JPS62278151A - Degradation prevention of set concrete - Google Patents

Degradation prevention of set concrete

Info

Publication number
JPS62278151A
JPS62278151A JP12270086A JP12270086A JPS62278151A JP S62278151 A JPS62278151 A JP S62278151A JP 12270086 A JP12270086 A JP 12270086A JP 12270086 A JP12270086 A JP 12270086A JP S62278151 A JPS62278151 A JP S62278151A
Authority
JP
Japan
Prior art keywords
concrete
aggregate
lithium
alkaline
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12270086A
Other languages
Japanese (ja)
Other versions
JPH0617254B2 (en
Inventor
高倉 誠
坂口 由里子
孝廣 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Priority to JP61122700A priority Critical patent/JPH0617254B2/en
Publication of JPS62278151A publication Critical patent/JPS62278151A/en
Publication of JPH0617254B2 publication Critical patent/JPH0617254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/045Alkali-metal containing silicates, e.g. petalite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 皇呈上■肌里光國 本発明は、アルカリ骨材反応を起す骨材が配合された硬
化コンクリートの劣化を防止する方法に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention ■ Mitsukuni Hadasato The present invention relates to a method for preventing deterioration of hardened concrete containing aggregate that causes an alkaline aggregate reaction.

コンクリートは、基本成分としてセメント、骨材及び水
を配合することによりつくられる。その骨材として従来
より砂利が用いられていたが、良質の砂利の産出量が次
第に不足するようになり、これを補うために、また、人
手の利便の点からも、岩石等鉱物を砕くことによって得
られる所謂砕石が、砂利に替ってコンクリートに配合さ
れる骨材として用いられている。ところが、砕石が骨材
として配合された硬化コンクリートには、長期間にわた
る使用中にその表面に網目状又は亀甲状のクランクが生
じ、それが成長するとやがて崩壊に至るという問題がし
ばしば起っている。
Concrete is made by mixing cement, aggregate and water as basic ingredients. Gravel has traditionally been used as aggregate, but the production of high-quality gravel has gradually become insufficient, and in order to compensate for this, and also for the convenience of manpower, it has become necessary to crush minerals such as rocks. The so-called crushed stone obtained by this process is used as an aggregate in concrete instead of gravel. However, hardened concrete mixed with crushed stone as an aggregate often has the problem that, during long-term use, mesh-like or tortoise-shell-like cranks form on its surface, which grow and eventually lead to collapse. .

上記網目状又は亀甲状のクランクは、良質の砂利が骨材
として配合された硬化コンクリートが劣化することによ
りその表面に生じる直線的或いは非折線的クラックとは
明瞭に相違し、また、上記網目状又は亀甲状のクランク
が生じた硬化コンクリートの表層部からその一部を試料
として採取し、その中の骨材を顕微鏡を用も、)で観察
すると、骨材粒子の表面が黒く変質していたり、或いは
骨材粒子に白化した表面石が生じていることから、上記
クランクは8、セメント中のアルカリ分と骨材との反応
、所謂アルカリ骨材反応に原因する骨材の膨張によるこ
とが既に知られている。
The above-mentioned mesh-like or tortoise-shell-like cranks are clearly different from linear or non-linear cracks that occur on the surface of hardened concrete containing high-quality gravel as aggregate. Alternatively, if you take a sample from the surface layer of hardened concrete where a tortoise-shell-shaped crank has formed and observe the aggregate inside using a microscope, you will find that the surface of the aggregate particles has turned black and has changed in quality. , or because whitened surface stones have appeared on the aggregate particles, the above-mentioned crank is already due to the expansion of the aggregate caused by the reaction between the alkali content in the cement and the aggregate, the so-called alkaline aggregate reaction. Are known.

従来の技術 砕石が骨材として配合された硬化コンクリートの上記ア
ルカリ骨材反応を防ぐ方法として、コンクリート配合の
際にポゾラン物質を添加しておく方法、コンクリートを
硬化させた後その表面に合成樹脂等の防水被膜を形成さ
せる方法等が知られている。
Conventional technology As a method of preventing the above-mentioned alkaline aggregate reaction of hardened concrete mixed with crushed stone as aggregate, there is a method of adding a pozzolan substance when mixing concrete, and a method of adding synthetic resin etc. to the surface of concrete after hardening. Methods of forming waterproof coatings are known.

また、上記アルカリ骨材反応に原因する網目状又は亀甲
状クラックが表面に生じている劣化したコンクリート硬
化物の以後のクラックの成長或いは新たなりラックの発
生を防ぐ方法乃至その補修方法として、クランク部分を
V字状又はU字状に切除し、生じた凹部にモルタル、エ
ポキシ樹脂等充填剤を注入した後防水塗料で被膜する方
法も知られている。
In addition, as a method for preventing the growth of cracks or the generation of new racks in deteriorated hardened concrete in which network or tortoise-like cracks have occurred on the surface due to the above-mentioned alkali aggregate reaction, or as a method for repairing the cracks, It is also known to cut out a V-shape or a U-shape, inject a filler such as mortar or epoxy resin into the resulting recess, and then coat it with waterproof paint.

硬化コンクリートの劣化を防ぐ方法として、特開昭58
−20768号公報には珪酸リチウム水溶液にナフタレ
ンスルホン酸ソーダホルムアルデヒド縮金物を少量添加
した液を硬化コンクリートの表面から含浸させる方法が
、また、特開昭60−36385号公報には珪酸リチウ
ム水溶液に低級脂肪族アルコールを少量添加した液を用
いて上記と同様に含浸させる方法が示されている。
As a method to prevent the deterioration of hardened concrete,
JP-A-20768 discloses a method of impregnating the surface of hardened concrete with a solution prepared by adding a small amount of sodium naphthalene sulfonate formaldehyde to an aqueous solution of lithium silicate. A method of impregnation in the same manner as above using a liquid to which a small amount of aliphatic alcohol is added is shown.

日が7ンしようとする間 壱 上記ポゾラン物質を添加しておく方法、硬化コンクリー
ト表面に防水被膜を形成させておく方法等によっては、
硬化コンクリートが長期にわたって、特に屋外で使用さ
れるときには、コンクリート表面にアルカリ骨材反応に
基づくクランクが生起する。また、上記クラックの生じ
たコンクリートからクランク部を取り除き、新たな充填
剤で埋め戻す方法は、施工が容易でないのみならず、こ
の補修後長期間を経過するとやはり上記同様クランクが
生じる。
Depending on the method of adding the above-mentioned pozzolanic substance or forming a waterproof film on the hardened concrete surface, etc.
When hardened concrete is used for a long time, especially outdoors, cranking occurs on the concrete surface due to the alkaline aggregate reaction. Furthermore, the method of removing the crank portion from cracked concrete and filling it back with new filler is not only difficult to implement, but also causes the same cracks as described above after a long period of time has passed after this repair.

施工が簡易であって、比較的好ましい特開昭58−20
768号公報及び特開昭60−36385号公報等に記
載の方法でも、硬化コンクリートの表面から溶液が含浸
する深さに限界があり、また、アルカリ骨材反応を起す
骨材が配合された硬化コンクリートに対しては、長期間
経過後にはやはり網目状又は亀甲状クランクが起り易い
JP-A-58-20 which is easy to construct and relatively preferable
Even with the methods described in JP-A No. 768 and JP-A-60-36385, there is a limit to the depth at which the solution can penetrate from the surface of hardened concrete. Concrete tends to develop mesh or hexagonal cranks after a long period of time.

本発明の目的は、アルカリ骨材反応を起す骨材が配合さ
れた硬化コンクリートのアルカリ骨材反応による劣化を
簡易かつ完全に防ぐ方法を提供することにある。
An object of the present invention is to provide a method for simply and completely preventing deterioration of hardened concrete containing aggregates that cause an alkali-aggregate reaction, due to the alkali-aggregate reaction.

。−占を”ンするための 本発明によるアルカリ骨材反応を起す骨材を含有する硬
化コンクリートの劣化防止方法は、アルカリ骨材反応を
起す骨材を用いてコンクリートを調整する際にリチウム
含有鉱物の粉末をセメントに対しLi2Oとして0.0
1〜5重量%量コンクリートに含有させることを特徴と
する。
. - The method for preventing the deterioration of hardened concrete containing aggregates that cause an alkaline aggregate reaction according to the present invention for improving the 0.0 as Li2O for cement
It is characterized by being contained in concrete in an amount of 1 to 5% by weight.

本発明の方法が適用されるコンクリートは、水和反応に
よって硬化する通常のセメントと水とアルカリ骨材反応
を起す骨材を主成分として含有するものである。用いら
れるセメントの例としては、普通ポルトランドセメント
、早強ポルトランドセメント、中庸熱ポルトランドセメ
ント等が挙げられる。これらセメント中には、通常、酸
化物換算で0.5〜1.5重量%程度のアルカリ分、例
えば、Na、0 、 K、0等が含まれる。
The concrete to which the method of the present invention is applied mainly contains ordinary cement that hardens through a hydration reaction and aggregate that causes an alkaline aggregate reaction with water. Examples of cements that can be used include ordinary Portland cement, early strength Portland cement, moderate heat Portland cement, and the like. These cements usually contain about 0.5 to 1.5% by weight of alkaline content in terms of oxides, such as Na, 0, K, 0, etc.

本発明の方法が適用されるコンクリートに含まれる骨材
は、岩石等鉱物を砕くことにより得られるものであり、
これら鉱物の例としては、蛋白石、玉髄、珪酸質苦土質
石灰岩、流紋岩、安山岩、凝灰岩、石英安山岩、粗面岩
、黒曜岩、算石岩、トリジマイト、クリストバライト、
各種チャート、フリント等が挙げられる。これらの鉱物
中には、水の存在下に前記セメント中のアルカリ分と反
応する成分が含まれる。その反応性成分の例としては、
シリカ、珪酸塩、等が挙げられる。上記鉱物骨材とセメ
ント中のアルカリ分との反応性は一様ではなく、一般に
砕石骨材の反応性については、コンクリート中に配合す
る前に試験される。
The aggregate contained in the concrete to which the method of the present invention is applied is obtained by crushing minerals such as rocks,
Examples of these minerals include proteinite, chalcedony, silicate magnesite, rhyolite, andesite, tuff, quartz andesite, trachyte, obsidian, abalite, tridymite, cristobalite,
Examples include various charts and flints. These minerals contain components that react with the alkaline content in the cement in the presence of water. Examples of such reactive components are:
Examples include silica, silicates, and the like. The reactivity of the mineral aggregate with the alkaline content in cement is not uniform, and the reactivity of crushed stone aggregate is generally tested before it is mixed into concrete.

その試験方法として、アルカリ分との反応性に係る化学
法としてASTM C289の方法が、また、モルタル
バー法による骨材の膨張率を測定するASTM C22
7の方決が用いられる。
The test methods include ASTM C289, a chemical method related to reactivity with alkaline components, and ASTM C22, which measures the expansion rate of aggregate using the mortar bar method.
A 7-way system is used.

本発明の方法に用いられるリチウム含有鉱物は、リチウ
ムをLi2Oとして1〜10重景%程度含有する天然の
岩石類であり、例えば、Li2Oを3〜4重量%含有す
るリシア雲母、Li2Oを3.5〜4.5重量%含有す
る葉長石、Li2Oを4〜9.5重量%含有するリシア
輝石、Li2Oを7〜9重量%含有する鋭角石等が挙げ
られる。本発明により、コンクリートに配合されるこれ
ら鉱物は、粒度が細かい程好ましいが、通常300μ程
度以下に粉砕されたものでよい。従って、これら鉱物は
粉末として配合されるが、その量としてはセメントに対
してLi2Oとして0.01〜5重量%となる量が好ま
しい。
The lithium-containing mineral used in the method of the present invention is a natural rock containing about 1 to 10 weight percent of lithium as Li2O, such as spodium mica containing 3 to 4 weight percent of Li2O, and 3.5 weight percent of Li2O. Examples include phyllodespar containing 5 to 4.5% by weight, spodumene containing 4 to 9.5% by weight of Li2O, and antase containing 7 to 9% by weight of Li2O. According to the present invention, the finer the particle size of these minerals to be mixed into concrete, the better, but they may be crushed to a size of about 300 microns or less. Therefore, these minerals are blended as powder, and the amount thereof is preferably 0.01 to 5% by weight as Li2O based on the cement.

本発明によるコンクリートの調整及び硬化は通常の方法
でよく、例えば、主成分として所定量の上記セメント、
骨材及び水を配合する際、上記リチウム含有鉱物の粉末
を、セメント中物−混合となるように添加することによ
り容易に行うことができる。また、コンクリートの硬化
も常温、加熱、水中等常法により容易に行い得る。
The preparation and hardening of the concrete according to the present invention may be carried out by conventional methods, for example, a predetermined amount of the above cement as the main component,
When blending the aggregate and water, this can be easily done by adding the lithium-containing mineral powder so as to mix it into the cement. Further, concrete can be easily hardened by conventional methods such as at room temperature, heating, and water.

本発明のコンクリートには、本発明の目的が達成される
限り他の任意の成分、例えば、通常用いられる各種混和
剤等を含有させてもよい。場合によっては、例えば、亜
硝酸リチウム、水酸化リチウム等を併用添加すると更に
好ましい硬化コンクリートが得られる。
The concrete of the present invention may contain any other optional components, such as various commonly used admixtures, as long as the purpose of the present invention is achieved. In some cases, a more preferable hardened concrete can be obtained by adding lithium nitrite, lithium hydroxide, etc. in combination.

更に、本発明による硬化コンクリートには、通常の防水
被膜を設けることができ、この場合にも硬化コンクリー
トの劣化防止を好ましく達成できる。これに用いられる
防水性塗材としては、通常コンクリートの防水用に用い
られるものでよ(、その例としては、アクリル系樹脂水
性エマルジョン、エホー1−シ樹脂水性エマルジョン、
スチレン−ブタジェンゴム水性ラテックス、アクリロニ
トリル−ブタジェンゴム水性エマルジョン、パラフィン
水性エマルジョン、アスファルト水性エマルジョン、セ
メントペースト、モルタル、上記エマルジョンを添加し
たセメントペースト、モルタル等が挙げられる。
Furthermore, the hardened concrete according to the present invention can be provided with a conventional waterproof coating, and in this case as well, prevention of deterioration of the hardened concrete can be preferably achieved. The waterproof coating materials used for this purpose are those normally used for waterproofing concrete (for example, acrylic resin aqueous emulsion, epoxy resin aqueous emulsion,
Examples include styrene-butadiene rubber aqueous latex, acrylonitrile-butadiene rubber aqueous emulsion, paraffin aqueous emulsion, asphalt aqueous emulsion, cement paste, mortar, and cement paste and mortar containing the above emulsions.

土−里 本発明により、コンクリートを調整する際に加えられる
リチウム含有鉱物は、硬化コンクリートのアルカリ骨材
反応を防ぎ、長期間にわたって屋外使用しても硬化コン
クリートに網目状又は亀甲状クラックを生じさせない。
According to the present invention, lithium-containing minerals added when preparing concrete prevent the alkaline aggregate reaction of hardened concrete and do not cause mesh or tortoise-like cracks in hardened concrete even after long-term outdoor use. .

この効果は、コンクリート中でこのリチウム含有鉱物か
ら、アルカリ骨材反応を防ぐ作用をするリチウム化合物
が徐々に放出されることによるものと考えられる。従っ
て、加えられるリチウム含有鉱物は、粒度、の細かいも
のをコンクリート中に均一に混合させることが好ましい
。通常、アルカリ骨材反応を起す硬化コンクリートでは
、その反応は徐々に進行して骨材に膨張をもたらし、こ
れによって硬化コンクリートにクラックが生じるに至る
と考えられるから、このアルカリ骨材反応を防ぐに十分
な量のリチウム化合物をリチウム含有鉱物からコンクリ
ート中に放出させる必要がある。このアルカリ骨材反応
を防ぎ、硬化コンクリートのクラック生起を防ぐに有効
なリチウム含有鉱物量は、該鉱物中のリチウム分とセメ
ント中のナトリウム換算アルカ9分とのLi/Naモル
比で0.1以上、好ましくは0.3以上であることが見
出された。しかし、リチウム含有鉱物の添加比率を高め
ると、これとは別に加えられる骨材の配合量に影響を与
えるので、過度にリチウム含有鉱物を加えないことが好
ましい。従って、アルカリ分の含有率が酸化物換算0.
5〜1.5重量%程度である通常のセメントに対して、
粒度300μ程度以下のリチウ含有鉱物をLi2Oとし
て0.01〜5重量%程度配合するのが好ましい。
This effect is thought to be due to the gradual release of lithium compounds from the lithium-containing minerals in concrete, which act to prevent alkaline aggregate reactions. Therefore, it is preferable that the lithium-containing mineral added has a fine particle size and is uniformly mixed into the concrete. Normally, in hardened concrete that undergoes an alkaline aggregate reaction, the reaction progresses gradually and causes the aggregate to expand, which is thought to lead to cracks in the hardened concrete. Therefore, it is necessary to prevent this alkaline aggregate reaction. A sufficient amount of lithium compounds must be released from the lithium-containing mineral into the concrete. The amount of lithium-containing minerals effective in preventing this alkaline aggregate reaction and preventing the occurrence of cracks in hardened concrete is the Li/Na molar ratio of the lithium content in the minerals and the sodium equivalent alkali content in the cement of 0.1. As mentioned above, it was found that preferably it is 0.3 or more. However, increasing the addition ratio of lithium-containing minerals will affect the amount of aggregate added separately, so it is preferable not to add lithium-containing minerals excessively. Therefore, the alkali content is 0.
Compared to normal cement, which is about 5 to 1.5% by weight,
It is preferable to mix lithium-containing minerals with a particle size of about 300 μm or less in an amount of about 0.01 to 5% by weight as Li2O.

コンクリート中で上記リチウム含有鉱物がリチウム化合
物を放出する速度は小さいから、コンクリート打設後比
較的早期にアルカリ骨材反応を起すコンクリートに対し
ては、上記リチウム含を鉱物と共に亜硝酸リチウム、水
酸化リチウム等をコンクリート調整時に併用添加するこ
とによって早期に起るアルカリ骨材反応の防止が達成さ
れる。
Since the rate at which the above lithium-containing minerals release lithium compounds in concrete is slow, for concrete that undergoes an alkaline aggregate reaction relatively early after concrete placement, lithium nitrite, hydroxide, and the above lithium-containing minerals are recommended. By adding lithium or the like at the time of concrete preparation, early alkaline aggregate reactions can be prevented.

更に、本発明による硬化コンクリートの表面に防水性被
膜を設けると、その防水性が有効な期間コンクリート表
面から内部へ向う水の浸入を減らすことができる。これ
によって、水の介在で起るアルカリ骨材反応の早期進行
を短期間ではあるが抑制できる。また、この防水性被膜
によるアルカリ骨材反応の防止はリチウム含有鉱物から
コンクリート中に徐々に放出されるリチウム化合物がこ
の防水期間にコンクリート中ばアルカリ骨材反応を防ぐ
に充分な量にまで蓄積されることによるとも考えられる
Furthermore, by providing a waterproof coating on the surface of the hardened concrete according to the present invention, it is possible to reduce the infiltration of water from the concrete surface into the interior while the waterproofing property is effective. As a result, the early progress of the alkaline aggregate reaction caused by the presence of water can be suppressed, albeit for a short period of time. In addition, this waterproof coating prevents alkaline aggregate reactions because lithium compounds, which are gradually released into the concrete from lithium-containing minerals, accumulate during this waterproofing period to a sufficient amount to prevent alkaline aggregate reactions in the concrete. It is also thought that this is due to the fact that

実施例工〜4及び比較例 Na2O換算アル力リ分を0.57重量%含有するセメ
ントと、アメカリ骨材反応を起す細骨剤40%とアルカ
リ骨材反応を起さない豊浦産標準砂骨材60%との混合
骨材と、リチウム含有鉱物として粒度50〜180μの
リシア輝石(Li2O含有率8.6重量%)及び葉長石
(Li、0含有率4.5重量%)を用意した。尚、上記
骨材のアルカリ骨材反応を起すことの判定は、ASTM
 C289に規定の化学法で判定した。
Example Work~4 and Comparative Example Cement containing 0.57% by weight of alkaline content calculated as Na2O, 40% fine aggregate that causes an alkali aggregate reaction, and Toyoura standard sand bone that does not cause an alkali aggregate reaction. Mixed aggregate with 60% of lithium-containing material, and spodumene (Li2O content 8.6% by weight) and feldspar (Li, 0 content 4.5% by weight) with a particle size of 50 to 180μ were prepared as lithium-containing minerals. In addition, the determination of whether or not the above aggregate causes an alkali aggregate reaction is based on ASTM
Determination was made using the chemical method specified in C289.

次いで、セメントに対するNa2O量が1.2重量%と
なるように練り混ぜ水にNa0IIを加えると共に、上
記セメントと混合骨材と水を1:2.25:0.5の重
量比に配合し、更に第1表記載のLi2O混入率となる
ように上記リチウム含有鉱物を配合し、注型によりL 
QcmX 1 QcmX 40cmのモルタルバーに成
形し、ASTM C227に規定の方法に準じて脱型及
び養生を行うことによりモルタルバーの硬化物を得た。
Next, Na0II was added to the mixing water so that the amount of Na2O to the cement was 1.2% by weight, and the cement, mixed aggregate, and water were mixed at a weight ratio of 1:2.25:0.5, Furthermore, the above-mentioned lithium-containing minerals were blended so as to have the Li2O mixing rate listed in Table 1, and L was cast by casting.
A cured mortar bar was obtained by molding into a mortar bar of QcmX 1 QcmX 40 cm, and removing the mold and curing according to the method specified in ASTM C227.

上記モルタルバーについて、硬化直後から90日間にわ
たり膨張率を測定したところ、第1表に記載の結果が得
られた。
When the expansion rate of the mortar bar was measured for 90 days immediately after curing, the results shown in Table 1 were obtained.

比較例として、リチウム含有鉱物を加えない他は、上記
同様にしてモルタルバーを成形し、膨張率を測定し第1
表記載の結果を得た。
As a comparative example, a mortar bar was formed in the same manner as above except that no lithium-containing mineral was added, and the expansion coefficient was measured.
The results listed in the table were obtained.

〔以 下 余 白〕[Below, remainder white]

上記実施例1〜4の結果を比較例と対比すると、リチウ
ム含有鉱物粉末の添加により、特にそれに含まれるLi
zoffiがセメントに対し増大する程、膨張率が低下
することが認められる。
Comparing the results of Examples 1 to 4 above with Comparative Examples, it is found that the addition of lithium-containing mineral powder particularly reduces the amount of Li contained therein.
It is observed that as the zoffi increases relative to cement, the expansion rate decreases.

実施例5〜6 実施例1におけるリチウム鉱物の添加の代りに、リチウ
ム鉱物と亜硝酸り、チウム又は水酸化リチウムを併用し
て、第1表に記載のセメントに対するLi2O含有率と
なるように添加した他は実施例1と同様にしてモルタル
バーを成形し、膨張率を測定したところ、第1表に記載
の結果を得た。但し、実施例5では亜硝酸リチウムが、
また、実施例6では水酸化リチウムが用いられた。第1
表の結果は、これらリチウム化合物を併用添加すること
により、実施例1と同じLi2O混入率でも更に膨張率
を低めることができることを示している。
Examples 5 to 6 Instead of adding lithium mineral in Example 1, lithium mineral and nitrite, lithium, or lithium hydroxide were used together and added so that the Li2O content to the cement was as shown in Table 1. Except for this, a mortar bar was molded in the same manner as in Example 1, and the expansion coefficient was measured, and the results shown in Table 1 were obtained. However, in Example 5, lithium nitrite was
Further, in Example 6, lithium hydroxide was used. 1st
The results in the table show that by adding these lithium compounds in combination, the expansion rate can be further reduced even at the same Li2O mixing rate as in Example 1.

衾夙皇泣困 本発明によると、粉砕された細かい粒子からなるリチウ
ム含有鉱物粉末を有効量コンクリート配合時に添加する
のみで、硬化後のコンクリートのアルカリ骨材反応によ
るクラック発生を防止でき、硬化コンクリートの劣化を
長期間防ぐことができる。従来、硬化コンクリートのア
ルカリ骨材反応による劣化を完全に防ぐには、予備テス
トに基いてこの反応を起さない骨材を選定した後、その
骨材を用いることによって行われていたが、本発明によ
れば予備テストの必要はなく、上記の如く極めて筒易に
アルカリ骨材反応を起す骨材を用いてもアルカリ骨材反
応を起さない硬化コンクリートを得ることができる。
According to the present invention, by simply adding an effective amount of lithium-containing mineral powder consisting of finely crushed particles at the time of mixing concrete, it is possible to prevent the occurrence of cracks due to alkali aggregate reaction in concrete after hardening, and to improve hardened concrete. deterioration can be prevented for a long period of time. Conventionally, in order to completely prevent the deterioration of hardened concrete due to alkaline aggregate reactions, it was done by selecting aggregates that do not cause this reaction based on preliminary tests, and then using that aggregate. According to the invention, there is no need for a preliminary test, and it is possible to obtain hardened concrete that does not cause an alkali-aggregate reaction even when using aggregates that easily cause an alkali-aggregate reaction as described above.

Claims (1)

【特許請求の範囲】[Claims] アルカリ骨材反応を起す骨材を用いてコンクリートを調
整する際にリチウム含有鉱物の粉末をセメントに対しL
i_2Oとして0.01〜5重量%量コンクリートに含
有させることを特徴とするアルカリ骨材反応を起す骨材
を含有する硬化コンクリートの劣化防止方法。
When preparing concrete using aggregate that causes an alkaline aggregate reaction, lithium-containing mineral powder is added to cement.
A method for preventing deterioration of hardened concrete containing aggregate that causes an alkaline aggregate reaction, characterized in that i_2O is contained in the concrete in an amount of 0.01 to 5% by weight.
JP61122700A 1986-05-28 1986-05-28 Method for preventing deterioration of curing concrete Expired - Fee Related JPH0617254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61122700A JPH0617254B2 (en) 1986-05-28 1986-05-28 Method for preventing deterioration of curing concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61122700A JPH0617254B2 (en) 1986-05-28 1986-05-28 Method for preventing deterioration of curing concrete

Publications (2)

Publication Number Publication Date
JPS62278151A true JPS62278151A (en) 1987-12-03
JPH0617254B2 JPH0617254B2 (en) 1994-03-09

Family

ID=14842448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61122700A Expired - Fee Related JPH0617254B2 (en) 1986-05-28 1986-05-28 Method for preventing deterioration of curing concrete

Country Status (1)

Country Link
JP (1) JPH0617254B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284123A (en) * 1987-04-28 1988-11-21 イー・アール・スクイブ・アンド・サンズ・インコーポレイテッド Microbead-form novel medicinal composition and manufacture
WO1997009282A1 (en) 1995-09-08 1997-03-13 Fmc Corporation Concrete compositions and processes for controlling alkali-silica reaction in same
US5656075A (en) * 1995-05-10 1997-08-12 W. R. Grace & Co.-Conn. Control of expansion in concrete due to alkali silica reaction
US5755876A (en) * 1995-09-08 1998-05-26 Fmc Corporation Cement compositions for controlling alkali-silica reactions in concrete and processes for making same
JP2001206750A (en) * 2000-01-24 2001-07-31 Denki Kagaku Kogyo Kk Sludge reducing material, centrifugally formed body made using the same and method for manufacturing the body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926957A (en) * 1982-08-02 1984-02-13 旭化成株式会社 Manufacture of calcium silicate hydrate hardened body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926957A (en) * 1982-08-02 1984-02-13 旭化成株式会社 Manufacture of calcium silicate hydrate hardened body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63284123A (en) * 1987-04-28 1988-11-21 イー・アール・スクイブ・アンド・サンズ・インコーポレイテッド Microbead-form novel medicinal composition and manufacture
US5656075A (en) * 1995-05-10 1997-08-12 W. R. Grace & Co.-Conn. Control of expansion in concrete due to alkali silica reaction
WO1997009282A1 (en) 1995-09-08 1997-03-13 Fmc Corporation Concrete compositions and processes for controlling alkali-silica reaction in same
US5755876A (en) * 1995-09-08 1998-05-26 Fmc Corporation Cement compositions for controlling alkali-silica reactions in concrete and processes for making same
US6022408A (en) * 1995-09-08 2000-02-08 Fmc Corporation Cement and concrete compositions for controlling alkali-silica reaction in concrete
JP2001206750A (en) * 2000-01-24 2001-07-31 Denki Kagaku Kogyo Kk Sludge reducing material, centrifugally formed body made using the same and method for manufacturing the body
JP4642177B2 (en) * 2000-01-24 2011-03-02 電気化学工業株式会社 Sludge reducing material, centrifugal molded body using the same, and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0617254B2 (en) 1994-03-09

Similar Documents

Publication Publication Date Title
US7537655B2 (en) Slag concrete manufactured aggregate
KR890001402B1 (en) Hydraulic cement composition
Tayeb et al. Effect of marble powder on the properties of self-compacting sand concrete
CN101417475A (en) No-burned brick manufacture method
CN111892350B (en) Method for improving flexural strength of cement mortar and concrete
JPS62278151A (en) Degradation prevention of set concrete
JP2017210407A (en) Polymer cement mortar and method using polymer cement mortar
JPS61256951A (en) Degradation prevention for set concrete
US7678191B2 (en) Fast-setting pourable mortars with high fluidity
JP6203546B2 (en) Polymer cement mortar and method using polymer cement mortar
Benkaddour et al. Rheological, mechanical and durability performance of some North African commercial binary and ternary cements
KR102164561B1 (en) Cement composition and anti-washout mortar for repairing concrete and repair method of concrete structure using the same
KR100407119B1 (en) The method of constructing the surface layer of road by soil cement
JP5110339B2 (en) Lightweight aggregate for mortar
JP2003165759A (en) Material for repairing structure and repairing method
CN112118943A (en) Method for feeding hardening accelerator for concrete surface finishing
KR102603728B1 (en) Powdery elastic coated waterproofing composition containing regenerated fibers
JPH1130698A (en) Radioactive waste solidifying disposal method
JP2578508B2 (en) Repair material for cracks and floating parts of concrete structures
JPH06144902A (en) Production of self-filling concrete
JP2010083698A (en) Method for producing hardened cement body, and hardened cement body
Kang et al. Evaluation of basic properties of Cement Asphalt Mortar depending on sand gradation and cement fineness
JPH08183956A (en) Ground-binding material
SU1222819A1 (en) Binder for plugging composition and method of preparing same
JP2002097056A (en) Concrete repairing/reforming material, method for repairing/reforming concrete structure and inorganic crystallite forming material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees