radiation medical apparatus having the same and method for placing the 3d scattering radiation imager
KR100925560B1 (en) Radiation Measurement Apparatus with Three Dimensional Movable Detector
JPS62278479A (en) Measurement of radiation distribution
Llacer et al. An imaging instrument for positron emitting heavy ion beam injection
JPS62200279A (en) Radioactivity distribution measurement
US3983368A (en) Apparatus for non-traumatic determination of the mass and the position of the center of gravity of a body
JPS62282288A (en) Method and apparatus for measuring distribution of gamma-ray emitting nuclide present in wall body of concrete in depth direction
Alteholz et al. A Large acceptance detector system (LADS) for studies of pion absorption
JPH01227050A (en) Method and apparatus for measuring density and others of object
JPS6352718B2 (en)
JPH01260389A (en) Radiation measuring apparatus
JPS61167849A (en) Quantitative measuring method and device for radiation absorption
JPS61213682A (en) Radiation dose measuring instrument
JPS61217789A (en) Apparatus and method for measuring radioactivity distribution
Kernan Charge-Exchange Scattering of Negative Pions at 150 Mev
JPH05180942A (en) Radioactivity measuring instrument for radioactive waste packed in drum
JPS61205886A (en) Detection of radiation dosage
JPH05209965A (en) Measurement device for beta ray nuclide density
JPH03189586A (en) Radiation measuring instrument