JPS6227754A - Method for adjusting contrast of electrophotographic picture - Google Patents

Method for adjusting contrast of electrophotographic picture

Info

Publication number
JPS6227754A
JPS6227754A JP60168099A JP16809985A JPS6227754A JP S6227754 A JPS6227754 A JP S6227754A JP 60168099 A JP60168099 A JP 60168099A JP 16809985 A JP16809985 A JP 16809985A JP S6227754 A JPS6227754 A JP S6227754A
Authority
JP
Japan
Prior art keywords
light
image
photosensitive body
potential
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60168099A
Other languages
Japanese (ja)
Inventor
Hidejiro Kadowaki
門脇 秀次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60168099A priority Critical patent/JPS6227754A/en
Publication of JPS6227754A publication Critical patent/JPS6227754A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

PURPOSE:To extend a density reproducing range to reproduce gradations of an original picture faithfully and well by charging the surface of an image carrier with a certain potential lower than the potential of uniform charging before development after irradiation of an image light. CONSTITUTION:The surface of a photosensitive body 1 consisting fundamentally of a conductive substrate 11 and a photoconductive layer 12 is charged uniformly by a corona charger 2. When light I of an original image is irradiated on a photosensitive body 1, carrier pairs 13 proportional to the quantity of light are generated in the photoconductive layer 12, and plus carriers out of them are migrated to the photoconductive layer 12 and are flowed to the conductive substrate 11, and discharging is caused between minus carriers and the plus electric charge on the surface of the photosensitive body 1. The next process is started just after exposure of the light I. That is, the surface of the photosensitive body 1 is charged by a corona charger 3 having a grid G to which a bias V1(<V0) is applied. By this charging, a certain corona electric charge is given to only the part where the surface potential of the photosensitive body 1 is lower than V1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真で原稿画像の階調性を忠実に再現して
複写する画像コントラスト調整方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image contrast adjustment method for faithfully reproducing and copying the gradation of an original image using electrophotography.

〔従来の技術〕[Conventional technology]

従来、電子写真方法の基本としてカールソン法が知られ
ている。この方法に於ては、導電性基板の表面に無定形
セレン等の光導電層を設けた電子写真感光体を用いて、
暗所に於てその表面を一様帯電し、次いで原稿像を露光
して、光照射部の感光体表面電荷を放電させ静電潜像を
形成する。この静電潜像をトナー粒子により現像し、転
写材に転写する。
Conventionally, the Carlson method has been known as a basic electrophotographic method. In this method, an electrophotographic photoreceptor is used, in which a photoconductive layer of amorphous selenium or the like is provided on the surface of a conductive substrate.
The surface of the document is uniformly charged in a dark place, and then the document image is exposed to light to discharge the surface charge of the photoreceptor at the light irradiation part and form an electrostatic latent image. This electrostatic latent image is developed with toner particles and transferred to a transfer material.

一般に、上記カールソン法による原稿に対する濃度再現
範囲は、0.6〜0.8程度であり、例えば無定形セレ
ンを用いた場合の原稿濃度に対する潜像電位の関係は第
8図に実線aで示すごとくである。そして、この原稿1
M度に対する複写濃度は第9図の実線に示す様に完全な
濃度再現をなし得ないのが実情である。
Generally, the density reproduction range for originals using the Carlson method is about 0.6 to 0.8. For example, when amorphous selenium is used, the relationship between the latent image potential and the original density is shown by the solid line a in Figure 8. That's it. And this manuscript 1
The reality is that it is not possible to reproduce the copy density completely with respect to the M degree, as shown by the solid line in FIG.

一電子写真法の他の方法として、本出願人の出願にかか
る特公昭42−23910号公報、或は特公昭43−2
4748号公報に開示されている。
1. As another method of electrophotography, Japanese Patent Publication No. 42-23910 filed by the present applicant or Japanese Patent Publication No. 43-2
It is disclosed in Japanese Patent No. 4748.

この電子写真法は導電性基板上に光導電体層・透明絶縁
層を積層した感光体を用いるものである。原稿濃度に対
するPFI!電位の関係も、第8図に鎖線すで示すごと
くである。
This electrophotographic method uses a photoreceptor in which a photoconductor layer and a transparent insulating layer are laminated on a conductive substrate. PFI for original density! The relationship between the potentials is also as shown by the chain line in FIG.

上述のような電子写真法により形成した再現コビーは、
貧務田等の用途に於ては、十分満足なものであった。し
かし、原稿画像の広い範囲の灰色や色合いを含んだ原稿
を忠実に再現できるものではない、従って、原稿画像の
忠実な再現を要する精密印刷或は美術印刷等には利用し
得なかった。
The reproduction covey formed by the electrophotographic method as described above is
It was fully satisfactory for uses such as poor fields. However, it is not possible to faithfully reproduce a document containing a wide range of grays and hues, and therefore it cannot be used for precision printing or fine art printing that requires faithful reproduction of the document image.

即ち、従来の電子写真法の場合、原稿画像の明るい灰色
はより明るく、原稿画像で暗い灰色は、より暗い複写像
となる。カラー複写の場合、微妙な色変化を出そうとす
れば、コピーは色が濁り、又、原稿に対する色変化も大
きくなる恐れもあった。これらはトナー特性を改良する
ことによって幾分改善されているものの、原稿画像の忠
実な再現は困難である。
That is, in the case of conventional electrophotography, light gray in the original image becomes lighter, and dark gray in the original image becomes darker in the reproduced image. In the case of color copying, if a subtle color change is attempted, the color of the copy becomes muddy, and there is also the risk that the color change with respect to the original document will be large. Although these have been improved somewhat by improving toner properties, it is difficult to faithfully reproduce original images.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上述の点に鑑み、原稿画像を忠実に階調性を
再現することが可能な電子写真の画像コントラスト調整
方法を提供しようとするものである。
In view of the above-mentioned points, the present invention provides an image contrast adjustment method for electrophotography that can faithfully reproduce the gradation of a document image.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するため本発明は、少なくとも導電
層と光導電層とを有する像担持体表面に均一帯電をした
後に画像光を照射して得られた静電潜像を現像する電子
写真法において、前記画像光を照射すると同時以降で現
像する以前に該像担持体表面を前記均一帯電の電位より
低い一定電位に帯電するという手段を採っている。
In order to solve the above problems, the present invention provides electrophotography in which the surface of an image carrier having at least a conductive layer and a photoconductive layer is uniformly charged and then an electrostatic latent image obtained by irradiating image light is developed. In this method, the surface of the image carrier is charged to a constant potential lower than the uniform charging potential at the same time as the image light is irradiated and before development.

〔作 用〕[For production]

上記のようにすると、濃度再現範囲が拡張されて、原稿
画像の階調が忠実良好に再現される。
By doing so, the density reproduction range is expanded and the gradation of the original image is faithfully and satisfactorily reproduced.

〔実施例〕〔Example〕

以下に本発明の実施例を第1図に従って説明する。 Embodiments of the present invention will be described below with reference to FIG.

第1工程(a)で、導電性基板11・光導電層12を基
本構成とする感光体1表面にコロナ帯電器2で均一帯電
を施す、光導電層12の特性がP型半導体の場合には、
プラス帯電(表面電位■とする)をする。
In the first step (a), a corona charger 2 uniformly charges the surface of the photoreceptor 1, which basically consists of a conductive substrate 11 and a photoconductive layer 12, when the photoconductive layer 12 has a P-type semiconductor characteristic. teeth,
It is positively charged (surface potential is ■).

次に第2工程(b)で原稿画像の光Iを感光体lに照射
する。このとき光導電層12内には光量に比例したキャ
リア対13が発生しその内のプラスキャリアが光導電層
12を移動し、導電性層11ニ流れ、マ・fナスキャリ
アは感光体1表面のプラス電荷との間で放電する。この
放電の効率は光導電層12にかかる電界に依存し、光導
電体によって異なるが概略第2図の点線αに示すような
logE−V特性(露光量に対する静電潜像電位特性)
でそのダイナミックレンジは0.6〜0.8である。
Next, in a second step (b), the photoreceptor l is irradiated with the light I of the original image. At this time, carrier pairs 13 proportional to the amount of light are generated in the photoconductive layer 12, positive carriers among them move through the photoconductive layer 12 and flow to the conductive layer 11, and negative carriers are formed on the surface of the photoreceptor 1. discharges between the positive charge and the positive charge. The efficiency of this discharge depends on the electric field applied to the photoconductive layer 12, and varies depending on the photoconductor, but it roughly shows the log E-V characteristic (electrostatic latent image potential characteristic with respect to exposure amount) as shown by the dotted line α in FIG.
Its dynamic range is 0.6 to 0.8.

第3工程 (c)は、光重の露光直後になされる。The third step (c) is performed immediately after the light exposure.

バイアス電圧V+(<VO)を印加しであるグリッドG
を有するコロナ帯電器3により感光体lの表面を帯電し
てゆく、この時のコロナ帯電器3の高圧電源5は、コロ
ナ電流が環墳によって変化しないように定電流電源であ
ることが望ましい。
A grid G is applied with a bias voltage V+ (<VO).
The high-voltage power source 5 of the corona charger 3, which charges the surface of the photoreceptor 1, is preferably a constant current power source so that the corona current does not change depending on the ring tomb.

この帯電により感光体lの表面電位が略■1以下の部分
のみ一定のコロナ電荷を与えることができる。その結果
、第2図実線βのようにlogE−V特性の表面電位が
略■1以下の所を光量の多い方へ延び階調の制御が出来
る。すなわちダイナミックレンジが広がることになる。
Due to this charging, a certain corona charge can be applied only to the portion of the photoreceptor 1 where the surface potential is approximately 1 or less. As a result, as shown by the solid line β in FIG. 2, the area where the surface potential of the log E-V characteristic is about 1 or less is extended toward the direction where the amount of light is greater, and the gradation can be controlled. In other words, the dynamic range will be expanded.

なお第3工程(c)は原稿画像露光の露光(第2工程)
と同時にしてもよい、この場合、静電潜像が形成される
途中でもコロナ帯電を受ける為、そのlogE−V特性
は実線βのようなりl近傍の特異な変化は少なくなり鎖
線γのような特性を示す。
Note that the third step (c) is exposure for original image exposure (second step).
In this case, since the electrostatic latent image is corona charged even during formation, its log E-V characteristic will be as shown by the solid line β, and the peculiar change near l will be reduced, and it will be as shown by the chain line γ. It shows certain characteristics.

第3図・第4図は本発明の別な実施例を説明する図で、
ともに前記の実施例よりさらに細かな階調の制御ができ
るものである。
FIGS. 3 and 4 are diagrams explaining another embodiment of the present invention,
In both cases, finer gradation control than in the previous embodiment is possible.

第3図は、第3工程で使用されるコロナ帯電器3のグリ
ッドが01とG2に2分割され各々のグ’) −/ ト
G t トG2 ニV 1=+250V ト、V2=+
150Vのバイアス電圧が印加されている。放電ワイヤ
6は定電流高圧電源5とつながっている。第4図は第2
工程である原稿画像露光Iと第3工程であるコロナ帯電
器3による制御帯電の前半とを重ね合せている。グリッ
ドG1とG2に各々vl=÷250VとV2=+150
Vのバイアス電圧を印加したものである。
FIG. 3 shows that the grid of the corona charger 3 used in the third step is divided into two parts, 01 and G2, and each grid is divided into 01 and G2.
A bias voltage of 150V is applied. The discharge wire 6 is connected to a constant current high voltage power source 5. Figure 4 is the second
The document image exposure I, which is a process, and the first half of controlled charging by the corona charger 3, which is a third process, are superimposed. vl=÷250V and V2=+150 for grids G1 and G2, respectively
A bias voltage of V was applied.

第5図は、原稿濃度に対する潜像電位関係を示すもので
、第3図の実施例で形成した静電潜像の電位が実線Cで
、第4図の実施例で形成した静712潜像電位が点線d
であり、その輝度再現範囲が1.2程度に広がっている
FIG. 5 shows the relationship between the latent image potential and the original density. The solid line C indicates the potential of the electrostatic latent image formed in the embodiment shown in FIG. The potential is dotted line d
The luminance reproduction range has been expanded to about 1.2.

また、第2工程の原稿画像露光Iを照射する際、全面一
様に弱い光−バイアス光を与えることにより暗部の輝度
再現範囲をさらに拡張するのに有効である。第5図の鎖
線eにはこのようなバイアス光を照射したときの静電電
位が示してあり、このとき輝度再現範囲は1.4程度ま
で広がっている。
Further, when applying the document image exposure I in the second step, it is effective to further expand the brightness reproduction range of dark areas by uniformly applying weak light-bias light to the entire surface. The dashed line e in FIG. 5 shows the electrostatic potential when such bias light is irradiated, and at this time the luminance reproduction range has expanded to about 1.4.

第6図は未発明方法を実施するに適した複写装置を示し
た模式図である。感光体lは導電性基板と光導電性層を
基本構成とした回転ドラムである。導電性基板としてア
ルミ等の金属ドラムを用い、光導電性層としてその上に
約50p無定形セレン合金を蒸着したものである。ドラ
ム感光体1は回転しながら先ずプラスコロナ帯電器2に
より均一に略+500vに帯電される。原稿は原稿台1
5上に載置され光源16、移動ミラー17・18、レン
ズ19、ミラー20−21からなる露光手段により、均
一帯電されている感光体1上に露光される。原稿画像光
Iを照射後感光体1はグリッドGを有するプラスコロナ
帯電器3によって帯電する。すると潜像電位に応じて部
分的にコロナ電荷が加えられる。これにより静電潜像の
電位は前記のようになる。潜像形成後の感光体面に現像
剤を供する様にスリーブ型マグネットブラシ現像器22
が配置される現像スリーブには明部に現像剤の付着する
カブリを防ぐため適当なバイアス電圧が印加され現像さ
れる。感光体上に形成された現像々は、給紙転写手段の
転写用コロナ放電器23により転写材P上に転写される
。転写材P上の転写像は、加熱定着器24により転写材
P上に溶融定着され、しかる後排紙トレイ上に排出され
る。一方、転写後の感光体l上に残留する現像剤は、ク
リーニング手段25でクリーニングされ、感光体1は再
用に備えられる。
FIG. 6 is a schematic diagram showing a copying apparatus suitable for carrying out the uninvented method. The photoreceptor 1 is a rotating drum whose basic structure is a conductive substrate and a photoconductive layer. A metal drum made of aluminum or the like is used as a conductive substrate, and about 50p of amorphous selenium alloy is deposited thereon as a photoconductive layer. While rotating, the drum photoreceptor 1 is first uniformly charged to approximately +500V by the positive corona charger 2. The manuscript is on manuscript table 1
The photoreceptor 1, which is uniformly charged, is exposed to light by an exposure means placed on the photoreceptor 5 and comprising a light source 16, movable mirrors 17 and 18, a lens 19, and mirrors 20-21. After being irradiated with the original image light I, the photoreceptor 1 is charged by a positive corona charger 3 having a grid G. Corona charges are then added partially depending on the latent image potential. As a result, the potential of the electrostatic latent image becomes as described above. A sleeve-type magnetic brush developer 22 is provided to apply developer to the photoreceptor surface after the latent image is formed.
A suitable bias voltage is applied to the developing sleeve on which the developing sleeve is placed to prevent fogging caused by adhesion of developer to bright areas, and development is performed. The developed images formed on the photoreceptor are transferred onto the transfer material P by the transfer corona discharger 23 of the paper feeding transfer means. The transferred image on the transfer material P is melted and fixed onto the transfer material P by the heat fixing device 24, and then discharged onto the paper discharge tray. On the other hand, the developer remaining on the photoreceptor 1 after the transfer is cleaned by the cleaning means 25, and the photoreceptor 1 is prepared for reuse.

これまで説明した感光体lの光導電体は1層の光導電体
層からなるものであったが、本発明に用いられる感光体
はいわゆるカールソン法に用いろれる感光体であればど
のようなものでもよく、例えば第7図に示す、導電性基
板11上に電荷発生層12aと電荷移動層L2bからな
るもの等すべての感光体に対して有効である。
The photoconductor of the photoconductor l described so far is composed of one photoconductor layer, but the photoconductor used in the present invention can be any photoconductor that can be used in the so-called Carlson method. For example, it is effective for all photoreceptors, such as the one shown in FIG. 7, which consists of a charge generation layer 12a and a charge transfer layer L2b on a conductive substrate 11.

〔発明の効果〕〔Effect of the invention〕

以」二、具体例に詳述した如く、本発明の方法は濃度再
現範囲を拡張して、原稿画像の階調性を忠実良好に再現
することを可能としたものである。
As described in detail in the second specific example, the method of the present invention expands the density reproduction range and makes it possible to faithfully and satisfactorily reproduce the tonality of an original image.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用する方法の実施例を説明する図、
第2図は本発明を適用した方法で形成した静電潜像の′
電位特性図、第3図−第4図は別な実施例を説明する図
、第5図はその実施例で形成した静電潜像の電位特性図
、第6図は本発明の方法を実施するに適した複写装置の
模式図、第7図は感光体の構成例を示す図、第8図は従
来の方法により形成した静電潜像の電位特性図、第9図
は同じく複写濃度特性図である。 1は感光体、3はコロナ帯電器、G1l01 ・02は
グリッド、V−V、、V2は電源、5は定電流高圧電源
である。
FIG. 1 is a diagram illustrating an embodiment of a method of applying the present invention;
Figure 2 shows the electrostatic latent image formed by the method to which the present invention is applied.
Potential characteristic diagrams, FIGS. 3 and 4 are diagrams explaining another embodiment, FIG. 5 is a potential characteristic diagram of an electrostatic latent image formed in that embodiment, and FIG. 6 is a diagram showing the implementation of the method of the present invention. 7 is a diagram showing an example of the configuration of a photoreceptor, FIG. 8 is a potential characteristic diagram of an electrostatic latent image formed by a conventional method, and FIG. 9 is also a copy density characteristic diagram. It is a diagram. 1 is a photoreceptor, 3 is a corona charger, G1101.02 is a grid, V-V, V2 is a power source, and 5 is a constant current high voltage power source.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも導電層と光導電層とを有する像担持体
表面に均一帯電をした後に画像光を照射して得られた静
電潜像を現像する電子写真法において、前記画像光を照
射すると同時以降で現像する以前に該像担持体表面を前
記均一帯電の電位より低い一定電位に帯電することを特
徴とする画像コントラスト調整方法。
(1) In an electrophotographic method in which an electrostatic latent image obtained by uniformly charging the surface of an image carrier having at least a conductive layer and a photoconductive layer and then irradiating it with image light, when the image light is irradiated, An image contrast adjustment method characterized in that the surface of the image carrier is charged to a constant potential lower than the uniform charging potential before development is performed.
JP60168099A 1985-07-30 1985-07-30 Method for adjusting contrast of electrophotographic picture Pending JPS6227754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60168099A JPS6227754A (en) 1985-07-30 1985-07-30 Method for adjusting contrast of electrophotographic picture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60168099A JPS6227754A (en) 1985-07-30 1985-07-30 Method for adjusting contrast of electrophotographic picture

Publications (1)

Publication Number Publication Date
JPS6227754A true JPS6227754A (en) 1987-02-05

Family

ID=15861817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60168099A Pending JPS6227754A (en) 1985-07-30 1985-07-30 Method for adjusting contrast of electrophotographic picture

Country Status (1)

Country Link
JP (1) JPS6227754A (en)

Similar Documents

Publication Publication Date Title
JPH02293766A (en) Adaptive bias control for 3-level xerography
JP2568713B2 (en) Electrophotographic forming method
US4311778A (en) Electrophotographic method
US3873310A (en) Method of controlling the brightness acceptance range and tonal contrast of a xerographic plate
US4647181A (en) Electrophotographic method and apparatus using alternating current corona charging
JPS60249166A (en) Method for adjusting image density of electrophotograph
JPS6227754A (en) Method for adjusting contrast of electrophotographic picture
US4494856A (en) Electrophotographic method and apparatus for providing accurate half-tone images
JP2899815B2 (en) Color image forming method
JPS5939740B2 (en) electrophotographic method
JPH0285872A (en) Two color image forming apparatus
JPH01191174A (en) Image forming device
JPS61264358A (en) Control method for picture quality of image forming device
JP3116187B2 (en) Image forming method
JPH0816001A (en) Image forming apparatus
JPS6395468A (en) Method for adjusting picture quality of image forming device
JPS6355707B2 (en)
JPS6226026B2 (en)
JPS5875159A (en) Electrophotographic method
JPS60209754A (en) Color electrophotographic forming method of electrostatic latent image
JPH0728291A (en) Color image forming device
JPS5950064B2 (en) Electrostatic latent image forming method
JPS62189481A (en) Electrostatic latent image modifying method
JPH0256566A (en) Color electrophotographic device
JPS5891466A (en) Dichromatic electrophotographic method