JPS62278106A - Hydrolysis of metal alkoxide - Google Patents

Hydrolysis of metal alkoxide

Info

Publication number
JPS62278106A
JPS62278106A JP12036986A JP12036986A JPS62278106A JP S62278106 A JPS62278106 A JP S62278106A JP 12036986 A JP12036986 A JP 12036986A JP 12036986 A JP12036986 A JP 12036986A JP S62278106 A JPS62278106 A JP S62278106A
Authority
JP
Japan
Prior art keywords
hydrolysis
metal alkoxide
reaction
rate
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12036986A
Other languages
Japanese (ja)
Other versions
JPH0688763B2 (en
Inventor
Yoshiro Oota
好郎 太田
Osamu Yagi
修 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tama Kagaku Kogyo Co Ltd
Original Assignee
Tama Kagaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tama Kagaku Kogyo Co Ltd filed Critical Tama Kagaku Kogyo Co Ltd
Priority to JP12036986A priority Critical patent/JPH0688763B2/en
Publication of JPS62278106A publication Critical patent/JPS62278106A/en
Publication of JPH0688763B2 publication Critical patent/JPH0688763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/32Methods for preparing oxides or hydroxides in general by oxidation or hydrolysis of elements or compounds in the liquid or solid state or in non-aqueous solution, e.g. sol-gel process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a uniform and stable sol having retarded rate of hydrolysis, by adding a specific hydrolysis retarder to a reaction system containing a metal alkoxide and carrying out hydrolysis of the alkoxide. CONSTITUTION:A reaction system containing a metal alkoxide of formula (M is metallic atom; R and R' are alkyl, aryl, alkenyl or H; x is 0-3; y is 1-4; x+y is 3 or 4) and water is added with <=1wt% aromatic amine (e.g. pyridine) as a hydrolysis retarder and the alkoxide is hydrolyzed.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] この発明は、金属アルコキシドを加水分解する方法に係
り、特にこの金属アルコキシドの加水分解反応を制御し
易くするために加水分解速度を遅延させる方法に関する
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for hydrolyzing metal alkoxide, and in particular to a method for easily controlling the hydrolysis reaction of metal alkoxide. TECHNICAL FIELD The present invention relates to a method of retarding the rate of hydrolysis.

[従来の技術] 金属アルコキシドは、その金属の種類、例えば硅素、ア
ルミニウム、チタン、ジルコニウム等によって種々の用
途に供されており、例えばアルコキシシランは耐熱性塗
料、プラスチック表面保護コーテイング材、亜鉛末防錆
塗料、ゾル・ゲル法による高純度ガラス、精密鋳造用及
び耐火物用粘結剤、シリコーン樹脂や有機物中の水酸基
との架橋剤、高純度コロイダルシリカ、その他の機能性
無機ゲル、無機有機複合体ゲル、ハイブリッドゲル体等
、新しい無機材料として工業的に注目されている。
[Prior Art] Metal alkoxides are used in a variety of applications depending on the type of metal, such as silicon, aluminum, titanium, zirconium, etc. For example, alkoxysilanes are used in heat-resistant paints, plastic surface protection coatings, and zinc dust prevention. Rust paints, high-purity glass produced by sol-gel method, binders for precision casting and refractories, cross-linking agents with hydroxyl groups in silicone resins and organic substances, high-purity colloidal silica, other functional inorganic gels, inorganic-organic composites It is attracting industrial attention as a new inorganic material, such as body gels and hybrid gel bodies.

そして、このような無機材料を製造するに際しては、一
般に、金属アルコキシドを化学量論的に過剰の水で加水
分解して金属水酸化物のゾルを製造したり、ざらにこれ
をゲル化させて金属酸化物のゲルを製造することか行わ
れている。
When producing such inorganic materials, metal alkoxides are generally hydrolyzed with a stoichiometric excess of water to produce a metal hydroxide sol, or roughly gelled. Some efforts have been made to produce metal oxide gels.

例えば、金属アルコキシドがアルコキシシラン類である
場合、工業的には通常脱塩化水素剤の存在下に下記反応
式(2)又は(3) R”5iCA3+3RO)−1 →R”S  i   (OR)3  +3 11(J)
     (2)S  i  Cf24 +4ROH →5i(OR)  +4HCffl    (3)(但
し、式中R及びR′はアルキル基を示す。)によってア
ルキルトリアルコキシシランやテトラアルコキシシラン
を製造し、これに化学量論的に過剰の水、加水分解触媒
として塩酸、硫酸、硝酸等の鉱酸や酢酸等の有1a酸あ
るいは水酸化アンモニウム、水酸化第四級アンモニウム
、アルカリ又はアルカリ土類酸化物又は水酸化物等の塩
基を添加し、攪拌下に加水分解してシリカゾルを製造し
、必要に応じてこれをゲル化することが行われている。
For example, when the metal alkoxide is an alkoxysilane, industrially, the following reaction formula (2) or (3) R"5iCA3+3RO)-1 →R"S i (OR)3 is usually used in the presence of a dehydrochlorination agent. +3 11 (J)
(2) Alkyltrialkoxysilane or tetraalkoxysilane is produced by S i Cf24 +4ROH →5i(OR) +4HCffl (3) (in the formula, R and R' represent an alkyl group), and the stoichiometric excess water, hydrolysis catalysts such as mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, 1a acids such as acetic acid, ammonium hydroxide, quaternary ammonium hydroxide, alkali or alkaline earth oxides or hydroxides, etc. A base is added thereto and hydrolyzed with stirring to produce a silica sol, which is then gelled if necessary.

[発明が解決しようとする問題点コ しかしながら、金属アルコキシドはその金属の種類によ
って加水分解速度に大きな差があり、加水分解速度があ
まりにも速いものについてはその反応を制御することが
難しく、原料として保存するのが困難であったり、加水
分解により均一で安定なゾルを製造するのが困難になっ
て製造された無機材料の品質を低下させるという問題が
あった。
[Problems to be solved by the invention] However, the hydrolysis rate of metal alkoxides varies greatly depending on the type of metal, and it is difficult to control the reaction of metal alkoxides whose hydrolysis rate is too fast, making them difficult to use as raw materials. There have been problems in that it is difficult to store or to produce a uniform and stable sol through hydrolysis, which deteriorates the quality of the produced inorganic material.

また、金属アルコキシドがアルコキシシラン類である場
合には、製造されたアルキルトリアルコキシシランやテ
トラアルコキシシランのアルキル基によってその加水分
解速度に差があるほか、これらアルキルトリアルコキシ
シランやテトラアルコキシシラン中に、副生じた塩化水
素に暴く塩素原子や脱塩化水素剤が残留するのは避けら
れず、製造の各ロット毎にその含有量にも変化が生じ、
これが原因と思われるが製造された各ロット毎にアルキ
ルトリアルコキシシランやテトラアルコキシシランの加
水分解速度に大きな差が生じ、製造ロットの異なるアル
コキシシラン類を混合すると均一で安定なシリカゾルを
製造し得なくなる場合があった。
In addition, when the metal alkoxide is an alkoxysilane, the rate of hydrolysis differs depending on the alkyl group of the alkyltrialkoxysilane or tetraalkoxysilane produced. It is unavoidable that chlorine atoms and dehydrochlorination agents remain in the hydrogen chloride produced as a by-product, and their content varies with each manufacturing lot.
This seems to be the cause, but there is a large difference in the rate of hydrolysis of alkyltrialkoxysilanes and tetraalkoxysilanes for each manufactured lot, and it is not possible to produce a uniform and stable silica sol when alkoxysilanes from different manufacturing lots are mixed. There were times when it disappeared.

ところで、金属アルコキシドを加水分解するための方法
として、lIa族金属の固体酸化物及び固体酸触媒から
なる群から選択された触媒有効量の固体加水分解触媒を
使用することが提案されているが(特開昭58−108
.227号公報)、この方法では加水分解速度を速くす
る方向で加水分解速度の調整を行うことはできても、加
水分解速度を遅くする方向で加水分解速度の調整を1テ
うことはできず、充分な方法でおるとはいえなかった。
By the way, as a method for hydrolyzing metal alkoxides, it has been proposed to use a catalytically effective amount of a solid hydrolysis catalyst selected from the group consisting of solid oxides of Group IIa metals and solid acid catalysts ( Japanese Patent Publication No. 58-108
.. 227 Publication), although this method allows the hydrolysis rate to be adjusted in the direction of increasing the hydrolysis rate, it is not possible to adjust the hydrolysis rate in the direction of decreasing the hydrolysis rate. , it could not be said that it was done in a sufficient manner.

[問題点を解決するための手段] 本発明は、かかる観点に鑑みて創案亭れたもので、金属
アルコキシドの加水分解反応を行う際に、その加水分解
速度を遅くする方向に調整して均一で安定なゾルを製造
することができる金属アルコキシドの加水分解法を提供
するものである。
[Means for Solving the Problems] The present invention has been devised in view of the above-mentioned viewpoints, and when performing a hydrolysis reaction of a metal alkoxide, the hydrolysis rate is adjusted to be slow and uniform. The present invention provides a method for hydrolyzing metal alkoxides that can produce stable sol.

すなわち、本発明は、下記一般式(1)%式%(1) (但し、式中Mは金属原子を示し、R及びR−はアルキ
ル基、アリール基、アルケニル基又は水素原子を示し、
XとyはXが0〜3の整数でyが1〜4の整数でおって
両者の合計x+yが3又は4である整数を示す。)で表
される金属アルコキシドを加水分解するに際し、その反
応系に加水分解速度遅延剤として芳香族アミンを添加す
る金属アルコキシドの加水分解法である。
That is, the present invention is based on the following general formula (1)% formula (1) (where M represents a metal atom, R and R- represent an alkyl group, an aryl group, an alkenyl group, or a hydrogen atom,
X and y are integers in which X is an integer of 0 to 3, y is an integer of 1 to 4, and their total x+y is 3 or 4. ) is a metal alkoxide hydrolysis method in which an aromatic amine is added to the reaction system as a hydrolysis rate retardant.

本発明方法において、上記一般式(1)で示される金属
アルコキシドを構成する金属としては、3価又は4価の
金属であり、具体的には硅素、アルミニウム、チタン、
ジルコニウム等を挙げることができる。又、この金属ア
ルコキシドの置換基R及びR−であるアルキル基として
は、メチル基、エチル基、n−プロピル基、is叶プロ
ピル基、n−ブチル基、1so−ブチル基、5ec−ブ
チル基、tert−ブチル基等を挙げることができ、ア
リール基としてはフェニル基やアルキル基、ハロゲン等
が置換した置換フェニル基等を挙げることができ、アル
ケニル基としてはビニル基、1−プロペニル基、アリル
基、イソプロペニル基等を挙げることができる。
In the method of the present invention, the metal constituting the metal alkoxide represented by the above general formula (1) is a trivalent or tetravalent metal, specifically silicon, aluminum, titanium,
Examples include zirconium. Further, as the alkyl group which is the substituent R and R- of this metal alkoxide, methyl group, ethyl group, n-propyl group, isanopropyl group, n-butyl group, 1so-butyl group, 5ec-butyl group, Examples of the aryl group include a phenyl group, an alkyl group, and a substituted phenyl group substituted with a halogen, etc. Examples of the alkenyl group include a vinyl group, a 1-propenyl group, and an allyl group. , isopropenyl group, etc.

また、上記金属アルコキシドの加水分解反応の際にその
反応系に加水分解速度遅延剤として添加される芳香族ア
ミンとしては、アニリンで代表される第一アミン、ジフ
ェニルアミンやメチルアニリンで代表される第三アミン
及びトリフェニルアミン、ジメチルアニリン及びピリジ
ン等で代表される第三アミンを挙げることができる。こ
れらは加水分解反応の反応速度を遅延させる効果におい
て程度の差はあるが、いずれも使用することができる。
In addition, the aromatic amines added as hydrolysis rate retardants to the reaction system during the hydrolysis reaction of the metal alkoxides mentioned above include primary amines represented by aniline, and tertiary amines represented by diphenylamine and methylaniline. Examples include amines and tertiary amines represented by triphenylamine, dimethylaniline, pyridine, and the like. Any of these can be used, although there are varying degrees of effectiveness in retarding the reaction rate of the hydrolysis reaction.

反応系に加水分解速度遅延剤として添加される芳香族ア
ミンの添加量については、加水分解反応の対象となる金
属アルコキシドの種類やこの金属アルコキシドに含有さ
れて加水分解速度に影響を及ぼす酸や塩基の種類及びそ
の含有量等、すなわら加水分解反応の対象となる金属ア
ルコキシド原料の加水分解速度によって異なり、触媒有
効量として把握されるものであって、通常1重量%以下
である。この芳香族アミンの添加量については、好まし
くは、予め原料の金属アルコキシドの加水分解速度に対
してどのように影響するかを調べておき、その結果に基
いて用途に適した加水分解速度となるように添加するの
がよい。
The amount of aromatic amine added to the reaction system as a hydrolysis rate retardant depends on the type of metal alkoxide that is the target of the hydrolysis reaction and the acids and bases contained in this metal alkoxide that affect the hydrolysis rate. The type and content thereof vary depending on the hydrolysis rate of the metal alkoxide raw material to be subjected to the hydrolysis reaction, and are understood as the catalytic effective amount, which is usually 1% by weight or less. Regarding the amount of aromatic amine added, it is preferable to investigate in advance how it affects the hydrolysis rate of the raw material metal alkoxide, and then determine the hydrolysis rate suitable for the application based on the results. It is best to add it as follows.

また、上記加水分解速度遅延剤として使用する芳香族ア
ミンは、必要に応じて加水分解速度を促進するための加
水分解触媒と併用することもできる。すなわち、加水分
解触媒を全く使用しない場合にはこの加水分解速度が遅
すぎるにもかかわらず、この加水分解触媒の使用によっ
て加水分解速度が速くなりすぎるような場合、この加水
分解触媒と芳香族アミンの添加量をそれぞれ加減するこ
とにより反応制御に好ましい加水分解速度に調整するこ
とができる。この目的で使用する加水分解触媒としては
、従来公知の塩酸、硫酸、硝酸等の鉱酸おるいは蟻酸、
酢酸等の有機酸からなる酸類や、水酸化アンモニウム、
テトラメチルアンモニウムハイドロキサイド等の水酸化
第四級アンモニウム、アルカリ又はアルカリ土類酸化物
又は水酸化物等の塩基類を挙げることができ、好ましく
は酸類でおる。
Further, the aromatic amine used as the hydrolysis rate retardant can be used in combination with a hydrolysis catalyst to accelerate the hydrolysis rate, if necessary. That is, if the hydrolysis rate is too slow when no hydrolysis catalyst is used, but the hydrolysis rate becomes too fast when the hydrolysis catalyst is used, the hydrolysis catalyst and the aromatic amine The hydrolysis rate can be adjusted to a preferable rate for reaction control by adjusting the amount of each addition. Hydrolysis catalysts used for this purpose include conventionally known mineral acids such as hydrochloric acid, sulfuric acid, and nitric acid, or formic acid;
Acids consisting of organic acids such as acetic acid, ammonium hydroxide,
Examples include bases such as quaternary ammonium hydroxide such as tetramethylammonium hydroxide, alkali or alkaline earth oxides or hydroxides, and acids are preferred.

[作用] 本発明方法によれば、芳香族アミンが金属アルコキシド
の加水分解速度を遅くする方向に作用し、また、加水分
解速度を促進する方向に作用する加水分解触媒と併用し
て加水分解反応を最適な状態に調整することができる。
[Function] According to the method of the present invention, the aromatic amine acts to slow down the hydrolysis rate of the metal alkoxide, and is used in combination with a hydrolysis catalyst that acts to accelerate the hydrolysis rate to perform the hydrolysis reaction. can be adjusted to the optimum condition.

[実施例] 以下、実施例に基いて、本発明方法を具体的に説明する
[Example] Hereinafter, the method of the present invention will be specifically explained based on Examples.

実施例1 メチルトリクロロシランとメタノールとから製造された
純度98〜99重量%のメチルトリメトキシシラン10
dと純水10dとを50dガラス容器中に仕込み、h0
水分解速度遅延剤として第1表に示す割合でピリジンを
添加し、マグネチツクスターラーで激しく攪拌して原料
のメチルトリメトキシシランが完全に加水分解され、反
応系全体が均一層になるまでの時間(反応時間)を測定
した。結果を第1表に示す。
Example 1 Methyltrimethoxysilane 10 with a purity of 98-99% by weight prepared from methyltrichlorosilane and methanol
Pour d and 10 d of pure water into a 50 d glass container, h0
Pyridine is added as a water decomposition rate retardant in the proportion shown in Table 1, and stirred vigorously with a magnetic stirrer to completely hydrolyze the raw material methyltrimethoxysilane and the time required for the entire reaction system to become a uniform layer. (reaction time) was measured. The results are shown in Table 1.

実施例2 原料の金属アルコキシドとして、上記実施例1で使用し
たと同じメチルトリメトキシシラン7゜5威及びテトラ
クロロシランとメタノールとから製造された純[98〜
99重量%のテトラメトキシシラン2.5戒とを使用し
た以外は上記実施例1と同様にして加水分解反応を行い
、その反応時間を測定した。結果を第1表に示す。
Example 2 As the raw metal alkoxide, pure [98~5%] produced from the same methyltrimethoxysilane 7.5% as used in Example 1, tetrachlorosilane, and methanol was used as the raw material metal alkoxide.
A hydrolysis reaction was carried out in the same manner as in Example 1 above, except that 2.5% of 99% by weight tetramethoxysilane was used, and the reaction time was measured. The results are shown in Table 1.

実施例3 加水分解速度遅延剤としてピリジンに代えてジメチルア
ニリンを使用した以外は上記実施例1と同様にして加水
分解反応を行い、その反応時間を測定した。結果を第1
表に示す。
Example 3 A hydrolysis reaction was carried out in the same manner as in Example 1 above, except that dimethylaniline was used instead of pyridine as a hydrolysis rate retardant, and the reaction time was measured. Results first
Shown in the table.

実施例4 加水分解速度遅延剤としてピリジンに代えてアニリンを
使用した以外は上記実施例1と同様にして加水分解反応
を行い、その反応時間を測定した。
Example 4 A hydrolysis reaction was carried out in the same manner as in Example 1 above, except that aniline was used instead of pyridine as a hydrolysis rate retardant, and the reaction time was measured.

結果を第1表に示す。The results are shown in Table 1.

第1表 実施例5 加水分解触媒として0.01N−HCJ20.1dを使
用し、15分間で加水分解反応が終了8しない場合にさ
らに0.0IN−HCfflo、 1mlを添加し、そ
の後5分毎にチェックして加水分解反応が終了していな
い場合にざらに0.01N−HCI)、ldを添加する
方法で行った以外は実施例1と同様にして加水分解反応
を行い、その反応時間を測定した。結果を第2表に示す
Table 1 Example 5 0.01N-HCJ20.1d was used as a hydrolysis catalyst, and if the hydrolysis reaction was not completed in 15 minutes, 1ml of 0.0IN-HCfflo was further added, and then every 5 minutes. The hydrolysis reaction was carried out in the same manner as in Example 1, except that if the hydrolysis reaction was not completed, 0.01N-HCI) and ld were added roughly, and the reaction time was measured. did. The results are shown in Table 2.

実施例6 原料の金属アルコキシドとして、上記実施例2と同様に
メチルトリメトキシシラン7.5d及びテトラメトキシ
シラン2.5戒とを使用した以外は上記実施例5と同様
にして加水分解反応を行い、その反応時間を測定した。
Example 6 A hydrolysis reaction was carried out in the same manner as in Example 5 above, except that 7.5d methyltrimethoxysilane and 2.5d tetramethoxysilane were used as the raw metal alkoxides in the same manner as in Example 2. , the reaction time was measured.

結果を第2表に示す。The results are shown in Table 2.

[発明の効果] 本発明方法によれば、金属アルコキシドの加水分解反応
をその加水分解速度を遅くする方向に調整することがで
き、これによって加水分解速度が速い金属アルコキシド
の場合でも均一で安定なゾルを製造することができ、ま
た、これを原料にして製造される無機材料の品質を向上
させることができる。また、加水分解速度を促進させる
方向に作用する加水分解触媒と併用することにより、金
属アルコキシドの加水分解速度を所望の程度に調整する
ことができる。
[Effects of the Invention] According to the method of the present invention, the hydrolysis reaction of metal alkoxides can be adjusted to slow down the hydrolysis rate, and as a result, even in the case of metal alkoxides that have a fast hydrolysis rate, a uniform and stable product can be produced. A sol can be produced, and the quality of inorganic materials produced using the sol as a raw material can be improved. In addition, by using in combination with a hydrolysis catalyst that acts to accelerate the hydrolysis rate, the hydrolysis rate of the metal alkoxide can be adjusted to a desired level.

Claims (2)

【特許請求の範囲】[Claims] (1)下記一般式(1) R′_xM(OR)_y(1) (但し、式中Mは金属原子を示し、R及びR′はアルキ
ル基、アリール基、アルケニル基又は水素原子を示し、
xとyはxが0〜3の整数でyが1〜4の整数であって
両者の合計x+yが3又は4である整数を示す。)で表
される金属アルコキシドを加水分解するに際し、その反
応系に加水分解速度遅延剤として芳香族アミンを添加す
ることを特徴とする金属アルコキシドの加水分解法。
(1) The following general formula (1) R′_xM(OR)_y(1) (However, in the formula, M represents a metal atom, R and R′ represent an alkyl group, an aryl group, an alkenyl group, or a hydrogen atom,
x and y are integers in which x is an integer of 0 to 3, y is an integer of 1 to 4, and their total x+y is 3 or 4. ) A method for hydrolyzing metal alkoxides, which comprises adding an aromatic amine as a hydrolysis rate retardant to the reaction system.
(2)芳香族アミンがピリジン、アニリン又はジメチル
アニリンである特許請求の範囲第2項記載の金属アルコ
キシドの加水分解法。
(2) The method for hydrolyzing metal alkoxides according to claim 2, wherein the aromatic amine is pyridine, aniline, or dimethylaniline.
JP12036986A 1986-05-26 1986-05-26 Hydrolysis of metal alkoxide Expired - Lifetime JPH0688763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12036986A JPH0688763B2 (en) 1986-05-26 1986-05-26 Hydrolysis of metal alkoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12036986A JPH0688763B2 (en) 1986-05-26 1986-05-26 Hydrolysis of metal alkoxide

Publications (2)

Publication Number Publication Date
JPS62278106A true JPS62278106A (en) 1987-12-03
JPH0688763B2 JPH0688763B2 (en) 1994-11-09

Family

ID=14784494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12036986A Expired - Lifetime JPH0688763B2 (en) 1986-05-26 1986-05-26 Hydrolysis of metal alkoxide

Country Status (1)

Country Link
JP (1) JPH0688763B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272837A (en) * 2004-03-25 2005-10-06 Xerox Corp Method for producing polymer
WO2006077890A1 (en) * 2005-01-19 2006-07-27 Kyoto University Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles
JP2019182688A (en) * 2018-04-04 2019-10-24 株式会社日本触媒 Manufacturing method of silica particle or dispersion element thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272837A (en) * 2004-03-25 2005-10-06 Xerox Corp Method for producing polymer
WO2006077890A1 (en) * 2005-01-19 2006-07-27 Kyoto University Process for producing monodispersed fine spherical metal oxide particles and fine metal oxide particles
JPWO2006077890A1 (en) * 2005-01-19 2008-06-19 国立大学法人京都大学 Method for producing monodispersed spherical metal oxide fine particles and metal oxide fine particles
JP2019182688A (en) * 2018-04-04 2019-10-24 株式会社日本触媒 Manufacturing method of silica particle or dispersion element thereof

Also Published As

Publication number Publication date
JPH0688763B2 (en) 1994-11-09

Similar Documents

Publication Publication Date Title
US6927270B2 (en) Process for the functionalization of polyhedral oligomeric silsesquioxanes
Cervantes et al. Organotin catalysts in organosilicon chemistry
EP0195936B1 (en) Method for producing organosilicon polymers and the polymers prepared thereby
JPH08253589A (en) Production of optionally alkoxylated polyorganosiloxane by nonhydrolytic condensation
JPH0718077A (en) Production of carbinol-functional siloxane
JPH069659A (en) Formation of siloxane bond
JP2004002299A (en) Method for producing mixture of chain and cyclic siloxanes, mixture and use thereof
US5328645A (en) Gel promoters for silica sols
US4552942A (en) Silanes and compositions prepared therefrom
JPS63305133A (en) Manufacture of organopolysiloxane and novel organopolysiloxane
GB2043089A (en) Method of hydrolyzing a chlorosilicon composition
JPH0633335B2 (en) Method for producing organopolysiloxane
GB1580414A (en) Silicones
JPS62278106A (en) Hydrolysis of metal alkoxide
JP3175124B2 (en) Silica-based coating materials and coatings
US2698861A (en) Method of preparing alkoxysilicon compounds
US4252569A (en) Process for preparing alkali metal siliconates
US4174228A (en) Cementitious magnesia compositions containing salts of organo-silanols
US2713063A (en) Method of preparing fluorosilanes
JP3361779B2 (en) Coating composition
CN107033352A (en) A kind of preparation method of phosphorus system silane fire retardant
JP3542188B2 (en) Method for producing polyheterosiloxane
JPH0426609B2 (en)
JP3252642B2 (en) Method for producing low molecular weight organosilane or siloxane having silanol group
EP0508433B1 (en) Preparation of siloxanes

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term