JPS62278432A - Light conduction detector - Google Patents

Light conduction detector

Info

Publication number
JPS62278432A
JPS62278432A JP61122903A JP12290386A JPS62278432A JP S62278432 A JPS62278432 A JP S62278432A JP 61122903 A JP61122903 A JP 61122903A JP 12290386 A JP12290386 A JP 12290386A JP S62278432 A JPS62278432 A JP S62278432A
Authority
JP
Japan
Prior art keywords
light
filter
measured
receiving element
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61122903A
Other languages
Japanese (ja)
Inventor
Koichi Hoshi
星 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61122903A priority Critical patent/JPS62278432A/en
Publication of JPS62278432A publication Critical patent/JPS62278432A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To obtain a correct measured value with a higher S/N, by arranging optical filters placed within a light incidence section, one for cutting off short wavelength range and the other for cutting off light transmitting radio waves. CONSTITUTION:Light to be measured of a plasma entering at an incidence window 1 which serves as filter for cut off short wavelength range while vacuum sealing up the inside of a detector section is transmitted through filters 2 and 3 arranged sequentially separated from the incidence window 1 and detected with a light receiving element 4 placed behind the filter 3. The filter 2 is made up of a copper mesh deposited on a sapphire plate for cutting off short wavelength range and shall have a sufficient transmission factor for the light being measured in the measurement of plasma and a reflectance enough to cut off noise signals with the wavelength larger than the light being measured. The incidence window 1 and the filter 3 have a sufficient transmission factor for the light being measured in the measurement of plasma and a reflectance enough to cut off noise signals with the wavelength less than the light being measured. This can interrupt the incidence of light with the wavelength less than about 50mu into the light receiving element 4 and the mixing of radio waves when the light receiving element 4 is used as an antenna.

Description

【発明の詳細な説明】 3、発明の詳細な説明 産業上の利用分野 本発明は、光伝導検出器に関し、更に詳述するならばプ
ラズマ計測に使用する遠赤外光用光伝導検出器の構造の
改良に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention Industrial Application Field The present invention relates to a photoconductive detector, and more specifically, to a far-infrared photoconductive detector used for plasma measurement. Concerning structural improvements.

従来の技術 プラズマ計測において光伝導検出器を用いて遠赤外光な
どを検出する場合には、検出光が非常に微弱であるので
、受光素子におけるS / N比を高めることが重要で
ある。
Conventional Technology When detecting far-infrared light or the like using a photoconductive detector in plasma measurement, the detected light is very weak, so it is important to increase the S/N ratio in the light receiving element.

従来では、受光素子の前方の光入射部内に、50μm以
上の遠赤外域にある検出したい信号より短波長の雑音信
号をカットする光フィルタを設けて、短波長光の雑音信
号が受光素子に検出されるのを防いでいる。また、光検
出器自体が輻射する光を抑えてバックグラウンド光を発
生しないように、光フィルタを含めて光検出器の各部材
を冷却し、受光素子における受信したい信号のS/N比
を高く保持できるようにしている。なお、光フィルタは
、室温に保たれる場合もある。
Conventionally, an optical filter is installed in the light incidence section in front of the light receiving element to cut out noise signals with wavelengths shorter than the signal to be detected in the far infrared region of 50 μm or more, so that the noise signals of short wavelength light are detected by the light receiving element. It prevents you from being In addition, in order to suppress the light radiated by the photodetector itself and prevent the generation of background light, each component of the photodetector, including the optical filter, is cooled to increase the S/N ratio of the signal to be received at the photodetector. I'm trying to keep it. Note that the optical filter may be kept at room temperature.

発明が解決しようとする問題点 しかし、このような光伝導検出器をプラズマ計測に(受
用する場合では、例えば50μm以下の短波長帯の光量
外に、プラズマを加熱するための高周波型波あるいは荷
電粒子のサイクロトロン放射などの長波長帯の電磁波す
なわち電波の雑音信号が受光素子をアンテナとして混入
し、受光素子におけるS/N比が悪いという問題がある
Problems to be Solved by the Invention However, if such a photoconductive detector is used for plasma measurement, in addition to the amount of light in the short wavelength band of 50 μm or less, high-frequency waves or charged waves for heating the plasma may be used. There is a problem in that long-wavelength electromagnetic waves such as cyclotron radiation of particles, that is, noise signals of radio waves mix into the light receiving element as an antenna, resulting in a poor S/N ratio in the light receiving element.

そこで、本発明は、上記のような問題を鑑み、プラズマ
計測時において被計測光に混入する雑音信号の受光素子
に検出される割合を減少させS/N比が高い光伝導検出
器の構造を提供せんとするものである。
Therefore, in view of the above-mentioned problems, the present invention provides a structure of a photoconductive detector that reduces the proportion of noise signals mixed in the measured light detected by the light receiving element during plasma measurement and has a high S/N ratio. This is what we intend to provide.

問題点を解決するための手段 すなわち、本発明によれば、受光素子と、該受光素子の
前方に位置する光入射部と、該光入射部内に配設される
光フィルタとを具備する光伝導検出器において、前記光
入射部内に配設される光フィルタを、短波長帯カット用
光フィルタと、光透過性の電波カット用フィルタとによ
り構成する。
Means for Solving the Problems According to the present invention, a photoconductor comprising a light receiving element, a light entrance part located in front of the light receiving element, and an optical filter disposed in the light entrance part. In the detector, an optical filter disposed within the light incidence section is configured by an optical filter for cutting short wavelength bands and a light-transmissive filter for cutting radio waves.

好ましくは、短波長帯カット用光フィルタは、50μm
以下の波長の光をカットする特性を有し、また、電波カ
ット用フィルタは、金属メツシュで構成される。
Preferably, the short wavelength band cutting optical filter has a diameter of 50 μm.
It has the property of cutting light of the following wavelengths, and the radio wave cutting filter is made of metal mesh.

作用 以上の本発明による光伝導検出器を用いて、プラズマ計
測を行う場合、光入射部から入射する例えば50μm以
下の短波長の光は、短波長帯カット用フィルタにより減
衰される。またプラズマを加熱する高周波電波や荷電粒
子のサイクロトロン放射などの、受光素子をアンテナと
して混入する長波長帯の電磁波は、電波カット用フィル
タにより減衰される。短波長帯カット用フィルタは、5
0μm以下の波長の光を減衰するが、プラズマの被測定
光に対しては充分な透過率を有しており、電波カット用
フィルタに金属メツシュを使用すれば、被測定光の透過
を十分確保できる。従って、受光素子が検出する被測定
光のS/N比を高くすることができる。
When performing plasma measurement using the photoconductive detector according to the present invention described above, light having a short wavelength of, for example, 50 μm or less, which enters from the light incidence portion, is attenuated by the short wavelength band cutting filter. Furthermore, electromagnetic waves in the long wavelength range that enter the light receiving element as an antenna, such as high-frequency radio waves that heat the plasma and cyclotron radiation of charged particles, are attenuated by the radio wave cut filter. The short wavelength band cut filter is 5
Although it attenuates light with a wavelength of 0 μm or less, it has sufficient transmittance for the measured light of plasma, and if a metal mesh is used as a radio wave cut filter, sufficient transmission of the measured light can be ensured. can. Therefore, the S/N ratio of the light to be measured detected by the light receiving element can be increased.

実施例 次に本発明による実施例を図面を参照して説明する。Example Next, embodiments according to the present invention will be described with reference to the drawings.

第1図は、本発明を実施した遠赤外光用光伝導検出器の
縦断面図である。
FIG. 1 is a longitudinal sectional view of a photoconductive detector for far infrared light embodying the present invention.

本実施例による光伝導検出器の構造は図示の如く、短波
長帯カット用フィルタを兼ね検出部内部を真空封止する
入射窓1から入射するプラズマの被測定光は、入射窓1
からそれぞれ離隔して順に配設されたフィルタ2及び3
を透過して、フィルタ3の後方に位置する受光素子4で
検出されるようになっている。それらフィルタ1.2.
3及び受光素子4の支持構造及び軸合せ構造は、従来知
られており、またフィルタ2.3および受光素子4の冷
却手段も従来知られているので、その説明は省略する。
As shown in the figure, the structure of the photoconductive detector according to this embodiment is such that the measured light of the plasma enters through the entrance window 1 which also serves as a filter for cutting short wavelength bands and vacuum-seals the inside of the detection section.
Filters 2 and 3 are arranged in sequence and spaced apart from each other.
The light passes through the filter 3 and is detected by the light receiving element 4 located behind the filter 3. Those filters 1.2.
The support structure and alignment structure for the filter 2.3 and the light receiving element 4 are conventionally known, and the cooling means for the filter 2.3 and the light receiving element 4 are also conventionally known, so a description thereof will be omitted.

フィルタ2は、短波長帯カット用のサファイア仮に銅の
メッンユを蒸着したものから成り、プラズマ測定の被測
定光に対しては充分な透過率を有し、被測定光より長波
長の雑音信号をカットするに充分な反射率を有している
。また、入射窓1およびフィルタ3はプラズマ測定の被
測定光に対しては充分な透過率を有し、被測定光より短
波長の雑音信号をカットするに充分な反射率を有してい
る。
The filter 2 is made of sapphire for cutting short wavelength bands, with a copper coating temporarily deposited on it, and has sufficient transmittance for the light to be measured in plasma measurement, and filters out noise signals with wavelengths longer than the light to be measured. It has sufficient reflectance for cutting. Further, the entrance window 1 and the filter 3 have sufficient transmittance for the light to be measured in plasma measurement, and have sufficient reflectance to cut out noise signals having a shorter wavelength than the light to be measured.

更に、フィルタ2は液体窒素温度に、フィルタ3及び受
光素子4は液体ヘリウム温度に冷却されており、光検出
器自体が輻射光を発することによるバックグラウンド光
の発生を抑止し、被測定光に雑音信号が混入することを
防いでいる。
Furthermore, the filter 2 is cooled to liquid nitrogen temperature, and the filter 3 and light receiving element 4 are cooled to liquid helium temperature, suppressing the generation of background light due to the photodetector itself emitting radiant light, and preventing the light to be measured from being generated. This prevents noise signals from being mixed in.

従って、かかる構造の光伝導検出器によれば、波長50
μm以下の光の受光素子への入射と、受光素子をアンテ
ナとしての電波の混入とを阻止することができ、受光素
子4において検出される微弱なプラズマの被測定光のS
/N比を高くすることができる。
Therefore, according to the photoconductive detector having such a structure, the wavelength 50
It is possible to prevent light of μm or less from entering the light receiving element and mixing of radio waves using the light receiving element as an antenna.
/N ratio can be increased.

発明の効果 以上の説明から明らかなように本発明によれば、遠赤外
光用光伝導検出器をプラズマ測定として使用する場合に
、正確な測定値を得ることが可能になる。
Effects of the Invention As is clear from the above description, according to the present invention, when a photoconductive detector for far infrared light is used for plasma measurement, it is possible to obtain accurate measurement values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による光伝導検出器の一実施例を示す
縦断面図である。 (主な参照番号) ■・・入射窓、   2,3・・フィルタ、4・・受光
素子
FIG. 1 is a longitudinal sectional view showing an embodiment of a photoconductive detector according to the present invention. (Main reference numbers) ■...Incidence window, 2, 3...Filter, 4...Photodetector

Claims (1)

【特許請求の範囲】 受光素子と、該受光素子の前方に位置する光入射部と、
該光入射部内に配設される光フィルタとを具備する光伝
導検出器において、 前記光入射部内に配設される光フィルタは、短波長帯カ
ット用光フィルタと、光透過性の電波カット用フィルタ
とにより構成されていることを特徴とする光伝導検出器
[Claims] A light receiving element, a light incidence part located in front of the light receiving element,
In a photoconductive detector comprising an optical filter disposed within the light incidence section, the optical filter disposed within the light incidence section includes an optical filter for cutting short wavelength bands and a light transmitting filter for cutting radio waves. A photoconductive detector comprising a filter.
JP61122903A 1986-05-28 1986-05-28 Light conduction detector Pending JPS62278432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122903A JPS62278432A (en) 1986-05-28 1986-05-28 Light conduction detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122903A JPS62278432A (en) 1986-05-28 1986-05-28 Light conduction detector

Publications (1)

Publication Number Publication Date
JPS62278432A true JPS62278432A (en) 1987-12-03

Family

ID=14847463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122903A Pending JPS62278432A (en) 1986-05-28 1986-05-28 Light conduction detector

Country Status (1)

Country Link
JP (1) JPS62278432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223960B2 (en) * 2003-12-03 2007-05-29 Micron Technology, Inc. Image sensor, an image sensor pixel, and methods of forming the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7223960B2 (en) * 2003-12-03 2007-05-29 Micron Technology, Inc. Image sensor, an image sensor pixel, and methods of forming the same

Similar Documents

Publication Publication Date Title
Klein et al. Radio continuum observations of M82
US4795907A (en) Infrared detector
US4245217A (en) Passive infrared alarm device
US5258363A (en) Superconducting integrating spheres
GB1311127A (en) Multi-layer interference light filter
Takalo et al. Near infrared monitoring of a sample of blazars with the Carlos Sanchez Telescope.
US6818881B1 (en) Optical filter and passive infrared detector assembly
CN109655163A (en) A kind of visual field multiband radiation intensity time-varying characteristics measuring device altogether
JPS62278432A (en) Light conduction detector
JP2710352B2 (en) UV meter
JPS55138620A (en) Photometric device
Kohl et al. The Lyman alpha coronagraph.
JPH02218930A (en) Electromagnetic radiation detector
US5698853A (en) Infrared image pickup apparatus
Zyskin et al. The Investigation of Cerenkov Flashes in Ultraviolet Spectral Region
Kubo et al. Collective Thomson scattering study using gyrotron in LHD
JPS629237A (en) Evaluating device for infrared detector
Padman Reduction of the baseline ripple on spectra recorded with the Parkes radio telescope
JPH0644740B2 (en) Infrared wireless microphone
SU1133632A1 (en) Cassegrainian aerial
JPS6176922A (en) Flame detecting device
JPS57137824A (en) Infrared ray detector
Kuthy Measurement of the electron temperature profiles in the F-1 cold gas blanket experiment by hydrogen line-spectroscopy
Uchida et al. Abstracts of papers from other journals
JPH0440327A (en) Cold shield