JPS62278110A - Production of high-purity aluminum nitride - Google Patents

Production of high-purity aluminum nitride

Info

Publication number
JPS62278110A
JPS62278110A JP12091486A JP12091486A JPS62278110A JP S62278110 A JPS62278110 A JP S62278110A JP 12091486 A JP12091486 A JP 12091486A JP 12091486 A JP12091486 A JP 12091486A JP S62278110 A JPS62278110 A JP S62278110A
Authority
JP
Japan
Prior art keywords
powder
carbon
aln
heating
aluminum nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12091486A
Other languages
Japanese (ja)
Inventor
Ryoji Sedaka
良司 瀬高
Michikazu Kosuge
道和 小菅
Takayuki Morikawa
孝行 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12091486A priority Critical patent/JPS62278110A/en
Publication of JPS62278110A publication Critical patent/JPS62278110A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0726Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To produce the titled AlN having excellent thermal conductivity and containing little residual oxygen, by heating a powdery mixture of Al2O3 and carbon in N2 atmosphere and heating the resultant AlN powder containing residual carbon powder by high-frequency dielectric heating. CONSTITUTION:A mixture of Al2O3 powder and carbon powder is heated in an N2 atmosphere to obtain AlN powder 2 containing residual carbon powder. The AlN powder 2 is charged into a decarbonization furnace 1 wound with a work coil 3, a mixed gas of N2 and O2 is introduced into the furnace 1 via a gas inlet 10 opened at one end of the coil 3 and the gas is exhausted from the other end by a vacuum pump. At the same time, the powder is heated by high-frequency dielectric heating using a high-frequency oscillator 5, a directional coupler 6 and a matching box 4. The excess carbon can be oxidized and evaporated from the powder by this process while suppressing the surface oxidation of the AlN powder.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は高熱伝導セラミックスの原料とする窒化アルミ
ニウム粉末の製造方法に関するものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing aluminum nitride powder used as a raw material for high thermal conductivity ceramics.

〔従来の技術〕[Conventional technology]

窒化アルミニウム(AtN)は高熱伝導セラミックスと
して優れた特性を有しているものである。
Aluminum nitride (AtN) has excellent properties as a highly thermally conductive ceramic.

一般にALN粉を製造するには次の如き方法が行われて
いる。
Generally, the following method is used to produce ALN powder.

(1)  Atの直接窒化法 2 At+N2→2 AtN (2)At203の還元窒化法(S@rp@に法)At
203+N2+3 C→2 AAN + 3 C0而し
て上記(1)の直接窒化法は反応式が簡単であシ、工程
の点からはメリットも大きいが、kl内部まで充分窒化
されることが難しく’ ALNを高純度にすることが困
難であり、不純物の混入を避けることが出来ない。又不
純物が多量に混入するとAtN本来の高熱伝導度のもの
を得難く、特性も低下する。
(1) Direct nitriding method 2 of At At+N2→2 AtN (2) Reductive nitriding method of At203 (S@rp@ni method) At
203+N2+3 C→2 AAN + 3 C0The above direct nitriding method (1) has a simple reaction formula and has great advantages in terms of process, but it is difficult to sufficiently nitride the inside of kl'ALN It is difficult to achieve high purity, and contamination with impurities cannot be avoided. Furthermore, if a large amount of impurities are mixed in, it will be difficult to obtain the high thermal conductivity inherent to AtN, and the characteristics will also deteriorate.

(2)の還元窒化法はアルミナ粉(At2o3)と炭素
粉(C)の純度によってALN粉の純度に大きく影響を
及ぼすものであるが、At203粉及びC粉ともに高純
度のものを比較的容易に製造しうるため高純度のAtN
をうることか出来る。又この人tN粉を焼結して形成体
とした場合においても高特性のものをうろことが出来る
The reduction nitriding method (2) has a large effect on the purity of the ALN powder depending on the purity of the alumina powder (At2o3) and carbon powder (C), but it is relatively easy to produce high purity At203 powder and C powder. High purity AtN
I can get it. Also, when this tN powder is sintered into a formed body, it is possible to obtain a product with high properties.

然しなからとの還元窒化法はAt203粉とC粉とをよ
く分散させた混合粉末を窒素雰囲気中で1550℃以上
に5時間程度加熱処理することによ、j) ALN粉が
えられるが、窒化処理後において反応上過剰に添加した
炭素が残存するため、高純度のAΔをうるためにはこの
炭素を除去しなければならない。この除去方法として通
常乾燥空気雰囲気で600°〜700℃程度に加熱して
酸化及び気化せしめて炭素を除去しているものであるが
、との脱炭工程での問題点は残留炭素粉以外にALN粉
の表面が酸化され残留酸素量が増大することである。
However, in the reductive nitriding method, j) ALN powder can be obtained by heating a mixed powder in which At203 powder and C powder are well dispersed at 1550°C or higher for about 5 hours in a nitrogen atmosphere. After the nitriding treatment, carbon added in excess for the purpose of reaction remains, so this carbon must be removed in order to obtain AΔ of high purity. The removal method is to remove carbon by heating it to about 600° to 700°C in a dry air atmosphere to oxidize and vaporize it, but the problem with the decarburization process is that it is not only the residual carbon powder. This is because the surface of the ALN powder is oxidized and the amount of residual oxygen increases.

この残留酸素量は直接窒化法にょるAtNよシ還元窒化
法によるAtNの方が少量であるが、モル濃度で約1チ
に達する。
Although the amount of residual oxygen in AtN produced by direct nitriding is smaller than that produced by AtN produced by reduction nitriding, the molar concentration reaches approximately 1.

而してAΔの高熱伝導性を阻害する要因として残留酸素
量が著しく影響を及ぼすことが知られているため、高熱
伝導性を向上せしめるためには残留酸素量を低減する必
要があり、還元窒化法における脱炭工程の改良が要望さ
れているものであった。
It is known that the amount of residual oxygen has a significant effect as a factor that inhibits the high thermal conductivity of AΔ. Therefore, in order to improve the high thermal conductivity, it is necessary to reduce the amount of residual oxygen. There was a need for improvements in the decarburization process in the method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はかかる現状に鑑み鋭意研究を行った結果、At
203の還元窒化法(5erpek法)における脱炭工
程においてAtNの表面酸化を抑制し、残留酸素量の低
減を計ると共にそれに伴う特性、特に熱伝導率を向上せ
しめんとするものである。
The present invention was developed as a result of intensive research in view of the current situation.
The purpose is to suppress the surface oxidation of AtN in the decarburization step in the reduction nitriding method (5erpek method) of No. 203, reduce the amount of residual oxygen, and improve the associated properties, especially the thermal conductivity.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明方法は酸化アルミニウム粉末を還元窒化法によυ
高純度窒化アルミニウム粉末を製造する方法において、
酸化アルミニウム粉末と炭素粉末との混合粉末を窒素雰
囲気中で加熱して得た粗窒化アルミニウム粉末を高周波
誘電加熱して該窒化アルミニウム粉末の表面酸化を抑制
し、余剰炭素を酸化及び気化せしめて除去することを特
徴とするものである。
The method of the present invention uses aluminum oxide powder by reducing nitriding method.
In a method of producing high purity aluminum nitride powder,
A crude aluminum nitride powder obtained by heating a mixed powder of aluminum oxide powder and carbon powder in a nitrogen atmosphere is heated by high frequency dielectric to suppress surface oxidation of the aluminum nitride powder, and remove excess carbon by oxidizing and vaporizing it. It is characterized by:

本発明方法において、還元窒化後の粗窒化アルミニウム
中にはA&粉とC粉とが混在した状態にする。ここでA
tNとCとの電気的特性を比較するとALNは絶縁体、
Cは導体として分類され、特にAtN’は′誘導損失(
tanδ=5〜10×10 )、誘電率ともに低く誘電
加熱され難い物質である。一方C粉末は導体であり連続
体であれば誘導加熱も可能であるが、粉体では6うず電
流“の連続性が失われ、うず電流損を利用する加熱即ち
誘導加熱は効果的でない。
In the method of the present invention, A& powder and C powder are mixed in the crude aluminum nitride after reduction nitridation. Here A
Comparing the electrical characteristics of tN and C, ALN is an insulator;
C is classified as a conductor, and AtN' in particular has an inductive loss (
tan δ = 5 to 10 × 10 ) and a low dielectric constant, making it a material that is difficult to dielectrically heat. On the other hand, C powder is a conductor and can be heated by induction if it is a continuous body, but the continuity of the 6 eddy current is lost in the powder, and heating using eddy current loss, that is, induction heating, is not effective.

換言するとC粉体は導体的な挙動をすることなく誘電体
的な挙動をするようになり、低周波の誘導加熱ではなく
、よシ高周波の誘電加熱が適当な状態になってくる。
In other words, the C powder starts to behave like a dielectric rather than like a conductor, and a state is reached where high-frequency dielectric heating is appropriate instead of low-frequency induction heating.

従ってAtN粉末と残留炭素粉末との混在したものを誘
電加熱することにより AtN粉末は殆んど加熱される
ことなく残留炭素が選択的に加熱されることになる。な
おAtN粉末は残留炭素粉からの熱伝導によって僅かに
加熱されるが、従来方法の如き電気炉による全体加熱と
比較するとAtN粉末が加熱される割合は極めて少なく
なる。従ってこのような高周波誘電加熱を行うことによ
り、乾燥空気などの酸化雰囲気で脱炭する場合、残留炭
素粉ハ馳lし盾曲ル:薦璽半りとり、%/  ΔIN楯
十の五箇表面゛酸化を抑制することが出来る。なお残留
炭素粉は酸化して一酸化炭素(CO)或は二酸化炭素(
C02)となって散逸する。
Therefore, by dielectrically heating a mixture of AtN powder and residual carbon powder, the residual carbon is selectively heated while the AtN powder is hardly heated. Although the AtN powder is slightly heated by heat conduction from the residual carbon powder, the rate at which the AtN powder is heated is extremely small compared to the conventional method in which the whole is heated by an electric furnace. Therefore, by performing such high-frequency dielectric heating, when decarburizing in an oxidizing atmosphere such as dry air, the residual carbon powder will be removed. Oxidation can be suppressed. Note that residual carbon powder oxidizes to carbon monoxide (CO) or carbon dioxide (
C02) and dissipates.

又処理時間については高周波発振機の反射電力が炭素の
減少に伴って増加するため脱炭が終了したことのモニタ
として利用することが出来る。即ち炭素粉の今に電波が
乗シ易いため酸化及び気化することによりて炭素粉が減
少すると電波が乗りK<くなる、換言すると窒化処理後
の残留炭素が混在する窒化アルミニウム粉のインーーダ
ンスが脱炭時間に伴って高くなるので電源の発振状態が
一定ならば供給可能なパワーが減少するという現象を利
用して処理時間をモニタすることが出来る。
Regarding the processing time, since the reflected power of the high frequency oscillator increases as the amount of carbon decreases, it can be used as a monitor to confirm that decarburization has been completed. In other words, since it is easy for radio waves to pick up on the current of carbon powder, when the carbon powder decreases through oxidation and vaporization, radio waves pick up K<. In other words, the impedance of aluminum nitride powder mixed with residual carbon after nitriding treatment is eliminated The processing time can be monitored by utilizing the phenomenon that the power that can be supplied decreases if the oscillation state of the power supply is constant because the power increases with the coal time.

次に実施例によ〕本発明を具体的に説明する。Next, the present invention will be specifically explained with reference to Examples.

実施例(1) At203粉末とC粉末との調整粉200I(C/At
203の重量比:0.45)を1575℃で5時間還元
窒化処理を行って残留炭素の混在するALN粉(窒化処
理後の調整粉)を得た。次に第1図に示す高周波加熱に
よる脱炭処理装置を用いて、得られた調整栓の脱炭処理
を行った。すなわち窒化処理後の調整栓2をワークコイ
ル3を巻付けた脱炭炉1内に入れ3の一端にあるガス導
入口10から窒素2 SLMと酸素600 accmと
の混合ガスを導入し、他端より真空ポンプで排気する一
方、加熱用電源として13.56 MHzのラジオ周波
数発振機5を使用し、上記調整栓2の表面温度を750
℃(パイロメータにて測定)になるように発振機5のパ
ワーを制御しながら8時間の処理を行ってA4N粉を得
た。
Example (1) Adjusted powder 200I (C/At
203 (weight ratio: 0.45) was subjected to reduction-nitriding treatment at 1575° C. for 5 hours to obtain ALN powder (adjusted powder after nitriding treatment) containing residual carbon. Next, the obtained adjustment plug was decarburized using a high-frequency heating decarburization apparatus shown in FIG. That is, the regulating plug 2 after the nitriding treatment is placed in the decarburization furnace 1 around which the work coil 3 is wound, and a mixed gas of nitrogen 2 SLM and oxygen 600 accm is introduced from the gas inlet 10 at one end of the 3, and the other end is While evacuating with a vacuum pump, a 13.56 MHz radio frequency oscillator 5 was used as a heating power source to increase the surface temperature of the regulating valve 2 to 750 MHz.
C. (measured with a pyrometer) while controlling the power of the oscillator 5 for 8 hours to obtain A4N powder.

なお、4はマツチングボックス、6は方向性結合器、7
は入射反射出力モニターである。また、脱炭炉に供給さ
れた電力は定常状態で3.5 kWであった。
In addition, 4 is a matching box, 6 is a directional coupler, and 7 is a matching box.
is the incident reflection output monitor. In addition, the power supplied to the decarburization furnace was 3.5 kW in steady state.

脱炭処理を行なって得られたAバ粉につき不活性ガス融
解・熱伝導度法で残存酸素を測定した。
The amount of residual oxygen in the A powder obtained after the decarburization treatment was measured using an inert gas melting/thermal conductivity method.

次に、これらAtN粉に焼結助剤としてYF’3(At
N粉に対して4重量%)を添加して1850℃で2時間
かけて常圧焼結し、直径10m、厚さ2mのAtN基板
を作成してレーザーフラッシュ法にて熱拡散率を測定し
熱伝導率を算出した。
Next, these AtN powders were added with YF'3 (At
4% by weight of N powder) was added and sintered under normal pressure at 1850°C for 2 hours to create an AtN substrate with a diameter of 10 m and a thickness of 2 m, and the thermal diffusivity was measured using the laser flash method. The thermal conductivity was calculated.

得られた特性結果を、第1表にまとめて示した。The obtained characteristic results are summarized in Table 1.

実施例(2)〜(5) 実施例(2)においては第2図、実施例(3)において
は第3図、実施例(4)においては第4図、実施例(5
)においては第5図に示す如きそれぞれの脱炭処理装置
を使用し、実施例(1)と同様に、残留炭素の混在する
AtN粉2をそれぞれの脱炭炉1に入れて実施例(1)
と同じ条件でガス導入口10よりガス供給を行うととも
にそれぞれの供給電力を制御してAtN粉2の表面温度
を750℃に保ちつつ8時間の脱炭処理を行った。
Examples (2) to (5) Example (2) is shown in FIG. 2, Example (3) is shown in FIG. 3, Example (4) is shown in FIG. 4, and Example (5) is shown in FIG.
), each decarburization treatment apparatus as shown in FIG. )
Under the same conditions as above, decarburization treatment was performed for 8 hours while supplying gas from the gas inlet 10 and controlling the respective supplied power to maintain the surface temperature of the AtN powder 2 at 750°C.

得られた脱炭処理後のAtN粉を用いて実施例(])と
同様の特性を評価しその結果を第1表に示した。
The obtained AtN powder after decarburization treatment was used to evaluate the same characteristics as in Example (]), and the results are shown in Table 1.

尚第2図〜第5図の脱炭装置において、8,8′は電極
、9は電源ユニット、11はプランツヤ−112は穴開
き導波管、13は整合器、14はダミーロード、15は
アイソレータ、16はマグネトロン、17は導波管、1
8は空洞共振器、19は同軸管である。
In the decarburization apparatus shown in FIGS. 2 to 5, 8 and 8' are electrodes, 9 is a power supply unit, 11 is a planter, 112 is a perforated waveguide, 13 is a matching box, 14 is a dummy load, and 15 is a Isolator, 16 magnetron, 17 waveguide, 1
8 is a cavity resonator, and 19 is a coaxial tube.

比較例 本発明方法と比較するため、実施例(1)と同様の方法
で調整した残留炭素の混在するAtN粉を実施例(1)
と同じ条件でガス供給を行いつつ電気炉を使用して75
0℃に保ちながら8時間処理を行い従来力cQ”−よる
AtN粉を得た。得られたAtN粉につき、実施例(1
)と同様の特性評価を行い、その結果を第1表に示した
Comparative Example In order to compare with the method of the present invention, AtN powder mixed with residual carbon prepared by the same method as in Example (1) was used in Example (1).
75 using an electric furnace while supplying gas under the same conditions as
The treatment was carried out for 8 hours while maintaining the temperature at 0°C to obtain AtN powder with a conventional force cQ''.
), and the results are shown in Table 1.

〔効果〕〔effect〕

以上詳述した如く本発明方法によればAtN粉の表面酸
化を抑制することができ、残存酸素量が極めて少い高純
度のAtN粉体が得られる九め、その焼結体は優れた熱
伝導率を有する等工業上極めて有用なものである。
As detailed above, according to the method of the present invention, surface oxidation of AtN powder can be suppressed, and high-purity AtN powder with an extremely small amount of residual oxygen can be obtained. It has conductivity and is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は、本発明方法により高純度窒化アル
ミニウムを製造するための高周波誘電加熱による脱炭処
理装置の一例を示す概略説明図である。尚、第1図乃至
第3図は、ラジオ周波数発振機を使用したものであり、
第4図、第5図はマイクロ波発振機を使用したものであ
る。 1・・・脱炭炉、2・・・窒化処理後の調整粉、3・・
・ワークコイル、4・・・マツチング?ックス、5・・
・ラジオ周波数発振機、6,6′・・・方向性結合器、
7・・・入射・反射出力モニター、8,8′・・・電極
、9・・・電源ユニット、10・・・ガス導入口、1ノ
・・・グランジャー、12・・・穴開き導波管、13・
・・整合器、14・・・ダミーロード、15・・・アイ
ソレータ、16・・・マグネトロン、17・・・導波管
、18・・・空洞共振器、19・・・同軸管。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図
1 to 5 are schematic explanatory diagrams showing an example of a decarburization treatment apparatus using high-frequency dielectric heating for producing high-purity aluminum nitride by the method of the present invention. Note that Figures 1 to 3 use a radio frequency oscillator.
4 and 5 use a microwave oscillator. 1... Decarburization furnace, 2... Adjusted powder after nitriding treatment, 3...
・Work coil, 4... matching? x, 5...
・Radio frequency oscillator, 6,6'... directional coupler,
7... Incident/reflected output monitor, 8, 8'... Electrode, 9... Power supply unit, 10... Gas inlet, 1... Granger, 12... Hole waveguide tube, 13.
... Matching device, 14... Dummy load, 15... Isolator, 16... Magnetron, 17... Waveguide, 18... Cavity resonator, 19... Coaxial tube. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 酸化アルミニウムを還元窒化法により高純度窒化アルミ
ニウムを製造する方法において、酸化アルミニウム粉末
と炭素粉末との混合粉を窒素雰囲気中で加熱して得た残
留炭素粉が混在する窒化アルミニウム粉末を高周波誘電
加熱して該窒化アルミニウム粉末の表面酸化を抑制しつ
つ、余剰炭素を酸化及び気化せしめて除去することを特
徴とする高純度窒化アルミニウムの製造方法。
In a method for producing high-purity aluminum nitride by reducing aluminum oxide and nitriding, aluminum nitride powder mixed with residual carbon powder obtained by heating a mixed powder of aluminum oxide powder and carbon powder in a nitrogen atmosphere is heated by high-frequency dielectric heating. A method for producing high-purity aluminum nitride, which comprises removing excess carbon by oxidizing and vaporizing it while suppressing surface oxidation of the aluminum nitride powder.
JP12091486A 1986-05-26 1986-05-26 Production of high-purity aluminum nitride Pending JPS62278110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12091486A JPS62278110A (en) 1986-05-26 1986-05-26 Production of high-purity aluminum nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12091486A JPS62278110A (en) 1986-05-26 1986-05-26 Production of high-purity aluminum nitride

Publications (1)

Publication Number Publication Date
JPS62278110A true JPS62278110A (en) 1987-12-03

Family

ID=14798115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12091486A Pending JPS62278110A (en) 1986-05-26 1986-05-26 Production of high-purity aluminum nitride

Country Status (1)

Country Link
JP (1) JPS62278110A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219309A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Method for producing alumina particle with aln modified layer, and modified alumina powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219309A (en) * 2010-04-09 2011-11-04 Nippon Steel Corp Method for producing alumina particle with aln modified layer, and modified alumina powder

Similar Documents

Publication Publication Date Title
JP6257071B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JPS6311401B2 (en)
TW201207936A (en) Etching method
WO2011114961A1 (en) Silicon oxide film forming method, and plasma oxidation apparatus
JP2010056064A (en) High-frequency induction heating device of ceramic material, and nonpressurized sintering method using the same
JP2019134062A (en) Selective film deposition method and film deposition apparatus
EP1806317A1 (en) PROCESS FOR PRODUCING SiOx PARTICLE
TW201339352A (en) Plasma treatment method and plasma treatment device
KR100997839B1 (en) Microwave plasma processing apparatus
JPS62278110A (en) Production of high-purity aluminum nitride
JP3559123B2 (en) Aluminum nitride and semiconductor manufacturing equipment
US4889665A (en) Process for producing ultrafine particles of ceramics
JP3907425B2 (en) Inductively coupled plasma processing equipment
JP6281964B2 (en) Semiconductor device manufacturing method, program, and substrate processing apparatus
JP3739028B2 (en) High frequency transmission body and method for manufacturing the same
JP2017112183A (en) Method for producing insulation film laminate
JPH0488174A (en) Method and device for surface treatment
JPH0283202A (en) Production of alumina base by forming aln layer on the surface thereof
JP4032178B2 (en) Method for manufacturing silicon nitride sprayed film
JPH11251088A (en) Inductive coupling plasma device
JP2805506B2 (en) Diamond film synthesizer by microwave plasma CVD
JPS63111177A (en) Thin film forming device by microwave plasma
JP2010199361A (en) Method of manufacturing iron nitride magnetic fine particle
JPS63103899A (en) Production of silicon carbide whisker of high-quality and apparatus therefor
KR100348063B1 (en) Method making oxidation layer of coating film sticking superior ability silicon sheet-steel surface