JPS62276885A - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JPS62276885A
JPS62276885A JP61218021A JP21802186A JPS62276885A JP S62276885 A JPS62276885 A JP S62276885A JP 61218021 A JP61218021 A JP 61218021A JP 21802186 A JP21802186 A JP 21802186A JP S62276885 A JPS62276885 A JP S62276885A
Authority
JP
Japan
Prior art keywords
layer
metal layer
conductivity type
metal
metallic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61218021A
Other languages
Japanese (ja)
Inventor
Yukio Chinen
幸勇 知念
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to EP86115725A priority Critical patent/EP0222395A1/en
Publication of JPS62276885A publication Critical patent/JPS62276885A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To make ohmic contact favorable by providing a semiconductor chip equipped with a 1st conductivity type semiconductor layer as well as 1st-4th metallic layers. CONSTITUTION:A 1st metallic layer 18 is formed as an adhesive metal consisting of Ti or Cr at a 1st conductivity type semiconductor layer and the 2nd metallic layer 20 containing a dopant element which decides the same conductivity type as the 1st conductivity type semiconductor layer is formed on the 1st metallic layer. After that, the dopant element comprising the 2nd metallic layer 20 is diffused in the 1st metallic layer 18 by performing a heat treatment and reaches even the 1st conductivity type semiconductor layer through diffusion. The 3rd metallic layer 22 consisting of Pt or Pd formed on the 2nd metallic layer 20 acts as a barrier layer in a case of heat treatment to prevent elements of 2nd metallic layer 20 from diffusing to the 4th metallic layer 24 consisting of Au formed on the 3rd metallic layer 22 or to prevent the elements of 4th metallic layer 24 from diffusing to the 2nd metallic layer 20. Arrangements of the 1st-4th metallic layers make ohmic contact favorable.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的] (産業上の利用分野) 本発明は、光半導体装置に関し、持にその重列、構造を
改良した光半導体装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Industrial Field of Application) The present invention relates to an optical semiconductor device, and particularly to an optical semiconductor device with improved stacking and structure.

(従来の技術) 半導体レーザや発光ダイオードなどの光半導体装置では
、半導体チップへの通電のために半導体層に金属電極を
被着している。金属電極としては、一般に、Ti/Pt
/Auからなる多層金属膜が用いられる。
(Prior Art) In optical semiconductor devices such as semiconductor lasers and light emitting diodes, a metal electrode is attached to a semiconductor layer in order to conduct electricity to a semiconductor chip. The metal electrode is generally Ti/Pt.
A multilayer metal film consisting of /Au is used.

(発明が解決しようとする問題点) 上述の多層金属膜によれば、半導体層との間に良好な接
着力が得られるが、充分なオーミック接触が得られない
という問題がある。また、良好なオーミック接触を得る
ために、例えば半導体層がp型半導体でおる場合には、
p型半導体層の不純物であるZnを含むAu−Zn膜が
電極金属として用いられることもある。しかし、この場
合にもAUの半導体層への拡散のため、装置のf:#1
性を高くすることができないという問題がある。また半
導体層上に電流狭窄のための絶縁層が形成されている場
合には、電極金工の付着力を充分にできず、電慢剥がれ
も問題となる。
(Problems to be Solved by the Invention) According to the above-mentioned multilayer metal film, good adhesive strength can be obtained between the multilayer metal film and the semiconductor layer, but there is a problem that sufficient ohmic contact cannot be obtained. In addition, in order to obtain good ohmic contact, for example, when the semiconductor layer is a p-type semiconductor,
An Au-Zn film containing Zn, which is an impurity of the p-type semiconductor layer, is sometimes used as the electrode metal. However, in this case as well, due to the diffusion of AU into the semiconductor layer, f: #1 of the device
The problem is that it is not possible to increase the sex. Furthermore, if an insulating layer for current confinement is formed on the semiconductor layer, the adhesion of the electrode metal work will not be sufficient, and peeling of the electrode will also become a problem.

この発明は、オーミック接触が良好で、かつ信頼性の高
い電極構造を有する光半導体装置を提供するものである
The present invention provides an optical semiconductor device having an electrode structure with good ohmic contact and high reliability.

[発明の構成コ (問題点を解決するための手段) この発明によれば、第1導伝型半導体層を備えた半導体
チップと、この第1導伝型半導体層上に形成されたTi
あるいはCrからなる第1の金属層と、この第1の金属
層の上に形成された第1導伝型半導体層の導伝型と同じ
導伝型を決定する元素を含む第2の金属層と、この第2
の金属層上に形成されたPtあるいはPdからなる第3
の金属層と、この第3の金属層上に形成されたAUかう
なる第4の金属層とを備えた光半導体装置が提供される
[Configuration of the Invention (Means for Solving Problems) According to the present invention, a semiconductor chip including a first conductivity type semiconductor layer, and a Ti semiconductor chip formed on the first conductivity type semiconductor layer.
Alternatively, a first metal layer made of Cr and a second metal layer containing an element that determines the same conductivity type as that of the first conductivity type semiconductor layer formed on the first metal layer. And this second
A third metal layer made of Pt or Pd is formed on the metal layer of
An optical semiconductor device is provided that includes a metal layer formed on the third metal layer and a fourth metal layer made of AU formed on the third metal layer.

(作用) 第1導伝型半導体層に、TiあるいはOrからなる接着
金属としての第1の金属層を形成し、この上に第1導伝
型半導体層の導伝型と同じ導伝型を決定するドーパント
元素を含む第2の金属層を形成した後、熱処理すること
により第2の金属層を椙成するドーパント元童が第1の
金属層中を拡散して行き、第1導伝型半心体胴中にも拡
散到達する。これにより、良好なオーミック接触が実現
される。また、第1の金属層は接着金属として作用し、
良好な接着も同時に実現される。なあ、第2の金属層の
上に形成されたptあるいはPdからなる第3の金属層
は、熱処理時に、第2の金属、芒の元素が、第3の金属
層上に形成されたA uからなる第4の金属層へ拡散し
たり、第2の金属層に第4の金R層の元素が拡散してい
くのを防止するバリア層として作用する。
(Function) A first metal layer as an adhesive metal made of Ti or Or is formed on the first conductivity type semiconductor layer, and a conductivity type of the same conductivity type as that of the first conductivity type semiconductor layer is formed on the first metal layer as an adhesive metal. After forming the second metal layer containing the dopant element to be determined, the dopant element forming the second metal layer is diffused into the first metal layer by heat treatment, and the first conductivity type is formed. It also diffuses into the half-centered torso. This achieves good ohmic contact. The first metal layer also acts as an adhesive metal,
Good adhesion is also achieved at the same time. Incidentally, the third metal layer made of PT or Pd formed on the second metal layer is formed by A u formed on the third metal layer when the second metal, the awn element, is formed on the third metal layer during heat treatment. It acts as a barrier layer to prevent the elements of the fourth gold R layer from diffusing into the fourth metal layer made of gold or the second metal layer.

(実施例) 以下、本発明を実施例を示す図面を参照して詳細に説明
する。第1図は、*発明を端面発光型発光ダイオードに
適応した典型的な実施例の断面図を示す。
(Examples) Hereinafter, the present invention will be described in detail with reference to drawings showing examples. FIG. 1 shows a cross-sectional view of a typical embodiment in which the invention is applied to an edge-emitting type light emitting diode.

この光半導体装置においては、n型InP半導体基板2
上に、ペデロ接合構造を有する所定の半導体層、例えば
n型InPクラッド層4、GaInAsP活性層6、p
WInPクラッド層8、pWGalnASPキャップ層
10を順次エピタキシャル成長して形成する。この後、
電流狭窄のために所定の寸法のストライプ状の開孔12
を有する絶縁層14を、p型GaInASPキャップg
1o上に厚さ2000〜3000人に形成する。次にp
型オーミック電極16を、絶縁膜14およびp型GaI
nAsPキャップ層10上に形成する。p型オーミック
電極16は、第1の金属層18としてTiを500人、
@2の金属層20としてZnを500人、第3の金属層
22としてPtを1000人、第4の金、幌層24とし
てAuを1500人の厚さに、それぞれ連続的に蒸巷な
いしスパッタ法で成膜する。
In this optical semiconductor device, an n-type InP semiconductor substrate 2
Above, predetermined semiconductor layers having a Pedro junction structure, for example, an n-type InP cladding layer 4, a GaInAsP active layer 6, a p
A WInP cladding layer 8 and a pWGalnASP capping layer 10 are formed by sequential epitaxial growth. After this,
Striped apertures 12 with predetermined dimensions for current confinement
The insulating layer 14 having a p-type GaInASP cap g
Form to a thickness of 2,000 to 3,000 people on 1o. Then p
The type ohmic electrode 16 is connected to the insulating film 14 and the p-type GaI
Formed on the nAsP cap layer 10. The p-type ohmic electrode 16 includes 500 Ti as the first metal layer 18;
@ 500 layers of Zn as the second metal layer 20, 1,000 layers of Pt as the third metal layer 22, and 1,500 layers of Au as the fourth gold layer 24, each by continuous evaporation or sputtering. The film is formed using the method.

p型オーミック電極16の各層を成FJ後、オーミック
性を高めるため、不活性ガスないし還元性ガス雰囲気中
で400〜450’C110秒〜10分間の熱処理(シ
ンター)を施す。この1多、第4の金属層24上にAI
JからなるPH3(Plated Heat 5ink
) 126を2μmの厚さに形成する。
After forming each layer of the p-type ohmic electrode 16 by FJ, heat treatment (sintering) is performed for 110 seconds to 10 minutes at 400-450'C in an inert gas or reducing gas atmosphere in order to improve ohmic properties. This layer is coated with AI on the fourth metal layer 24.
PH3 (Plated Heat 5ink) consisting of J
) 126 is formed to a thickness of 2 μm.

一方、n型InP半導体基板2の事面側にはAu−Gc
−Pt−Auの合金層からなるn型電閥28を形成する
On the other hand, on the side of the n-type InP semiconductor substrate 2, Au-Gc
- An n-type electric current 28 made of an alloy layer of Pt-Au is formed.

この後、個別半導体チップに分割して所定の光半導体装
置が得られる。なあ、図中30は発光領域であり、また
この光半導体装置はPH3iW26側がステムにマウン
トされる。
Thereafter, it is divided into individual semiconductor chips to obtain a predetermined optical semiconductor device. Note that 30 in the figure is a light emitting region, and the PH3iW26 side of this optical semiconductor device is mounted on the stem.

さて、上述の熱処理においてTi層18とpt層22の
中間にあるZn20が固相拡散を行ないTiM18中を
通過し、p型GaInASPキtツブ5i。
Now, in the heat treatment described above, Zn 20 located between the Ti layer 18 and the PT layer 22 undergoes solid phase diffusion and passes through the TiM 18, forming the p-type GaInASP kit 5i.

中に拡散する。過剰なZnがドーピングされたp型Ga
InAsPキャップ層10のZn拡散層は、!@退し電
極との障壁電位が小さくなり、オーミック性の優れた層
となる。なお、Tiからなる第1層18はZnの拡散通
過のために厚さは1000Å以下、例えば100〜i 
ooo人とすることが好ましい。
diffuse inside. p-type Ga doped with excess Zn
The Zn diffusion layer of the InAsP cap layer 10 is! The barrier potential with the @recessed electrode is reduced, resulting in a layer with excellent ohmic properties. Note that the first layer 18 made of Ti has a thickness of 1000 Å or less, for example, 100-i
It is preferable to use ooo people.

また、絶縁層14上のTi層18は絶縁層14との接着
力が強く、熱処理後頁に接着強度を増す。勿論、熱処理
によりZnの拡散も進行するが、絶縁層14が2000
〜3000人と厚いため、絶縁層14の一部の領域で拡
散が停止し、電流狭窄の機能にはなんらの影響も及ぼさ
ない。
Further, the Ti layer 18 on the insulating layer 14 has strong adhesion to the insulating layer 14, and increases the adhesion strength to the page after heat treatment. Of course, Zn diffusion progresses due to the heat treatment, but if the insulating layer 14
Since it is as thick as ~3,000 thick, diffusion stops in some regions of the insulating layer 14, and the current confinement function is not affected in any way.

一般に電極の最上層はA、uで構成することが電極の安
定化、信頼性の面から必要でおる。また、熱処理により
Znはli層18とは反対側も拡散し、例えばAuの厚
い膜が存在するとZnはAu中に多く拡散し、p型半導
体側に拡散する割合が減少し、オーミック性が低下する
。このため、本発明ではZnのAt、1層2A側への拡
散を防止する目的で、70層20とAu層24との間に
Pt1122を挿入することが重要である。また、この
Pt122により八Uの半導体層側への拡散が防止され
る。
In general, it is necessary for the top layer of the electrode to be composed of A and u in terms of stability and reliability of the electrode. In addition, due to heat treatment, Zn also diffuses on the side opposite to the Li layer 18. For example, if a thick Au film exists, Zn will diffuse into the Au a lot, and the proportion of Zn that diffuses toward the p-type semiconductor side will decrease, resulting in a decrease in ohmic properties. do. Therefore, in the present invention, it is important to insert Pt1122 between the 70 layer 20 and the Au layer 24 in order to prevent Zn from diffusing into the At layer 1 layer 2A side. Moreover, this Pt122 prevents the diffusion of 8U toward the semiconductor layer side.

従って、本実施例によれば、電極の付着力が強く、オー
ミック性が良好で、信頼性の高い電極構造をもつ光半導
体装置が得られる。
Therefore, according to this embodiment, an optical semiconductor device having a strong electrode adhesion, good ohmic properties, and a highly reliable electrode structure can be obtained.

なあ、第1金属層としてはliの他にCrが、また第3
金屈層としてはPtの他にPdが使用できる。更に第2
金属層としては、p型ドーパントとしてはZn以外にB
e、cdなどの■族金属が使用できる。
By the way, in addition to Li, Cr is used as the first metal layer, and Cr is used as the first metal layer.
In addition to Pt, Pd can be used as the metal layer. Furthermore, the second
In addition to Zn, B is used as a p-type dopant in the metal layer.
Group II metals such as e and cd can be used.

(他の実施例) 次に、本発明を内部狭窄型半導体レーザに適応した実施
例を示す。
(Other Embodiments) Next, an embodiment in which the present invention is applied to an internally constricted semiconductor laser will be described.

この実施例は第2図に断面図を示すように構成される。This embodiment is constructed as shown in cross-section in FIG.

まず、n型InP基板32上にn型InPクラッド層3
4、r rlGaAsp活性層36、p型■npクラッ
ド層38をエピタキシャル成長させる。
First, the n-type InP cladding layer 3 is placed on the n-type InP substrate 32.
4. The r rlGaAsp active layer 36 and the p-type np cladding layer 38 are epitaxially grown.

次にSiO2のストライプ状マスクを形成した後、化学
エツチングを施しストライプ状メサaOを形成する。こ
の後ストライプ状メサ40の両側にp型■npブロッキ
ング層42、n型InPブロッキング層44を成長させ
てストライプ状メサ40を埋め込み、この後SiO2マ
スクを除去し、p型InPクラッド層38及びn型In
Pブロッキング層44上にp型I n G aA S 
P、@45を成長させ、埋め込み型半導体レーザを形成
する。
Next, after forming a striped mask of SiO2, chemical etching is performed to form a striped mesa aO. After that, a p-type np blocking layer 42 and an n-type InP blocking layer 44 are grown on both sides of the striped mesa 40 to bury the striped mesa 40. After that, the SiO2 mask is removed, and the p-type InP cladding layer 38 and n Type In
P-type I n GaA S on the P blocking layer 44
P, @45 is grown to form a buried semiconductor laser.

p型InGaASP層45上には、第1の金属層T14
6、第2の金IRIWZn48、第3の金属IAPt5
0、第4の金属層Au52の多層電極54を形成した。
On the p-type InGaASP layer 45, a first metal layer T14 is formed.
6. Second gold IRIWZn48, third metal IAPt5
0. A multilayer electrode 54 of the fourth metal layer Au52 was formed.

熱処理により、第1の金属層1i46には第2の金属層
Zn48が固相拡散して行き、p型Ir1GaASP層
45にも7−nが拡散していることはいうまでもない。
As a result of the heat treatment, the second metal layer Zn48 is solid-phase diffused into the first metal layer 1i46, and it goes without saying that 7-n is also diffused into the p-type Ir1GaASP layer 45.

この固相拡散を促進させるには、第1の金属層を多孔性
にすることが有効である。この実施例では、n型InP
M板32へのn型オーミック電極56として、第1B多
孔性T i 17158、第2層Getlu60、第3
層Pt膜62、第4層Au膜64の多層電極を形成した
。第1の多孔成金属膜58は、低温蒸着、低真空度蒸着
、例えば基板温度100 ’C以下、不活性雰囲気下で
10’ Torr以下の条件、で形成することができる
。これににより、粒径の大きな多孔性膜となり、n型ド
ーパント成分である第2の金属層60のGe元素を効果
的に第1の金属層58とnをInP基板32へ固相拡散
できる。このn型ドーパント成分としては、(3eのほ
かにSn、SiなどのIV族元素を用いても同様でおる
In order to promote this solid phase diffusion, it is effective to make the first metal layer porous. In this example, n-type InP
As the n-type ohmic electrode 56 to the M plate 32, the first layer B porous T i 17158, the second layer Getlu 60, and the third layer
A multilayer electrode including a layer Pt film 62 and a fourth layer Au film 64 was formed. The first porous metal film 58 can be formed by low-temperature deposition or low-vacuum deposition, for example, at a substrate temperature of 100'C or less and an inert atmosphere of 10' Torr or less. This results in a porous film with a large grain size, and the Ge element of the second metal layer 60, which is an n-type dopant component, can be effectively solid-phase diffused into the first metal layer 58 and the InP substrate 32. As this n-type dopant component, in addition to (3e), group IV elements such as Sn and Si may also be used.

また本発明は、上述のGa I nAsP/I np系
の光半導体以外にGaA I AS/GaAS系のI−
V族半導体にも同様に適応できる。第3図は内部ストラ
イプ型半導体レーザを示す。pW G a△S塁板70
上に内部狭窄の為のn型G a A Sブロツキング層
72を形成し、化学エツチングにより溝ストライプ74
を形成後、p型GaA I Asクラット層76、Ga
A I As活性層78、n型GaAIASクラッド5
80.nWGaAsオミック層82を順層形2する。こ
の後、n Ill 電$i84にはCr86、Ge88
、Pt90.Au92の多層オーミック電極を、1) 
(1111電極94にはTi96、Zn97、Pt98
、A IJ 99の多層オーミック電極を形成した。半
導体レーザはn tltl電極84側がヒートシンクに
マウントされた。
In addition to the above-mentioned GaInAsP/Inp-based optical semiconductors, the present invention also applies to GaAI AS/GaAS-based I-
It can be similarly applied to V group semiconductors. FIG. 3 shows an internal stripe type semiconductor laser. pW G a△S base plate 70
An n-type GaAs blocking layer 72 for internal confinement is formed on top, and trench stripes 74 are formed by chemical etching.
After forming p-type GaAIAs crat layer 76, Ga
AIAs active layer 78, n-type GaAIAS cladding 5
80. The nWGaAs ohmic layer 82 is formed into a normal layer type 2. After this, Cr86 and Ge88 are added to nIll electric $i84.
, Pt90. Au92 multilayer ohmic electrode, 1)
(The 1111 electrode 94 contains Ti96, Zn97, Pt98
, A IJ 99 multilayer ohmic electrode was formed. The semiconductor laser was mounted on the heat sink on the ntltl electrode 84 side.

[発明の効果] 本発明によれば、オーミック性及び付着力が良好で、信
頼性の高い電極構造をもつ光半導体装置が得られる。
[Effects of the Invention] According to the present invention, an optical semiconductor device having good ohmic properties and adhesion and a highly reliable electrode structure can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は本発明の
他の実施例の断面図、第3図は更に本発明の他の実施例
の断面図である。 2・・・半導体基板、4・・・n型クラッド層6・・・
活性層、8・・・n型クラッド層10・・・p型キャッ
プ層、16・・・p型オーミック電極18・・・第1の
金属層、20・・・第2の金属、層22・・・第3の金
属層、24・・・第4の金属層26・・・PH3層。
FIG. 1 is a sectional view of one embodiment of the invention, FIG. 2 is a sectional view of another embodiment of the invention, and FIG. 3 is a sectional view of yet another embodiment of the invention. 2... Semiconductor substrate, 4... N-type cladding layer 6...
Active layer, 8... N-type cladding layer 10... P-type cap layer, 16... P-type ohmic electrode 18... First metal layer, 20... Second metal, layer 22. ...Third metal layer, 24...Fourth metal layer 26...PH3 layer.

Claims (8)

【特許請求の範囲】[Claims] (1)第1導伝型半導体層を備えた半導体チップと、前
記第1導伝型半導体層上に形成されたTiあるいはCr
からなる第1の金属層と、前記第1の金属層の上に形成
された前記第1導伝型半導体層の導伝型と同じ導伝型を
決定する元素を含む第2の金属層と、前記第2の金属層
の上に形成されたPtあるいはPdからなる第3の金属
層と、前記第3の金属層上にAuからなる第4の金属層
とを備えた光半導体装置。
(1) A semiconductor chip including a first conductivity type semiconductor layer, and a Ti or Cr formed on the first conductivity type semiconductor layer.
a second metal layer containing an element that determines the same conductivity type as that of the first conductivity type semiconductor layer formed on the first metal layer; , an optical semiconductor device comprising: a third metal layer made of Pt or Pd formed on the second metal layer; and a fourth metal layer made of Au on the third metal layer.
(2)前記半導体チップはヘテロ接合構造を有すること
を特徴とする特許請求の範囲第1項記載の光半導体装置
(2) The optical semiconductor device according to claim 1, wherein the semiconductor chip has a heterojunction structure.
(3)前記第1導伝型半導体層はp型半導体であり、か
つ前記第2の金属層は少なくもとII族の金属を含むこと
を特徴とする特許請求の範囲第1項記載の光半導体装置
(3) The light according to claim 1, wherein the first conductivity type semiconductor layer is a p-type semiconductor, and the second metal layer contains at least a Group II metal. Semiconductor equipment.
(4)前記第1導伝型半導体層はn型半導体であり、か
つ前記第2の金属層は少なくもとIV族の金属を含むこと
を特徴とする特許請求の範囲第1項記載の光半導体装置
(4) The light according to claim 1, wherein the first conductive type semiconductor layer is an n-type semiconductor, and the second metal layer contains at least a group IV metal. Semiconductor equipment.
(5)前記第1の金属層の厚さが100Å乃至1000
Åであることを特徴とする特許請求の範囲第1項記載の
光半導体装置。
(5) The thickness of the first metal layer is 100 Å to 1000 Å.
2. The optical semiconductor device according to claim 1, wherein the optical semiconductor device is Å.
(6)前記第1の金属層が多孔性であることを特徴とす
る特許請求の範囲第1項記載の光半導体装置。
(6) The optical semiconductor device according to claim 1, wherein the first metal layer is porous.
(7)前記第2の金属層を構成する金属が前記第1導伝
型半導体層に拡散していることを特徴とする特許請求の
範囲第1項記載の光半導体装置。
(7) The optical semiconductor device according to claim 1, wherein the metal constituting the second metal layer is diffused into the first conductivity type semiconductor layer.
(8)前記第1導伝型半導体層はIII−V族化合物半導
体であることを特徴とする特許請求の範囲第1項記載の
光半導体装置。
(8) The optical semiconductor device according to claim 1, wherein the first conductivity type semiconductor layer is a III-V group compound semiconductor.
JP61218021A 1985-11-13 1986-09-18 Optical semiconductor device Pending JPS62276885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP86115725A EP0222395A1 (en) 1985-11-13 1986-11-12 Improvement in electrode structure of photosemiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP60-252615 1985-11-13
JP25261585 1985-11-13

Publications (1)

Publication Number Publication Date
JPS62276885A true JPS62276885A (en) 1987-12-01

Family

ID=17239829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61218021A Pending JPS62276885A (en) 1985-11-13 1986-09-18 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS62276885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790577A (en) * 1995-10-05 1998-08-04 Nippondenso Co., Ltd. High output semiconductor laser element having robust electrode structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5790577A (en) * 1995-10-05 1998-08-04 Nippondenso Co., Ltd. High output semiconductor laser element having robust electrode structure

Similar Documents

Publication Publication Date Title
JPH06350135A (en) Radiation emitting-diode provided with improved radiation capability
JPS5826834B2 (en) semiconductor laser equipment
US5036023A (en) Rapid thermal processing method of making a semiconductor device
US4124826A (en) Current confinement in semiconductor lasers
US11894502B2 (en) Method of manufacturing semiconductor optical device and intermediate article of semiconductor optical device
US4538342A (en) Forming platinum contacts to in-based group III-V compound devices
US4503539A (en) Semiconductor laser
US6730938B2 (en) Semiconductor light emitting device and method for manufacturing the same
JP3093774B2 (en) Electrode structure
US11329453B2 (en) Surface emitting laser
EP0222395A1 (en) Improvement in electrode structure of photosemiconductor device
JPS62276885A (en) Optical semiconductor device
US20190386175A1 (en) Radiation-emitting semiconductor body and semiconductor chip
JPH03156988A (en) Semiconductor laser
JPH03184377A (en) Electrode for compound semiconductor
JPS59200485A (en) Semiconductor device and method of producing same
JPS63289888A (en) Semiconductor laser device
KR100366697B1 (en) Semiconductor laser diode and manufacturing method thereof
JPH0513872A (en) Hetero junction type semiconductor laser
US5100836A (en) Method of making a semiconductor device
JPH09321388A (en) Manufacture of structural substrate
KR100323673B1 (en) Laser diode and method for fabricating the same
JP4441085B2 (en) Semiconductor laser device and manufacturing method thereof
JPS61236188A (en) Semiconductor laser
JPH02250380A (en) Semiconductor light emitting diode