JPS6227694A - Method and device for inspecting pressure withstanding of piping for high-pressure casing - Google Patents

Method and device for inspecting pressure withstanding of piping for high-pressure casing

Info

Publication number
JPS6227694A
JPS6227694A JP60165994A JP16599485A JPS6227694A JP S6227694 A JPS6227694 A JP S6227694A JP 60165994 A JP60165994 A JP 60165994A JP 16599485 A JP16599485 A JP 16599485A JP S6227694 A JPS6227694 A JP S6227694A
Authority
JP
Japan
Prior art keywords
pressure
casing
piping
cross
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60165994A
Other languages
Japanese (ja)
Inventor
蝦名 卓
河田 安司
広 横山
健治 松浦
黒川 直
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60165994A priority Critical patent/JPS6227694A/en
Publication of JPS6227694A publication Critical patent/JPS6227694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力発電所の蒸気タービン用高圧ケーシン
グに対して、直接1間接に接続される高圧配管の耐圧検
査技術に係シ、特に、蒸気タービンプラントの各構成機
器の組立完了を俟つこと遅く、前記高圧配管の溶接接続
部に内圧を加えて耐圧試験を行い得る方法、及び同装置
に関するものでちる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to pressure testing technology for high-pressure piping that is directly or indirectly connected to a high-pressure casing for a steam turbine of a nuclear power plant. The present invention relates to a method and an apparatus for performing a pressure test by applying internal pressure to the welded joints of the high-pressure pipes after the assembly of each component of a turbine plant is completed.

〔発明の背景〕[Background of the invention]

蒸気タービンの据付だ伴う配管技術としては。 The piping technology involved in the installation of a steam turbine.

例えば特開昭56−29003号公報に記載の「大型発
電設備における主タービンの据付方法」が公知である。
For example, ``Method for installing main turbine in large-scale power generation equipment'' described in Japanese Patent Application Laid-Open No. 56-29003 is known.

上記の発明は大形タービンの据付に伴うケーシングの歪
みに起因する技術的困難を解消すべく為されたもので、
この目的に関する限夛優れた実用的効果を奏する。
The above invention was made in order to solve the technical difficulties caused by the distortion of the casing associated with the installation of a large turbine.
It has many excellent practical effects for this purpose.

しかし乍ら、原子力発電用の蒸気タービン原動機におい
ては、原子力発電個有の蒸気条件によシ。
However, the steam turbine prime mover for nuclear power generation is dependent on the steam conditions unique to nuclear power generation.

前記公知発明が触れていない難かしい問題も有る。There are also difficult problems that are not addressed by the above-mentioned known inventions.

原子力発電における問題の一つとして、火力発電に比し
て蒸気流量が大きく、かつ湿シ蒸気であるという問題が
有る。
One of the problems with nuclear power generation is that the flow rate of steam is larger than in thermal power generation, and the steam is wet.

即ち、湿分分離器を設けて、高圧タービンケーシング(
高圧ケーシングと略記する)と湿分分離器および弁類と
の間に高圧配管を設けなければならないこと、及び、上
記高圧配管の耐圧テストを終えてからでないと構成機器
の組立を開始できないという問題が有る。
That is, a moisture separator is installed and the high pressure turbine casing (
The problem is that high-pressure piping must be installed between the high-pressure casing (abbreviated as high-pressure casing) and the moisture separator and valves, and that the assembly of the component equipment cannot be started until the pressure test of the high-pressure piping is completed. There is.

機器の構成部材に対して配管を接続し、耐圧検査を終え
てからでないと、該機器の組立作業に着手できないとい
うことは、据付工期を長からしめている。このため、配
管取付部の耐圧試験を俟たずに機器の組立を開始できれ
ば(即ち高圧ケーシング組立後に配管の耐圧テストが出
来れば)工期が短縮される。
The fact that assembly of the equipment cannot begin until piping has been connected to the component parts of the equipment and a pressure test has been completed increases the installation period. Therefore, if the assembly of the equipment can be started without the pressure test of the pipe attachment part (that is, if the pressure test of the pipe can be performed after the high-pressure casing is assembled), the construction period can be shortened.

原子力発電設備の建設は巨額の投資を必要とし、かつ、
稼働を開始すると巨額の利益(電力売却益)を生み出す
ので、工期の長短によって生じる経済的な得失は極めて
大きい。
Construction of nuclear power generation facilities requires huge investment and
Once the plant starts operating, it will generate huge profits (profits from the sale of electricity), so the economic gains and losses caused by the length of the construction period are extremely large.

次に、原子力発電用の蒸気タービンプラント、特に高圧
タービン回シの配管に関する技術的問題について詳しく
述べる。
Next, we will discuss in detail technical issues related to piping for steam turbine plants for nuclear power generation, especially high-pressure turbines.

第3図は原子力発電プラントの蒸気系統図である。この
系統図はI100MWクラスの原子力発電用タービンの
1例を示している。本例は、最終段に38吋翼を採用し
た非再熱再生復水式タンデムコンパウンドで高圧タービ
ン10と復流排気低圧タービン11.蒸気加減弁3、湿
分分離器61組合せ中間弁7、クロスアラウンド管8お
よび9゜更には主蒸気管4,5を設けて構成されている
Figure 3 is a steam system diagram of a nuclear power plant. This system diagram shows an example of an I100 MW class nuclear power generation turbine. This example is a non-reheat regenerative condensing tandem compound employing 38-inch blades in the final stage, including a high-pressure turbine 10 and a recirculating exhaust low-pressure turbine 11. It is constructed by providing a steam control valve 3, a moisture separator 61, a combination intermediate valve 7, cross-around pipes 8 and 9°, and main steam pipes 4 and 5.

システム的には原子炉からの主蒸気は4個の主蒸気止め
弁12を通り、4個の蒸気加減弁3でこの主蒸気が制御
される。上記の主蒸気止め弁12と蒸気加減弁3とは直
結形になっている。蒸気加減弁3を通過した上半主蒸気
管5および下半主蒸気管4により高圧タービン10の内
部に導入される。又、高圧タービン10は、数段のダブ
ル70−の膨張段落によって構成され1通常スロットル
ガバニング方式で制御される。高圧タービン10で膨張
して仕事をした蒸気は、4本のクロスアラウンド管8を
通って2個の湿分分離器6に導かれる。高圧タービン1
0で膨張したことによシ蒸気は10%前後の湿ジ度にな
るが、クロスアラウンド管8および湿分分離器6を通過
するうちに湿分が分離され、2%前後の19度になる。
System-wise, main steam from the nuclear reactor passes through four main steam stop valves 12, and is controlled by four steam control valves 3. The main steam stop valve 12 and the steam control valve 3 are directly connected. The steam is introduced into the high-pressure turbine 10 through the upper half main steam pipe 5 and the lower half main steam pipe 4 that have passed through the steam control valve 3 . The high-pressure turbine 10 is comprised of several double 70-stage expansion stages and is controlled by a normal throttle governing system. The steam expanded in the high-pressure turbine 10 and subjected to work is led to two moisture separators 6 through four cross-around pipes 8. High pressure turbine 1
Due to the expansion at zero temperature, the steam has a humidity of around 10%, but as it passes through the cross-around pipe 8 and the moisture separator 6, the moisture is separated and the humidity becomes around 2%, or 19 degrees. .

その後。after that.

クロスアラウンド管9を通って6個の組合せ中間弁7に
入る。この組合せ中間弁7は中間蒸気止め弁とインター
セプト弁とから構成されてお夛、タービンI−IJツブ
時の最大速度上昇を非常調速機の作動速度以下に押える
役目をするための弁である。
It enters six combined intermediate valves 7 through cross-around pipes 9. This combination intermediate valve 7 is composed of an intermediate steam stop valve and an intercept valve, and serves to suppress the maximum speed increase when the turbine I-IJ turns to below the operating speed of the emergency governor. .

又1組合せ中間弁7は低圧タービン11との距離が最短
になるように各々の低圧タービン11の入口に接近せし
めて設置されている。
Further, one combination intermediate valve 7 is installed close to the inlet of each low pressure turbine 11 so that the distance to the low pressure turbine 11 is the shortest.

3個の低圧タービン11に入った蒸気はそれぞれ10段
前後から形成されるダブル70−の膨張段で熱エネルギ
ーをトルクに変換した後、排気口を経て復水器(図示せ
ず)に導かれる。
The steam entering the three low-pressure turbines 11 converts thermal energy into torque at a double 70-stage expansion stage formed from around 10 stages, and then is led to a condenser (not shown) through an exhaust port. .

上述のタービンの据付手順については、低圧タービン用
のベースグレート及び高圧タービン用のベースプレート
の設置を行った後、低圧タービン11、及び高圧タービ
ン10をそれぞれのベースプレート上に組み立てて行く
方式が一般に用いられている。
Regarding the above-mentioned turbine installation procedure, a method is generally used in which a base plate for the low-pressure turbine and a base plate for the high-pressure turbine are installed, and then the low-pressure turbine 11 and the high-pressure turbine 10 are assembled on the respective base plates. ing.

低圧タービン11に接続される組合せ中間弁7はそれぞ
れタービン架台上に設置されるため、低圧タービン11
には特別な外力が加わらないが。
Since the combination intermediate valves 7 connected to the low-pressure turbine 11 are each installed on a turbine pedestal, the low-pressure turbine 11
Although no special external force is applied to .

高圧タービンには主蒸気管4および5による外力、およ
びクロスアラウンド管8による外力が加わるため、それ
ぞれを接続した後の偏心見合と変位とを確認してからで
ないと高圧タービン10の組立、調整を行なうことが出
来ない。従って、高圧タービン10における高圧下半ケ
ーシング1と高圧上半ケーシング2とを仮設定した後、
接続される主蒸気管4と5.クロスアラウンド管8が設
定される。又、主蒸気管4と5およびクロスアラウンド
管8は通常5mの定尺の長さで搬入されるので。
Since external forces from the main steam pipes 4 and 5 and external forces from the cross-around pipe 8 are applied to the high-pressure turbine, assembly and adjustment of the high-pressure turbine 10 is only possible after confirming the eccentricity and displacement after connecting each. I can't do it. Therefore, after temporarily setting the high pressure lower half casing 1 and the high pressure upper half casing 2 in the high pressure turbine 10,
Main steam pipes 4 and 5 to be connected. A cross-around tube 8 is set. Furthermore, the main steam pipes 4 and 5 and the cross-around pipe 8 are usually brought in with a fixed length of 5 m.

これら配管同志の接続を溶接で行なう必要がある。It is necessary to connect these pipes together by welding.

又、これらの配管の溶接部は所定の耐圧テストを行わな
ければならない(原子力技術基準)。高圧ケーシング1
と2とは品質管理の行き届いた工場で耐圧試験を行ない
、現地へ搬入することが出来るが、前述した如く主蒸気
管4,5およびクロスアラウンド管8の耐圧試験は現地
で行なわねばならない。具体的には、高圧上半ケーシン
グ2および高圧下半ケーシング1に接続される主蒸気管
4と5.更にクロスアラウンド管8の各配管の現地溶接
部を所定の熱扱いの下に行ない、非破壊検査によって、
溶接部の検査をし、欠陥のないことを確認した後にそれ
ぞれ耐圧試験を行なう。しかし、高圧上半ケーシング2
と主蒸気管5の高圧ケーシング側取合はフランジ式のた
め、このフランジにカバーを取り付ければ足シるが、蒸
気加減弁3との取合部は溶接で接続されるため第4図及
び第5図に示すごとく施行される。第4図は高圧下半ケ
ーシング1とクロスアラウンド管8との接続部AA、及
び主蒸気管4.5との接続部A′八′との位置を示す説
明図である。第5図は上記AA部の詳細を示す断面図で
あるが A/ A/部もこの第5図と同様の構造である
In addition, the welded parts of these pipes must undergo a specified pressure test (Nuclear Technical Standards). High pressure casing 1
and 2 can be pressure tested at a factory with careful quality control and delivered to the site, but as mentioned above, the pressure test of the main steam pipes 4, 5 and the cross-around pipe 8 must be carried out on site. Specifically, the main steam pipes 4 and 5 are connected to the high pressure upper half casing 2 and the high pressure lower half casing 1. Furthermore, the on-site welding of each pipe of the cross-around pipe 8 was performed under prescribed heat treatment, and a non-destructive inspection was conducted.
After inspecting the welded parts and confirming that there are no defects, a pressure test is performed on each weld. However, the high pressure upper half casing 2
The high-pressure casing side connection of the main steam pipe 5 is a flange type, so attaching a cover to this flange would be enough, but since the connection with the steam control valve 3 is connected by welding, It will be implemented as shown in Figure 5. FIG. 4 is an explanatory view showing the positions of the connection part AA between the high-pressure lower half casing 1 and the cross-around pipe 8, and the connection part A'8' with the main steam pipe 4.5. FIG. 5 is a sectional view showing the details of the AA section, and the A/A/ section has the same structure as that in FIG. 5.

予め鏡板14を溶接固着した仮パイプ13を構成してお
く、この仮パイプは次に述べる加工によってクロスアラ
ウンド管8の1部となり、又は主蒸気配管4,5の1部
となる部材である。
A temporary pipe 13 is constructed by welding and fixing the end plate 14 in advance. This temporary pipe is a member that becomes part of the cross-around pipe 8 or part of the main steam pipes 4 and 5 through the processing described below.

16は設計的に予め設定した位置である。耐圧テストの
後にこの位置16で仮パイプ13を切断する。17は、
高圧下半ケーシング1と溶接すべき位置を示す。上記の
切断部16と溶接位置17との間に、予め構成した短管
(矢印15の長さを有し、この部分に対応する部材)を
挿入して溶接し、放射線検査によって欠陥の無いことを
確認する。同様に高圧下半ケーシング1とクロスアラウ
ンド管8も主蒸気管4,5と同じ方法で高圧下半ケーシ
ング1に溶接し、放射線検査を行う。上記作業完了後に
高圧タービンの組立、調整を行なっていた。この工法だ
と、配管作業が完了しないと高圧タービン2の組立、調
整が出来ないので1作業の待ち時間を生じ1本例におい
ては第6図に示すように全体工期としては17ケ月間要
していた。
Reference numeral 16 indicates a position preset by design. After the pressure test, the temporary pipe 13 is cut at this position 16. 17 is
The position to be welded to the high-pressure lower half casing 1 is shown. A pre-configured short pipe (a member having the length of arrow 15 and corresponding to this part) is inserted and welded between the above-mentioned cutting part 16 and welding position 17, and it is confirmed that there are no defects by radiographic inspection. Check. Similarly, the high-pressure lower half casing 1 and the cross-around pipe 8 are also welded to the high-pressure lower half casing 1 in the same manner as the main steam pipes 4 and 5, and subjected to radiation inspection. After completing the above work, the high pressure turbine was assembled and adjusted. With this construction method, the high pressure turbine 2 cannot be assembled or adjusted until the piping work is completed, resulting in waiting time for each work.In this example, the entire construction period required 17 months, as shown in Figure 6. was.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為されたもので、高圧ケー
シングの組立調整作業と併行して、又は組立作業後に高
圧配管の耐圧テストを行い得る耐圧検査方法、及び耐圧
検査装置を提供しようとするものである。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a pressure resistance test method and a pressure resistance test device that can perform a pressure test of high pressure piping in parallel with the assembly and adjustment work of a high pressure casing or after the assembly work. It is something to do.

〔発明の概要〕[Summary of the invention]

上記の目的を達成するため、本発明の検査方法は原子力
発電用高圧タービンケーシングに接続される主蒸気配管
およびクロスアラウンド管の耐圧試験を行う方法におい
て、高圧ケーシングと蒸気加減弁とを主蒸気配管によっ
て接続した状態で主蒸気配管の耐圧検査を単独に行い、
かつ、高圧ケーシングと湿分々離器、及び湿分分離器と
組合せ中間弁とをそれぞれクロスアラウンド管によって
接続した状態でクロスアラウンド管の耐圧検査を単独に
行うことを特徴とする。
In order to achieve the above object, the inspection method of the present invention is a method of pressure testing main steam piping and cross-around pipes connected to a high-pressure turbine casing for nuclear power generation. Perform a pressure resistance test of the main steam piping independently with the connection made by
In addition, the present invention is characterized in that the pressure resistance test of the cross-around pipe is performed independently with the high-pressure casing and the moisture separator, and the moisture separator and the combined intermediate valve connected to each other by the cross-around pipe.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の検査方法の説明図である。本第1図に
示すように高圧下半ケーシング1を設定後、主蒸気管4
および5.更に蒸気加減弁3を設定すると共に、高圧上
半ケーシング2を組立てながら、第8図のB部を拡大し
た第9図に示すように耐圧試験用仕切板19を高圧ケー
シング内のダイヤフラム挿入溝18に嵌合し、シール用
ゴム20、仕切板19.調整用ポルト211袋ナツト2
2、仕切板補強材23を組立て、耐圧試験用の準備をす
ると共に、主蒸気管4および5の各配管同志の仮溶接を
行ないながら、所定の熱処理を行ない慎重に溶接を行な
う。又、蒸気加減弁3には第10図に示したようにシー
ル用カバー24.カバー25.シール用ゴム27および
ボルト268を用いて蒸気加減弁3内を仕切り、主蒸気
配管4゜5の溶接部Wに内圧を加え得るようにし、規定
圧力で耐圧検査を行う。このようにして主蒸気管ライン
の耐圧試験完了後、蒸気加減弁3.高圧下半ケーシング
1.高圧上半ケーシング2内の耐圧試験用の仕切板19
,25.27等を撤去、清掃をしてから第11図のD部
を拡大した第12図に示すようにダイヤスラム挿入部2
8に仕切板29を挿入し、第11図の0部を拡大した第
13図の如くバッキングヘッド挿入部30には仕切板3
1を。
FIG. 1 is an explanatory diagram of the inspection method of the present invention. After setting the high pressure lower half casing 1 as shown in Fig. 1, the main steam pipe 4
and 5. Furthermore, while setting the steam control valve 3 and assembling the high-pressure upper half casing 2, insert the pressure test partition plate 19 into the diaphragm insertion groove 18 in the high-pressure casing, as shown in FIG. , the sealing rubber 20 and the partition plate 19. Adjustment porto 211 bag nut 2
2. Assemble the partition plate reinforcing material 23 and prepare for the pressure test, and while temporarily welding the main steam pipes 4 and 5 to each other, carefully perform predetermined heat treatment and welding. Further, the steam control valve 3 is provided with a sealing cover 24, as shown in FIG. Cover 25. Seal rubber 27 and bolts 268 are used to partition the inside of steam control valve 3 so that internal pressure can be applied to welded portion W of main steam pipe 4.5, and a pressure resistance test is performed at a specified pressure. After completing the pressure test of the main steam pipe line in this way, the steam control valve 3. High pressure lower half casing 1. Partition plate 19 for pressure resistance test inside high pressure upper half casing 2
, 25, 27, etc. and cleaned them, as shown in Figure 12, which is an enlarged view of section D in Figure 11, the diamond slam insertion part 2.
The partition plate 29 is inserted into the backing head insertion part 30, and the partition plate 3 is inserted into the backing head insertion part 30 as shown in FIG.
1.

又、第11図に示す如く高圧ケーシング端面だはカバー
34を取りつけ、仕切板調整ボルト32および調整用ワ
ッシャー33.押えボルト35.シール用ゴム36等を
用いて耐圧試験用の準備をする。この準備作業と並行し
て、高圧下半ケーシングlにクロスアラウンド管8及び
同9h並びに湿分分離器6、及び組合せ中間弁7を組立
てる(第2図)。組合せ中間弁7は、第14図に示すよ
うに、蒸気出口側カバー37を押えボルト38.押えナ
ツト39で取シ付け、更にカバー40をボルト41で取
りつける。このようにして組合せ中間弁7の中を仕切っ
て、クロスアラウンド管9の溶接部W’に内圧全身は得
るようにする。この状態で所定圧力で耐圧試験を行なう
。耐圧試験に合格すれば各仕切板(カバー類)を取り外
す。
Further, as shown in FIG. 11, a cover 34 is attached to the end face of the high-pressure casing, and a partition plate adjustment bolt 32 and an adjustment washer 33. Holder bolt 35. Prepare for the pressure test using sealing rubber 36, etc. In parallel with this preparatory work, the cross-around pipes 8 and 9h, the moisture separator 6, and the combination intermediate valve 7 are assembled in the high-pressure lower half casing 1 (FIG. 2). As shown in FIG. 14, the combination intermediate valve 7 holds the steam outlet side cover 37 with a bolt 38. Attach with the retaining nuts 39, and then attach the cover 40 with bolts 41. In this way, the inside of the combination intermediate valve 7 is partitioned off so that the entire internal pressure can be obtained at the welded portion W' of the cross-around pipe 9. In this state, a pressure test is performed at a predetermined pressure. If the pressure test is passed, each partition plate (cover) will be removed.

以上のようにして耐圧試験を行うと、高圧ケーシングの
組立作業と併行して配管の耐圧検査をすることができ%
また高圧ケーシングの組立調整後に配管の耐圧検査を行
うこともできるので、配管作業における待時間や高圧ケ
ーシング組立作業における待時間を著しく節減できる。
By performing the pressure resistance test as described above, the pressure resistance test of the piping can be performed at the same time as the high pressure casing assembly work.
Further, since the pressure resistance test of the piping can be performed after the assembly and adjustment of the high-pressure casing, the waiting time for piping work and the waiting time for assembling the high-pressure casing can be significantly reduced.

第6図は従来技術における工程表の1例を示す。FIG. 6 shows an example of a process chart in the prior art.

この従来例では2月目の半ばから4月日末にかけてクロ
スアラウンド管工事(X)、主蒸気管工事(M)を行い
、更に耐圧テス) (T)を行った後に6月目半ばから
8月目半ばにかけて高圧蒸気機器の組立作業(IOを行
っているため1本組立(E()完了が9月目末になって
いる。
In this conventional example, cross-around pipe work (X) and main steam pipe work (M) are carried out from the middle of the second month to the end of April, and after a pressure test (T) is carried out, from the middle of the sixth month to the end of April. As assembly work (IO) for high-pressure steam equipment was being carried out towards the middle of the month, one assembly (E()) was completed at the end of September.

上記と同様の蒸気原動機プラントに、本発明を適用する
と第7図の如くになる。即ち、クロスアラウンド管工事
(X)や主蒸気管工事(M)と併行して高圧蒸気機器の
組立調整00を行い、その後に耐圧テス) (T)を行
うので、本組立(I()の完了が8月目末となう、従来
技術(第6図)に比して1力月の工期短縮が達成される
When the present invention is applied to a steam power plant similar to the one described above, the result will be as shown in FIG. In other words, in parallel with the cross-around pipe work (X) and the main steam pipe work (M), assembly and adjustment of the high-pressure steam equipment is performed, and then the pressure test (T) is performed, so the main assembly (I ()) The construction period will be completed by the end of August, reducing the construction period by one month compared to the conventional technology (Figure 6).

原子力発電プラントの投資金額が巨額であってその金利
負担の大きい事を勘案すると、1力月の工期短縮の経済
的効果は美大である。
Considering that the investment amount for a nuclear power plant is huge and the interest burden is high, the economic effect of shortening the construction period by one month is significant.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように1本発明の耐圧検査方法によれば、
高圧ケーシングの組立調整作業の日程に縛られることな
く高圧配管の耐圧テストを行うことができるので、工期
短縮に貢献するところ多大である。また1本発明の耐圧
検査装置によれば上記の方法を容易に実施して、その効
果を充分に発揮させることができる。
As detailed above, according to the voltage resistance testing method of the present invention,
Since it is possible to perform a pressure test of high-pressure piping without being tied to the schedule for assembling and adjusting high-pressure casings, it greatly contributes to shortening the construction period. Furthermore, according to the pressure resistance testing device of the present invention, the above method can be easily carried out and its effects can be fully exhibited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図は本発明方法の1実施例を説明するた
めの、概要的な蒸気配管図である。第4図は蒸気原動機
用配管の説明図、第5図は第4図のAA部拡大断面図で
ある。第6図は従来技術における原子力タービン据付工
事日程表の1例を示す図表、第7図は本発明の1実施例
における原子力タービン据付工事日程表の1例を示す図
表である。 第8図は本発明装置の1実施例の説明図、第9図は第8
図のB部拡大詳細図である。 第10図及び第11図はそれぞれ上記と異なる実施例の
説明図、第12図は第11図のD部拡大詳細図、第13
図は同じくC部拡大詳細図である。 第14図は上記と更に異なる実施例の説明図である。 1・・・高圧下半ケーシング、2・・・高圧上半ケーシ
ング、3・・・蒸気加減弁、4.5・・・主蒸気管、6
・・・湿分分離器、7・・・組合せ中間弁、8.9・・
・クロスアラウンド管、10・・・高圧タービン、11
・・・低圧タービン、12・・・主蒸気止め弁、13・
・・仮パイプ、14・・・鏡板、15・・・短管、16
・・・パイプ切断部。 17・・・高圧ケーシングとの溶接部、18・・・ダイ
ヤフラム挿入溝、19・・・耐圧試験用仕切板、20・
・・シール用ゴム、21・・・調整用ボルト、22・・
・袋ナツト、23・・・仕切板用補強材、24・・・シ
ール用カバー、25・・・カバー、26・・・ボルト、
27・・・耐圧試験用仕切板、28・・・ダイヤフラム
挿入部、29・・・耐圧試験用仕切板、30・・・バッ
キングヘッド挿入部、31・・・仕切板、32・・・仕
切板調整ボルト、33・・・調整用ワッシャー、34・
・・カバー、35・・・押工ホルト、36・・・シール
用ゴム、37・・・カバー、38・・・押え用ボルト、
39・・・押え用ナツト、40・・・カバー、41・・
・ボルト。
1 to 3 are schematic steam piping diagrams for explaining one embodiment of the method of the present invention. FIG. 4 is an explanatory diagram of piping for a steam engine, and FIG. 5 is an enlarged sectional view of section AA in FIG. 4. FIG. 6 is a chart showing an example of a nuclear turbine installation work schedule according to the prior art, and FIG. 7 is a chart showing an example of a nuclear turbine installation work schedule according to an embodiment of the present invention. FIG. 8 is an explanatory diagram of one embodiment of the device of the present invention, and FIG.
It is an enlarged detailed view of part B in the figure. 10 and 11 are explanatory diagrams of embodiments different from the above, respectively, FIG. 12 is an enlarged detailed view of the D section of FIG. 11, and FIG.
The figure is also an enlarged detailed view of part C. FIG. 14 is an explanatory diagram of an embodiment further different from the above. 1... High pressure lower half casing, 2... High pressure upper half casing, 3... Steam control valve, 4.5... Main steam pipe, 6
... Moisture separator, 7... Combination intermediate valve, 8.9...
・Cross-around pipe, 10...High pressure turbine, 11
...Low pressure turbine, 12...Main steam stop valve, 13.
...Temporary pipe, 14...End plate, 15...Short pipe, 16
...Pipe cutting section. 17... Welded part with high pressure casing, 18... Diaphragm insertion groove, 19... Partition plate for pressure test, 20...
... Seal rubber, 21 ... Adjustment bolt, 22 ...
- Cap nut, 23... Reinforcing material for partition plate, 24... Seal cover, 25... Cover, 26... Bolt,
27... Divider plate for pressure resistance test, 28... Diaphragm insertion part, 29... Partition plate for pressure resistance test, 30... Backing head insertion part, 31... Partition plate, 32... Partition plate Adjustment bolt, 33...adjustment washer, 34.
... Cover, 35 ... Holding bolt, 36 ... Seal rubber, 37 ... Cover, 38 ... Holding bolt,
39... Presser nut, 40... Cover, 41...
·bolt.

Claims (1)

【特許請求の範囲】 1、原子力発電用高圧タービンケーシングに接続される
主蒸気配管およびクロスアラウンド管の耐圧試験を行う
方法において、高圧ケーシングと蒸気加減弁とを主蒸気
配管によつて接続した状態で主蒸気配管の耐圧検査を単
独に行い、かつ、高圧ケーシングと湿分々離器、及び湿
分分離器と組合せ中間弁とをそれぞれクロスアラウンド
管によつて接続した状態でクロスアラウンド管の耐圧検
査を単独に行うことを特徴とする、高圧ケーシング用配
管の耐圧検査方法。 2、原子力発電用高圧タービンケーシングに接続される
主蒸気配管およびクロスアラウンド管のそれぞれについ
て、これらの配管に溶接接続されるべき機器の内部に、
着脱可能な仕切板を設けて、前記の溶接接続個所に内圧
を加え得べく為したることを特徴とする高圧ケーシング
用配管の耐圧検査装置。
[Claims] 1. A method for performing a pressure resistance test of a main steam pipe and a cross-around pipe connected to a high-pressure turbine casing for nuclear power generation, in which the high-pressure casing and a steam control valve are connected by the main steam pipe. At the same time, the pressure resistance of the cross-around pipes was inspected with the high-pressure casing and the moisture separator, and the moisture separator and the combined intermediate valve connected by cross-around pipes. A pressure resistance test method for high-pressure casing piping, which is characterized by performing the test independently. 2. For each of the main steam piping and cross-around pipes connected to the high-pressure turbine casing for nuclear power generation, inside the equipment to be welded to these piping,
A pressure resistance inspection device for high-pressure casing piping, characterized in that a removable partition plate is provided to apply internal pressure to the welded connection points.
JP60165994A 1985-07-29 1985-07-29 Method and device for inspecting pressure withstanding of piping for high-pressure casing Pending JPS6227694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60165994A JPS6227694A (en) 1985-07-29 1985-07-29 Method and device for inspecting pressure withstanding of piping for high-pressure casing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60165994A JPS6227694A (en) 1985-07-29 1985-07-29 Method and device for inspecting pressure withstanding of piping for high-pressure casing

Publications (1)

Publication Number Publication Date
JPS6227694A true JPS6227694A (en) 1987-02-05

Family

ID=15822893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60165994A Pending JPS6227694A (en) 1985-07-29 1985-07-29 Method and device for inspecting pressure withstanding of piping for high-pressure casing

Country Status (1)

Country Link
JP (1) JPS6227694A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871427A (en) * 1981-10-26 1983-04-28 Hitachi Ltd Pressure testing method for feed water heater system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5871427A (en) * 1981-10-26 1983-04-28 Hitachi Ltd Pressure testing method for feed water heater system

Similar Documents

Publication Publication Date Title
US9500130B2 (en) Centerline support bar for steam turbine component
JPS6227694A (en) Method and device for inspecting pressure withstanding of piping for high-pressure casing
Weisbrodt Summary report on technical experiences from high-temperature helium turbomachinery testing in Germany
US10662818B2 (en) Gas turbine mannequin
JPS62297743A (en) Method and jig for inspecting piping for high pressure casing
US20200173651A1 (en) Commissioning power plants
CN111425268B (en) Installation method of double-elastic-base steam turbine with independently supported inner cylinder
JP2010127224A (en) Method of hydrostatic pressure test and blowout in steam turbine facility
CN217382074U (en) Hydrogen flange sealing device
US3986387A (en) Supporting fixtures for pressure-testing pipe sections
JPH0543058B2 (en)
CN215217930U (en) Off-line pressing tool for valve
US20060017233A1 (en) Flange design conception: flanges of inverse flexion
CN219434265U (en) Pressure transmission test device
JPS61226696A (en) Method of inspecting reactor pressure vessel
JP3684330B2 (en) Piping pressure sealing method
JPH01167403A (en) Closed plate installation part structure for high pressure casing pipe board
JPH08189379A (en) External combustion type gas turbine device
JPS6224757B2 (en)
McDonald et al. Maintenance considerations in the design of the direct-cycle nuclear gas turbine power plant
Tamasy et al. Fitting Leak Test Report: Ground-Based Cryogenic Leak Test of Fittings for Cryogenic Fluid Management
CA3192698A1 (en) Closures for pressure vessels, and associated systems and methods
JPH0275704A (en) Field assembling process for turbine facility
CN113324751A (en) Online maintenance clamp and device for pneumatic regulating valve
Elston et al. First commercial supercritical-pressure steam turbine—built for the Philo plant