JPS62276786A - Coil apparatus for induction heating of flat plate - Google Patents

Coil apparatus for induction heating of flat plate

Info

Publication number
JPS62276786A
JPS62276786A JP61118938A JP11893886A JPS62276786A JP S62276786 A JPS62276786 A JP S62276786A JP 61118938 A JP61118938 A JP 61118938A JP 11893886 A JP11893886 A JP 11893886A JP S62276786 A JPS62276786 A JP S62276786A
Authority
JP
Japan
Prior art keywords
flat plate
conductor
coil
plate
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61118938A
Other languages
Japanese (ja)
Inventor
石坂 雄二
咲本 幸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP61118938A priority Critical patent/JPS62276786A/en
Priority to US07/053,113 priority patent/US4778971A/en
Priority to CA000537772A priority patent/CA1276244C/en
Priority to EP87107491A priority patent/EP0246660B1/en
Priority to DE3751460T priority patent/DE3751460T2/en
Priority to ES87107491T priority patent/ES2078210T3/en
Priority to KR1019870005130A priority patent/KR940005462B1/en
Publication of JPS62276786A publication Critical patent/JPS62276786A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 A1重重上上利用分野 本発明は平板の誘導加熱コイル装置に関する。[Detailed description of the invention] 3. Detailed description of the invention A1 heavy duty use field The present invention relates to a flat plate induction heating coil device.

B1発明の概要 本発明は搬送される平板の誘導加熱コイル装置において
、 平板の板幅方向に延在する複数の導体を有する第1コイ
ル部分と、平板の板幅方向の両側の端部の内側にて夫々
平板の長さ方向に延在する一対の導体を有する第2コイ
ル部分とが平版の搬送方向に連結一体化されてなるiI
父磁束型の加熱コイルを平板の両面に対向配設し次こと
により、平板の板幅方向の温度分布を該平板の両端部を
含む全板幅にわ次ってほぼ平坦に近い温度分布とするこ
とができるようにし次ものである。
B1 Summary of the Invention The present invention provides an induction heating coil device for a flat plate to be transported, which includes: a first coil portion having a plurality of conductors extending in the width direction of the flat plate; and a second coil portion each having a pair of conductors extending in the length direction of the flat plate are connected and integrated in the conveying direction of the flat plate.
By arranging magnetic flux type heating coils facing each other on both sides of the flat plate, the temperature distribution in the width direction of the flat plate is made to be almost flat across the entire width of the flat plate including both ends. The following is what you can do.

C0従来の技術 搬送される金属平板を中周波1次は高周波電力により誘
導加熱する場合、一般に直交磁束型の加熱コイルがよく
使われる。第10図を参照して説明すると、同図囚は平
面図、同図(8)は側面図である。各図において、1は
矢印S方向に搬送される平板、2は平板1を挾んで上下
両面に配設された加熱コイルである。加熱コイル2は平
板1の板幅方向に延在する複数の導体6と、各導体3を
つなぐ導体4とからなっている。各導体6.4は第11
図区拡大斜視図として示すように冷却水孔6會有するバ
イブ状に構成され、その断面形状に角1次は光等任意形
状とされる。7は加熱コイル2に電力?供給する友めの
中周波ま7?+は高周波電源である。
C0 Prior Art When a flat metal plate being conveyed is inductively heated using primary medium frequency and high frequency power, a heating coil of the orthogonal magnetic flux type is generally used. Referring to FIG. 10, FIG. 10 is a plan view, and FIG. 10 (8) is a side view. In each figure, 1 is a flat plate that is conveyed in the direction of arrow S, and 2 is a heating coil that is disposed on both the upper and lower surfaces of the flat plate 1. The heating coil 2 is made up of a plurality of conductors 6 extending in the width direction of the flat plate 1 and a conductor 4 connecting each conductor 3. Each conductor 6.4 is the 11th
As shown in the enlarged perspective view of the figure, it is constructed in the shape of a vibrator with six cooling water holes, and its cross-sectional shape has an arbitrary shape such as a light angle. 7 is power to heating coil 2? Medium frequency of supply friend 7? + is a high frequency power supply.

しかして、上下の各コイル導体3.3に交番電流lが流
れるときに発生する磁束に平板1と又鎖するので平板1
には誘起電流が流れて加熱が行なわれる。平板1は矢印
Sで示し次方向に移送されながら順次連続的に加熱され
る。
Therefore, the flat plate 1 is also chained to the magnetic flux generated when the alternating current l flows through the upper and lower coil conductors 3.3.
An induced current flows through and heats up. The flat plate 1 is successively heated while being transferred in the direction indicated by arrow S.

1次、第13図は本出願人の先願である実願昭61年第
39989号に係る誘導加熱コイル装置を示す。同図に
おいて、加熱コイル8は平板1の板幅方向の導体ろが往
復2本づつの配列とされ(但し、両端に位置する導体3
は除<)、かつ同じ電流方向となるように形成されてい
る。l几、同図の例では平板1と対向する導体30′f
後には鉄心5t−設けて磁束φの漏洩を防いで磁束の集
中?計っている。第14図はその拡大斜視図である。
Figures 1 and 13 show an induction heating coil device according to Utility Application No. 39989 of 1988, which is the applicant's earlier application. In the figure, the heating coils 8 are arranged in two reciprocating conductor loops in the width direction of the flat plate 1 (however, the conductor loops located at both ends
(excluding <) and are formed so that the current direction is the same. In the example shown in the figure, the conductor 30'f facing the flat plate 1
Later, a 5t iron core was installed to prevent the leakage of magnetic flux φ and concentrate the magnetic flux. I'm counting. FIG. 14 is an enlarged perspective view thereof.

しかして、平板1の上下両面において2本づつ配列され
九仮幅方向の導体3TF−又番電流iが流れると、磁束
φによって誘起電流が平板1に流れ平板1の加熱が行な
われる。
Thus, when two conductors 3TF arranged in the upper and lower surfaces of the flat plate 1 and a current i flow in the nine-fold width direction, an induced current flows through the flat plate 1 due to the magnetic flux φ, and the flat plate 1 is heated.

D0発明が解決しようとする問題点 ところで、第10図の加熱コイル2によって加熱され次
平板1の板幅方向の@度分布の一例を示すと第12図の
ようになる。1次、第13図の加熱コイル8によって加
熱された平板1の板幅方向の温度分布の一例を示すと第
15図のようになる。
D0 Problems to be Solved by the Invention By the way, FIG. 12 shows an example of the degree distribution in the width direction of the flat plate 1 heated by the heating coil 2 of FIG. 10. FIG. 15 shows an example of the temperature distribution in the width direction of the flat plate 1 heated by the primary heating coil 8 of FIG. 13.

各自において、囚、■は平板1の両端のエツジ部の温度
、C)は中央部の温度、■)、■はエツジ部より少し内
側に離れt部分の@度を示す。図から分るように、平板
1の板幅方向にわたって平坦な温度分布とすることが非
常に難しく、殊に平板1の両端では、板が存在しなくな
るという不連続部に相当するので、この端部近傍(第1
0図囚、第13図(4)で符号P、Qで示す部分)では
磁束の分布状態も変fヒすることなどによりでと<Ic
(B)、U部分が有効に加熱されず温度の低い部分とな
る。このように温度の不均一があると後の工程に悪い影
響金与える。
In each case, 2) indicates the temperature at the edge portions at both ends of the flat plate 1, C) indicates the temperature at the center, 2), and 2 indicate the temperature at the t portion a little further inside than the edge portions. As can be seen from the figure, it is very difficult to achieve a flat temperature distribution across the width of the flat plate 1, especially at both ends of the flat plate 1, which correspond to discontinuities where the plate no longer exists. Near the section (first
(Fig. 0) (parts indicated by symbols P and Q in Fig. 13 (4)), the distribution state of magnetic flux changes, etc.
(B) The U portion is not effectively heated and becomes a low temperature portion. Such non-uniformity in temperature adversely affects subsequent processes.

上記平板1のエツジ部近傍の温度分布を改善して、平坦
なi度分布に近づける友めに、第10図(4)において
、平&1の板@Wに対する導体3の長さLま九は第13
11(4)において鉄心5の長さtを調節するなどして
エツジ部近傍の温度分布の改善を行なうことが従来なさ
れてい友。しかし、それでもなお&幅の全@國わ友って
平坦、な温度分布とすることは非常に困難性全件ない、
殊に板厚が数n以下と薄い場曾はど難しい。例えば、平
板1の600℃程度の加熱において、全幅にわ友つ又温
度差30〜40℃以下というような均一な加熱上行なう
ことは従来の中周波または高周波による誘導加熱では困
難であっ九。
In order to improve the temperature distribution near the edge of the flat plate 1 and approach a flat i degree distribution, in Fig. 10 (4), the length L of the conductor 3 with respect to the flat & 1 plate @W is 13th
11(4), the temperature distribution near the edge has been improved by adjusting the length t of the iron core 5. However, it is still very difficult to achieve a flat temperature distribution across the whole range.
This is especially difficult when the plate thickness is as thin as several nanometers or less. For example, when heating the flat plate 1 to about 600 DEG C., it is difficult to uniformly heat the plate 1 with a temperature difference of 30 to 40 DEG C. or less across the entire width using conventional induction heating using medium or high frequencies.

本発明は前記の問題点を解決し友ものである。The present invention solves and improves the above-mentioned problems.

E1問題点を解決する几めの手段 本発明は、搬送される平板の中周波ま次は高周波による
誘導加熱コイル装置において、板幅方向に延在する複数
の導体と、これらの導体間t−接続する導体を有する第
1コイル部分と、平板の板幅方向の両側の端部の内側に
て夫々平板の長さ方向に延在する導体とこの一対の導体
を接続する板幅方向の導体を有する第2コイル部分と上
平板の搬送方向に一体に連結して[5I:磁束型の加熱
コイルを形成し、該加熱コイルを夫々平板の両面に対向
して配設するとともに電源に接続し九ことt−W徴とす
る。
E1 Efficient Means for Solving the Problem The present invention provides an induction heating coil device using medium frequency or high frequency waves for a flat plate to be conveyed. A first coil portion having a conductor to be connected, a conductor extending in the length direction of the flat plate inside the ends on both sides in the plate width direction of the flat plate, and a conductor in the plate width direction connecting the pair of conductors. The second coil portion and the upper flat plate are integrally connected in the conveying direction to form [5I: magnetic flux type heating coils, and the heating coils are arranged facing each other on both sides of the flat plate and are connected to a power source. This is the t-W sign.

b゛99 作用コイル部分によって平板を板幅方向に加熱するとと
もに、第2コイル部分くよって平板の工、ジ部からやや
内側に離れ7?、温度の低い部分を集中的に加熱するこ
とができ板幅の全幅を均一に加熱することができるもの
である。
b゛99 The working coil part heats the flat plate in the width direction of the plate, and the second coil part heats the flat plate slightly inward from the edge part. , it is possible to intensively heat the low-temperature areas and uniformly heat the entire width of the board.

G、実施例 以下本発明を第1図〜第9図に示す実施例にもとづいて
説明する。なお、従来と同等部分にV′i同一符号を付
して説明する。
G. EXAMPLES The present invention will be explained below based on the examples shown in FIGS. 1 to 9. It should be noted that the same parts as those in the prior art will be described with the same reference numerals V'i.

第1図は第1実施例七示す。1司図に示す加熱コイル6
0は、第1コイル部分9と$2コイル部分10とを平板
1の搬送方向に一体的に連結して形成されるものである
。第1コイル部分9は第1゜図に示す加熱コイル2と同
一構成のものが使用されている。これに対し、第2コイ
ル部分10は平板1の板幅方向の端部よりやや内側に設
けられ几平板1の長さ方向に延在する導体11と、板幅
方向の導体12工りなるlターンコイルであって、板幅
方向の一方の導体12が第1コイル部分9■端部導体1
4と接続されて一体化され℃いる。ま之、第1コイル部
分9と第2コイル部分1oの夫々の端部導体がリード部
16.17によって中周波1九は高周波電源7に接続さ
れている。導体3と11.12は第11図に拡大図で示
し之導体3と同様冷却水孔6全有するパイプ状に形成さ
れている。これら第1コイル部分9と第2コイル部分1
0とからなる加熱コイル3oは平板1の上下両面に対向
して設けられる。
FIG. 1 shows a first embodiment. 1 Heating coil 6 shown in the diagram
0 is formed by integrally connecting the first coil portion 9 and the second coil portion 10 in the conveying direction of the flat plate 1. The first coil portion 9 has the same construction as the heating coil 2 shown in FIG. 1. On the other hand, the second coil portion 10 is provided slightly inside the end of the flat plate 1 in the plate width direction, and consists of a conductor 11 extending in the length direction of the flat plate 1 and a conductor 12 in the plate width direction. It is a turn coil, and one conductor 12 in the board width direction is the first coil portion 9. End conductor 1.
It is connected and integrated with 4℃. However, the end conductors of the first coil part 9 and the second coil part 1o are connected to the medium frequency power source 7 by means of leads 16.17. The conductors 3 and 11.12 are shown in an enlarged view in FIG. 11 and, like the conductor 3, are formed in the form of pipes having all the cooling water holes 6. These first coil portion 9 and second coil portion 1
Heating coils 3o consisting of 0 are provided facing both the upper and lower surfaces of the flat plate 1.

上記の第1実施例において、第1コイル部分9によって
、平板1は従来と同様第2図(4)示すm度分布で加熱
されるとともに、第2コイル部分10は両側のエツジ部
の内側にそれぞれ導体11を設けであるので、誘起電流
もエツジの内側を流れ、第2囚(B)に示すよう國平叛
1のエツジ部の内側のG、I部分(これは第2図囚にお
けるB、Dに相当する部分]が集中的に加熱される。
In the above-mentioned first embodiment, the flat plate 1 is heated by the first coil part 9 in the m degree distribution shown in FIG. Since the conductor 11 is provided in each, the induced current also flows inside the edge, and as shown in the second figure (B), the G and I parts inside the edge part of the Kunihira 1 (this is the B, I part in the second figure) The portion corresponding to D] is heated intensively.

従って、第1コイル部分9と第2コイル部分10によっ
て加熱されて第2コイル部分10t−出た平板1の#A
度分布は第2図■との)が分算されて第2図(C)に符
号にで示すような平坦に近い温度分布?得ることができ
る。
Therefore, #A of the flat plate 1 which is heated by the first coil portion 9 and the second coil portion 10 and comes out from the second coil portion 10t.
The temperature distribution in Figure 2 (■) is divided into a nearly flat temperature distribution as shown in Figure 2 (C). Obtainable.

第3図は第2実施例を示す。同一に示す加熱コイル61
は、第1コイル部分81と第2コイル部分15とt平板
1の搬送方向に一体的に連結して形成されるものである
。第1コイル部分81は第13図に示す加熱コイル8と
同様のものが使用されている。つまり平板1の両端以外
の板幅方向の導体6が往復2本づつ■配列とされ、かつ
同じ電流方向となるように形成され、さらに導体3の背
後に鉄心5が設けられている。第2コイル部分15はあ
九かも第1実施例の′#g2コイル部分10の導体11
の背後に鉄心13t−設は友がごとき構成とされている
。しかして、第1コイル部分8102つの端部導体部分
18.19が第2コイル部分150両端導体部分32.
33に接続されて一体化されている。そして、第1コイ
ル部分81の他方の端部導体部分34.35が中周at
几は高周波電源7に接続されている。
FIG. 3 shows a second embodiment. Heating coil 61 shown in the same figure
is formed by integrally connecting the first coil portion 81, the second coil portion 15, and the T flat plate 1 in the conveyance direction. The first coil portion 81 is similar to the heating coil 8 shown in FIG. 13. In other words, the conductors 6 in the width direction of the flat plate 1 other than both ends thereof are arranged in a square pattern of two reciprocating conductors, and are formed so that the current direction is the same, and the iron core 5 is provided behind the conductor 3. The second coil portion 15 is the conductor 11 of the #g2 coil portion 10 of the first embodiment.
A 13-ton iron core is installed behind it in a similar configuration. Thus, the first coil portion 810 has two end conductor portions 18.19, and the second coil portion 150 has two end conductor portions 32.19.
33 and are integrated. Then, the other end conductor portion 34.35 of the first coil portion 81 is at the middle circumference.
The box is connected to a high frequency power source 7.

第2実施例においても、第1コイル部分81の導体3に
よる板幅方向の温度分布例はfXz図(4)に示すよう
になり、この温度分布を第2コイル部分15により第2
図ω)に示すような加熱温度分布によって補償すること
になる。よって、第2コイル部分15を出几ときの平板
1の@夏分布はこれらが合算されて第2図り)に近いよ
うな平坦に近い温度分布が得られる。
Also in the second embodiment, an example of the temperature distribution in the board width direction due to the conductor 3 of the first coil portion 81 is shown in fXz diagram (4), and this temperature distribution is
This will be compensated by the heating temperature distribution as shown in Figure ω). Therefore, the @summer distribution of the flat plate 1 when the second coil portion 15 is discharged is a nearly flat temperature distribution as shown in the second diagram) by adding these values together.

次に、第4図に示す第3実施例について説明する。この
実施例の加熱コイル66は第1図匡示す第1実施例の構
成とほぼ同じであるが、次の溝底が相違している。すな
わち、加熱コイル36の第2コイル部分10の平板1の
長さ方向に延在する左右一対の導体11.11は、板幅
方向に延在する導体12.12に対して移動自在に設け
られている。この友め板幅方向に延在する導体12.1
2と平板の長手方向に延在する導体11.11とは可動
連結部″l”t 、 Tt 、 Ts 、 T4によっ
て連結されており、その具体的構成は第5図〜第7図に
示すようになっている。
Next, a third embodiment shown in FIG. 4 will be described. The heating coil 66 of this embodiment has almost the same construction as the first embodiment shown in FIG. 1, but the following groove bottoms are different. That is, the pair of left and right conductors 11.11 extending in the length direction of the flat plate 1 of the second coil portion 10 of the heating coil 36 are provided movably with respect to the conductor 12.12 extending in the plate width direction. ing. Conductor 12.1 extending in the width direction of this friend plate
2 and the conductor 11.11 extending in the longitudinal direction of the flat plate are connected by movable connecting parts "l"t, Tt, Ts, T4, the specific configuration of which is shown in FIGS. 5 to 7. It has become.

以下各図を参照して、かつ可動連結部Tt、Ttt−例
として説明する。導体12に沿って長孔21を有する取
付け7ランジ20が設けられており、一方導体11の両
端部にもタップ孔會有する7ランジ22が設けられてい
る。そして、前記各導体の7ランジ20.22kmね合
せ次うえ、長孔21を貫通してボルト23yk締付はマ
九は緩めることによって導体11は長孔21に沿って第
5図にて左右方向に移動自在となり、かつ任意の位置に
締付固定できる。
The movable coupling portions Tt and Ttt will be described below with reference to the figures. A mounting 7 flange 20 having a long hole 21 is provided along the conductor 12, while 7 flange 22 having a tapped hole is also provided at both ends of the conductor 11. Then, the 7 langes 20.22 km of each of the conductors are aligned, and then the conductors 11 are passed through the long holes 21 and loosened by tightening the bolts 23yk. It is movable and can be tightened and fixed in any position.

導体11および12の冷却水孔27および28はいずれ
も各導体の端面で閉じられている。一方、各導体11お
よび12の側面には通水ノズル24゜25が設けられて
いて、前記冷却水孔27および28と連通しているとと
もに、この通水ノズル24゜25にホース26が接続さ
れている。し九がってホース26と通水ノズル24.2
51−介して移動自在な導体112よび12の冷却水孔
27および28に冷却水が流れ、各導体が冷却される。
Cooling water holes 27 and 28 of conductors 11 and 12 are both closed at the end face of each conductor. On the other hand, a water passage nozzle 24° 25 is provided on the side surface of each conductor 11 and 12 and communicates with the cooling water holes 27 and 28, and a hose 26 is connected to this water passage nozzle 24° 25. ing. Next, the hose 26 and water nozzle 24.2
Cooling water flows through the movable cooling water holes 27 and 28 of the conductors 112 and 12 through the cooling water holes 27 and 28 of the movable conductors 112 and 12 to cool each conductor.

前記構造の可動連結部T、 、 T、 、 T、 、 
T、は平板1t−挾んで七の両面に配設される各導体1
1.12について同様に配設される。
The movable connecting parts T, , T, , T, , of the above structure
T, is a flat plate 1t - each conductor 1 placed on both sides of the 7
1.12 is similarly arranged.

上記第3実施例によると次の作用効果がある。According to the third embodiment, there are the following effects.

すなわち、第1加熱コイル9による低温加熱部位(第2
1囚におけるB、D部分−の発生位置に対応じて第2加
熱コイル10の導体11間の距離Uti!14!!L’
[集中加M部(第2図CB)KオケルG 、  1部分
)の位置を前記のB、Dの位置に合せて平坦な温度分布
を得ることが一層容易である。また被加熱材である平板
10板幅が変更になっ九時、一段目のコイルである第1
コイル部分9による低温加熱部(第21囚におけるB、
0部分)が変化する。したがって、この場合は二段目の
コイルである第2コイル部分10の可動連結部T、 、
 T、 tたはTs、Taのいずれか一方マ九は両方の
ボルト23を緩め、左右一対の導体11t−移動して導
体間隔U音質え、低温加熱部の変化し7を位置に導体1
1t−移動してセットすることができる。なお、導体1
2に対して移動自在に連結するための構造に前記の構造
(ボルトと長孔によるンに限定せられるものではなく、
例えは第8図に示すように各導体11゜12から7ラン
ジ37.58t−突出して設け、この7ランジ37.3
8を治JL40に用いて締付けて固定する等の方法でも
よい。
That is, the low-temperature heating area (second
The distance Uti between the conductors 11 of the second heating coil 10 corresponds to the occurrence position of portions B and D in the first case. 14! ! L'
It is easier to obtain a flat temperature distribution by aligning the position of the concentrated heating section M (FIG. 2, CB) and the position of B and D above. In addition, the width of the 10 flat plates that are the heated materials has been changed, and the 1st coil, which is the first stage coil, has been changed.
Low temperature heating part by coil part 9 (B in the 21st prisoner,
0 part) changes. Therefore, in this case, the movable connecting portion T of the second coil portion 10, which is the second stage coil,
Either T, t or Ts, Ta, loosen both bolts 23, move the pair of left and right conductors 11t to change the conductor spacing U, change the low temperature heating part, and move conductor 1 to position 7.
1t - Can be moved and set. In addition, conductor 1
The above-mentioned structure (not limited to the structure using bolts and elongated holes,
For example, as shown in FIG.
A method such as tightening and fixing using JL40 may also be used.

第9図は第4爽施例を示す。この実施例の加熱コイル3
9は第3図に示す第2案施例の加熱コイル31とほぼ同
じ構成である。そして、これと相異する点は第2コイル
部分15の板の兼手方向に延在する左右一対の導体11
.11と板幅方向の導体12.12を可動連結部T+ 
、 Tt 、 Ts 、 TI によって連結し次こと
である。なお、この可動連結部の構造は第3実施例で説
明した第5図〜第q図に示す構造と同じである。
FIG. 9 shows the fourth refreshing example. Heating coil 3 of this example
Reference numeral 9 has almost the same configuration as the heating coil 31 of the second embodiment shown in FIG. The difference from this is that a pair of left and right conductors 11 extend in the direction of the plate of the second coil portion 15.
.. 11 and the conductor 12 and 12 in the plate width direction are connected to the movable connecting part T+
, Tt , Ts , TI . The structure of this movable connecting portion is the same as the structure shown in FIGS. 5 to q described in the third embodiment.

第3%施例の作用効果を説明する。まず導体3゜11の
背後に鉄心5.131−設けることによって、第1.第
2コイル部分81.15t”流れる又番電流iによる磁
束の漏洩分が減って磁束の集中が良くなるので加熱効率
を向上させることができる点は第2実施例と同じである
。また、導体11と12の可動連結部T、 、 Tt、
 T、 、 T、■構造と作用効果は第3実施例と同様
である。
The effects of the 3rd percent example will be explained. First, by providing the iron core 5.131- behind the conductor 3.131, the first. This is the same as the second embodiment in that the leakage of magnetic flux due to the cross current i flowing through the second coil portion 81.15t'' is reduced and the concentration of magnetic flux is improved, so that the heating efficiency can be improved. 11 and 12 movable connecting parts T, , Tt,
T, , T, ■The structure and effect are the same as in the third embodiment.

なお、第4図と第9図において、各導体11と12は4
りQ可動連結部Ta 、 Tt 、 Ts 、 Taに
よって連結されt例金示したが、これに限定されず、少
くとも可動連結部T、 、 T、 17tはT、、T、
のいずれか一方を可動連結部とすれば、左右一対の導体
11間0間隔Ui自在に調節することができる。
In addition, in FIGS. 4 and 9, each conductor 11 and 12 is 4
Q is connected by the movable connecting parts Ta, Tt, Ts, Ta. Although the example shown is not limited to this, at least the movable connecting parts T, , T, 17t are connected by the movable connecting parts T, , T,
If either one of them is made a movable connecting part, the zero interval Ui between the pair of left and right conductors 11 can be freely adjusted.

上記第1〜第4実施例に示すように第1コイル部分81
.9と第2コイル部分10.15の組会せからなる加熱
コイル装置t’を使用して搬送される平板1の誘導加熱
を行なうことにより、例えば板淳0.5龍、&幅400
nの薄鋼板金的600℃に加熱し次場合、板幅方向の温
度差をほぼ20℃以内の平坦な温度分布で均一加熱する
ことができ九。
As shown in the first to fourth embodiments above, the first coil portion 81
.. By induction heating the flat plate 1 being conveyed using a heating coil device t' consisting of a combination of a coil portion 9 and a second coil portion 10.15,
When a thin steel sheet metal is heated to 600°C, it can be heated uniformly with a flat temperature distribution with the temperature difference in the width direction of the sheet within approximately 20°C.

H1発明の効果 以上のとおりで、本発明に係る加熱コイル装置を用いる
と平板の誘導加熱において、困難性を伴なう板幅方向の
温度分布上、板幅両端を含む全板幅方向にわ友ってほぼ
平坦に近い@度分布とすることができ友。また、加熱コ
イルt−構成する第1コイル部分と第2コイル部分とは
一体的に溝底されているので加熱コイルitmiコンパ
クト化できるとともに、短い加熱長内で平板を加熱でき
、よって加熱効率を同上することがでさた。
H1 Effects of the Invention As described above, when using the heating coil device according to the present invention, in induction heating of a flat plate, due to the difficult temperature distribution in the width direction of the plate, it is possible to heat the entire plate in the width direction including both ends of the plate. It is possible to make the degree distribution nearly flat. In addition, since the first coil part and the second coil part that make up the heating coil are integrally grooved, the heating coil can be made more compact, and a flat plate can be heated within a short heating length, thus improving heating efficiency. I could do the same.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第9@は本発明に係る加熱コイル装置全示し、
第1図は第1実施例の平面図、第2図(4)は第1爽施
例の第1コイル部分により加熱され九平板の温度分布図
、同図CB)は第2コイル部分によう加熱される平板の
m度分布図、同図(C)は第1゜第2コイル部分により
加熱され次平板の温度分布図、第3図囚、ω)は第2実
施例の平面図と側面図、第4図は第3実施例の平面図、
第5図は@4図における可動連結部T1. T、の平面
評細図、第6内は第5図Y−Y新面囚、第7図は第5図
x−xm面図、第8因は可動連結部の他側を示す断面図
、第9図は第4冥施例の平面図、第10図(4)、CB
)I寥従来の加熱コイルの第1の平面図と側面図、第1
1園は導体の斜視図、第12図は前記加熱コイル艮より
加熱されt平板の温度分布図、第13崗■。 (8)は従来の加熱コイルの第2例の平面図と側面図、
第14図は鉄心を備え次導体の斜視図、第15図は前記
加熱コイルにより加熱され几平板の温度分布図である。 1・・・平板、3,4,11.12・・・導体、81゜
9・・・第1コイル部分、10.15・・・第2コイル
部分、30,31.36.39・・・加熱コイル。 第14図 第15図 、兵板幅W−一一!
Figures 1 to 9 show the entire heating coil device according to the present invention,
Figure 1 is a plan view of the first embodiment, Figure 2 (4) is a temperature distribution diagram of the nine plates heated by the first coil part of the first cooling example, and Figure CB) is a diagram of the temperature distribution in the second coil part. Fig. 3 (C) is a temperature distribution diagram of the flat plate heated by the 1st and 2nd coil parts, and Fig. 3 (Fig. 3) shows the plan view and side view of the second embodiment. 4 is a plan view of the third embodiment,
Figure 5 shows the movable connecting portion T1 in Figure 4. T, a detailed plan view of T, the sixth part is a new view taken along the Y-Y line in Figure 5, the seventh figure is a cross-sectional view showing the other side of the movable joint, Figure 9 is a plan view of the fourth example, Figure 10 (4), CB
) First plan view and side view of a conventional heating coil, first
Figure 1 is a perspective view of the conductor, Figure 12 is a temperature distribution diagram of the flat plate heated by the heating coil, and Figure 13 is a diagram of the temperature distribution. (8) is a plan view and a side view of a second example of a conventional heating coil;
FIG. 14 is a perspective view of a secondary conductor with an iron core, and FIG. 15 is a temperature distribution diagram of a flat plate heated by the heating coil. 1... Flat plate, 3, 4, 11.12... Conductor, 81°9... First coil part, 10.15... Second coil part, 30, 31.36.39... heating coil. Figure 14 Figure 15, Width of weapon plate W-11!

Claims (1)

【特許請求の範囲】 搬送される平板の中周波または高周波による誘導加熱コ
イル装置において、 板幅方向に延在する複数の導体と、これらの導体間を接
続する導体を有する第1コイル部分と、平板の板幅方向
の両側の端部の内側にて夫々平板の長さ方向に延在する
導体とこの一対の導体を接続する板幅方向の導体を有す
る第2コイル部分とを平板の搬送方向に一体に連結して
直交磁束型の加熱コイルを形成し、該加熱コイルを夫々
平板の両面に対向して配設するとともに電源に接続した
ことを特徴とする平板の誘導加熱コイル装置。
[Claims] A coil device for induction heating using medium or high frequency waves for a flat plate being conveyed, comprising: a first coil portion having a plurality of conductors extending in the width direction of the plate, and a conductor connecting these conductors; A conductor extending in the length direction of the flat plate and a second coil portion having a conductor in the plate width direction that connects the pair of conductors are connected inside the ends of both sides in the plate width direction of the flat plate in the conveying direction of the flat plate. 1. An induction heating coil device for a flat plate, characterized in that the heating coils are integrally connected to form orthogonal magnetic flux type heating coils, and the heating coils are arranged facing each other on both sides of the flat plate and are connected to a power source.
JP61118938A 1986-05-23 1986-05-23 Coil apparatus for induction heating of flat plate Pending JPS62276786A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP61118938A JPS62276786A (en) 1986-05-23 1986-05-23 Coil apparatus for induction heating of flat plate
US07/053,113 US4778971A (en) 1986-05-23 1987-05-21 Induction heating apparatus
CA000537772A CA1276244C (en) 1986-05-23 1987-05-22 Induction heating apparatus
EP87107491A EP0246660B1 (en) 1986-05-23 1987-05-22 Induction heating apparatus
DE3751460T DE3751460T2 (en) 1986-05-23 1987-05-22 Induction heater.
ES87107491T ES2078210T3 (en) 1986-05-23 1987-05-22 INDUCTION HEATING APPARATUS.
KR1019870005130A KR940005462B1 (en) 1986-05-23 1987-05-23 Induction heating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61118938A JPS62276786A (en) 1986-05-23 1986-05-23 Coil apparatus for induction heating of flat plate

Publications (1)

Publication Number Publication Date
JPS62276786A true JPS62276786A (en) 1987-12-01

Family

ID=14748945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61118938A Pending JPS62276786A (en) 1986-05-23 1986-05-23 Coil apparatus for induction heating of flat plate

Country Status (1)

Country Link
JP (1) JPS62276786A (en)

Similar Documents

Publication Publication Date Title
CA2243110A1 (en) Strip heating coil apparatus with series power supplies
JPS62276786A (en) Coil apparatus for induction heating of flat plate
JPH07501647A (en) induction heating device
JP5342921B2 (en) Metal plate induction heating device
JP3156746B2 (en) Induction heating device
JPS60127056A (en) Casting device with electromagnetic pump used for casting liquefied metal
JPS62274593A (en) Flat plate induction heating coil apparatus
JP2002043042A (en) Single-turn induction heating coil
JPH04147596A (en) Induction heating of metallic thin plate
Loffler et al. Influence of air gaps in stacked transformer cores consisting of several packages
JPS62276785A (en) Coil apparatus for induction heating of flat plate
JPH07169561A (en) Induction heating device
GB1217903A (en) Improvements in and relating to laminated magnetic core structures for large transformers or choke coils
US5818013A (en) Process and device for inductive cross-field heating of flat metallic material
US2781438A (en) Electrical heating apparatus
JP2002198162A (en) Induction heater
US4482880A (en) Iron core for three-phase electromagnetic induction machine
JPS59214194A (en) Induction heating cooking device
JP2501679Y2 (en) Thin plate induction heating device
JPH0570911B2 (en)
JP2000012205A (en) Induction heating coil
JPS63178097U (en)
JPH0246684A (en) Flat induction heating coil apparatus
JP2979447B2 (en) Electromagnetic induction heating device
KR890000908Y1 (en) Coil arrangements of metal heating apparatus