JPS62276752A - Low pressure discharge lamp - Google Patents

Low pressure discharge lamp

Info

Publication number
JPS62276752A
JPS62276752A JP12061386A JP12061386A JPS62276752A JP S62276752 A JPS62276752 A JP S62276752A JP 12061386 A JP12061386 A JP 12061386A JP 12061386 A JP12061386 A JP 12061386A JP S62276752 A JPS62276752 A JP S62276752A
Authority
JP
Japan
Prior art keywords
anode
cathode
tube
magnetic field
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12061386A
Other languages
Japanese (ja)
Other versions
JPH0638331B2 (en
Inventor
Makoto Toho
東方 眞
Tadao Uetsuki
唯夫 植月
Koji Hiramatsu
宏司 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP12061386A priority Critical patent/JPH0638331B2/en
Publication of JPS62276752A publication Critical patent/JPS62276752A/en
Publication of JPH0638331B2 publication Critical patent/JPH0638331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Discharge Lamp (AREA)
  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To make it possible to form a one-side base type lamp, by setting the distance between an anode and a cathode sufficiently smaller than the whole length of a tube body, making the anode side space opposite to the cathode sufficiently wide, and exercising the negative resistance discharge between the anode and the cathode. CONSTITUTION:At one end of a tube body 8, a cathode 11 for electron emission and an opening anode 12 of a mesh form or ring form are furnished closely positioned, the distance between the anode and the cathode is set much smaller than the whole length of the tube body, and the anode side space opposite to the cathode is made large enough. In the tube body, a small amount of luminous radiating gas is sealed to make the pressure at the operation time mm Torr, and the negative resistance discharge is exercised between the anode 12 and the cathode 11. By applying a voltage to the anode 12 through a stabilizing resistance 14 while heating the anode 12 with a DC power source 13, the electrons are radiated and accelerated sufficiently, the majority of them penetrate into the broad rear space of the anode 12, because the anode is an opening type, strike to the luminous radiating gas 10 of mercury, and are excited and ionized to produce the radiation.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [技術分野] 本発明は片口金構成の低圧放電ランプに関するものであ
る。
Detailed Description of the Invention 3. Detailed Description of the Invention [Technical Field] The present invention relates to a low-pressure discharge lamp having a single-cap configuration.

[背を技術] 大型ディスプレイや装飾ディスプレイ等に用いるのに適
したランプとしては第18図に示すような高周波インバ
ータ1を用いて点灯させる蛍光ランプ2や、第2図に示
すようなCRT単管3があるが、第1図の蛍光ランプ2
は本来電極が両端にあって両口金構造たるべきものを無
理に曲げているため、加工が複雑で結果高価なことを小
型になりにくいことや、所望する発光配光上に無理や無
駄があり、また従来の蛍光ランプと同様の放電であるか
ら始動電圧及び放電維持電圧が高い等という欠、αがあ
った。
[Technology on the back] Lamps suitable for use in large displays, decorative displays, etc. include a fluorescent lamp 2 lit using a high-frequency inverter 1 as shown in Figure 18, and a CRT single tube as shown in Figure 2. 3, but the fluorescent lamp 2 in Figure 1
Since the electrodes are originally located at both ends and should have a double-cap structure, they are forcibly bent, making the process complicated and expensive, making it difficult to downsize, and creating the desired light distribution that is unreasonable and wasteful. In addition, since the discharge is similar to that of conventional fluorescent lamps, there are drawbacks such as high starting voltage and discharge sustaining voltage.

また第19図の従来例では高圧アノード5とカソード6
との間に高電圧印加が必要で、しかも複数のグリッド7
を設けたりするため構造が複雑な上にコストが高く、し
かも蛍光体4面よりの発光効率が今一つ低いこと等の欠
点があった。
In addition, in the conventional example shown in FIG.
It is necessary to apply a high voltage between the grids 7 and 7.
The structure is complicated and the cost is high due to the provision of a phosphor, and the luminous efficiency from the four phosphor surfaces is relatively low.

又小型の電極であれば熱放射の為応答性が悪くその上効
率が低く、寿命も短いという問題があった。
Moreover, if the electrode is small, the response is poor due to heat radiation, and furthermore, the efficiency is low and the life span is short.

[発明の目的] 本発明は上述の問題点に鑑みて為されたもので、その目
的とするところは本質的に片口金構造がとれ・、しかも
簡単な構造である上に低い電源電圧で駆動ができ且つ高
輝度で発光する低圧放電ランプを提供するにある。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and its purpose is to essentially have a single-cap structure, to have a simple structure, and to be driven with a low power supply voltage. An object of the present invention is to provide a low-pressure discharge lamp that can emit light with high brightness.

[発明の開示] 本発明は管体内の一端に電子放出用カン−にとメツシュ
状やリング状の開口アノードとを近接配置し、これらア
ノードとカソードとの間の距離を管体全長に比べて十分
小さく設定し、且つアノードの反カソード側空間を十分
広い空間とし、管体内には動作時数mmTorrの圧力
となるように微量の光放出気体を封入し、7メードとカ
ソードとの間を負性抵抗放電をさせるこ゛とを特徴とす
る低圧放電ランプをtR1発明とし、併せて管体内の一
端に電子放出用カソードとメツシュ状やリング状の開口
アノードとを近接配置し、これら7メードとカソードと
の間の距離を管体全長に比べて十分小さく設定し、且つ
アノードの反カソード側空間を十分広い空間とし、管体
内には動作時数mm′l’orrの圧力となるように微
量の光放出気体を封入し、カソード側の管体の一端外に
はカソード・アノードとの間のM1界と略平行方向とな
るように静磁界を印加し、アノードとカソードとの間を
負性抵抗放電をさせることを特徴とする低圧放電ランプ
を」2発明とするとともに、管体内の一端に電子放出用
カソードとメツシュ状やリング状の開口アノードとを近
接配置し、これらアノードとカソードとの間の距離を管
体全長に比べて十分小さく設定し、且つ7/−1’の反
カソード側空間を十分広い空間とし、管体内には動作時
数l0IIITorrの圧力となるように微量の光放出
気体を封入し、カソード側の管体の一端外及び反対側の
管体の他端外には互いに極性が反対となるように磁石を
配置し、アノードとカソードとの間を負性抵抗放電をさ
せることを特徴とする低圧放電ランプを第3発明とする
ものであり、以下実施例により説明する。
[Disclosure of the Invention] The present invention arranges an electron-emitting can and a mesh-shaped or ring-shaped opening anode close to each other at one end of a tube, and the distance between the anode and the cathode is set in such a way that the distance between the anode and the cathode is The space on the side opposite to the cathode of the anode is set to be sufficiently small, and the space on the side opposite to the cathode of the anode is made sufficiently large, and a small amount of light emitting gas is sealed in the tube so that the pressure is several mmTorr during operation. The tR1 invention is a low-pressure discharge lamp that is characterized by producing a static resistance discharge, and an electron-emitting cathode and a mesh-shaped or ring-shaped opening anode are arranged close to each other at one end of the tube body. The distance between the tubes is set to be sufficiently small compared to the total length of the tube, and the space on the opposite side of the anode to the cathode is made sufficiently wide, so that a trace amount of light is kept inside the tube so that the pressure is several mm'l'orr during operation. The released gas is sealed, and a static magnetic field is applied to the outside of one end of the tube on the cathode side in a direction approximately parallel to the M1 field between the cathode and the anode, creating a negative resistance discharge between the anode and the cathode. The present invention provides a low-pressure discharge lamp characterized in that an electron-emitting cathode and a mesh-shaped or ring-shaped opening anode are arranged close to each other at one end of a tube, and a gap between the anode and the cathode is provided. The distance is set sufficiently small compared to the total length of the tube, and the space on the anti-cathode side of 7/-1' is made sufficiently wide, and a small amount of light emitting gas is introduced into the tube so that the pressure is 10III Torr during operation. magnets are placed outside one end of the tubular body on the cathode side and outside the other end of the tubular body on the opposite side so that the polarities are opposite to each other, and a negative resistance discharge is caused between the anode and the cathode. The third aspect of the present invention is a low-pressure discharge lamp characterized by the following, and will be explained below with reference to Examples.

火1j1− PIS1図は第1発明の基本的な本実施例を示しており
、この実施例は外形が短くて太い柱状の光透過性の管体
8を用い、その管体8の内周面と内天井面には蛍光体9
を塗布するとともに、水以のよう・な光放射気体10を
rll、mmTorr程度封入し、管体8の一端である
底部にはカソード11と、アノード12とを近接配置し
である。
Fig. 1j1-PIS1 shows a basic embodiment of the first invention, and this embodiment uses a light-transmitting tube 8 with a short and thick columnar outer shape, and the inner circumferential surface of the tube 8 is and phosphor 9 on the inner ceiling surface.
At the same time, a light emitting gas 10, such as water, is sealed to a degree of rll, mmTorr, and a cathode 11 and an anode 12 are placed close to each other at the bottom, which is one end of the tube 8.

カソード11は電子放出用で直熱く又は傍熱)の熱電子
エミッタカソードを用いる。ここで通常の蛍光ランプに
比して実貿希〃スが無い分だけ真空に近いので、含浸カ
ソードや、B I (Bariu+o  InteFi
rated)カソード等真空蒸発に強いカソードが最適
である。
The cathode 11 is for electron emission and is a directly heated or indirectly heated thermionic emitter cathode. Here, compared to ordinary fluorescent lamps, there is no practical risk and the vacuum is close to that, so impregnated cathodes and BI (Bariu+o InteFi
A cathode that is resistant to vacuum evaporation, such as a rated) cathode, is optimal.

アノード12はメツシュ状(又はリング状)の開口型ア
ノードを使用しており、このアノード12とカソード1
1との距aaは電子の平均自由行程λとコンパラテイブ
な関係に選ぶが、その関係は数λ≧α≧数分の1人 としである。
The anode 12 uses a mesh-shaped (or ring-shaped) open-type anode, and this anode 12 and cathode 1
The distance aa from 1 is chosen to be in a comparable relationship with the mean free path λ of the electron, and the relationship is such that the number λ≧α≧a fraction of a person.

しかして直流電源13を用いてカソード11を加熱する
ととらに、安定化抵抗14を介してアノード12に電圧
を印加し、アノード12とカソード11との間で放電が
起きる電圧(10数V)に達すると、カソード11近辺
の空間電荷が中和されるため、電子が十分に放出されア
ノード電圧に匹敵するエネルギに加速される。ここでア
ノード12は開口型のアノードであるから大半の電子は
アノード12の広い背後空間に突き抜ける。背後空間で
は電子は水銀からなる光放射気体10と衝突を起こして
励起及び電離を起こし、発光が起きることになる。この
発光で生じた紫外線が蛍光体9に当たり可視光を管体8
外へ放出する。もち論蛍光体9を塗布しなければ紫外線
が放出されることになる。ところで管体8のディメンシ
ョンが電子の平均自由行程の数〜10数倍程度のためカ
ッー゛ド11とアノード12との間以外で十分に電子は
拡散し得、上記背後空間で発光が十分できることになる
Thus, while heating the cathode 11 using the DC power supply 13, a voltage is applied to the anode 12 via the stabilizing resistor 14, and the voltage (10-odd V) at which discharge occurs between the anode 12 and the cathode 11 is increased. When this happens, the space charge near the cathode 11 is neutralized, so that electrons are sufficiently emitted and accelerated to an energy comparable to the anode voltage. Here, since the anode 12 is an open-type anode, most of the electrons penetrate into the wide space behind the anode 12. In the back space, the electrons collide with the light-emitting gas 10 made of mercury to cause excitation and ionization, resulting in light emission. The ultraviolet rays generated by this emission hit the phosphor 9 and transmit visible light to the tube 8.
release it outside. Of course, if the phosphor 9 is not applied, ultraviolet rays will be emitted. By the way, since the dimensions of the tube body 8 are about several to ten times as large as the mean free path of electrons, electrons can be sufficiently diffused in areas other than between the shield 11 and the anode 12, and sufficient light can be emitted in the space behind the tube. Become.

ところで本実施例ではカソード11よりの電子のエミッ
ションを十分にし、且つアノード12の印加電圧を数1
0Vとすることにより、アノード12との間の放電は負
性抵抗放電となり、電離(従って励起)増殖作用が大き
く、電離(wh起)効率が向上し結果として発光効率が
上昇する。また十分な放電、電離となるため十分にイオ
ンが生成され、更に効果的にカソード11近辺の空間電
荷中和を行うとともに、カソード11にイオンシースを
作り、効率的に電子放出が為される。またイオンがカソ
ード11に突入するため、カソード11が有効に加熱さ
れ、結果として少ない電力で能率的にカソード11の機
能が働くことになる。また十分な電流を流すことができ
るため高輝度な発光が得られ、しかもランプ電圧が入力
増加によっても高くならないから直流電源13は低電圧
電源で済むことになる。
By the way, in this embodiment, the emission of electrons from the cathode 11 is made sufficient, and the voltage applied to the anode 12 is set to several 1.
By setting the voltage to 0V, the discharge between the anode 12 becomes a negative resistance discharge, the ionization (therefore, excitation) multiplication effect is large, the ionization (wh generation) efficiency is improved, and the luminous efficiency is increased as a result. In addition, sufficient discharge and ionization result in sufficient ions to be generated, which further effectively neutralizes the space charge near the cathode 11, creates an ion sheath in the cathode 11, and efficiently emits electrons. Furthermore, since the ions rush into the cathode 11, the cathode 11 is effectively heated, and as a result, the function of the cathode 11 can be efficiently performed with less electric power. Further, since a sufficient current can flow, high-intensity light emission can be obtained, and since the lamp voltage does not increase even with an increase in input, the DC power supply 13 can be a low-voltage power supply.

祇2図は本実施例の電流電圧特性を示し、第3図は本実
施例(イ)と従来例の一般蛍光ランプ(ロ)との比較を
示しており、本実施例では始動電圧a、必要電源電圧b
、動作電圧Cが従来例のそれらa ’ 、 13゛、C
゛に比べて低いのが分かる。
Figure 2 shows the current-voltage characteristics of this example, and Figure 3 shows a comparison between this example (a) and a conventional general fluorescent lamp (b). Required power supply voltage b
, operating voltage C is those of the conventional example a', 13゛, C
It can be seen that it is lower than ゛.

11健先 第4図は本実施例2を示しており、本実施例ランプの管
体8は径が約301IllS長さ約50+++mの円筒
バルブからなり、又アノード12はリング状のニッケル
電極からなり、カソード11は傍熱型バリウム含浸型カ
ソードで構成している。管体8内には動作時に数mmT
orr程度となるように数乃至数10+agの水銀を光
放射気体10として封入し、管体8の内周面、内天井に
塗布する蛍光体9にはへロリン酸カルシウム又は希土類
の組み合わせによる白色蛍光体を用いている。しかして
本実施例ランプではランプ電圧が約20V、ランプ電力
が約5Wで、発光光束として約150 Qm、アノード
12の背後空間の輝度として約1万Cd/m2を得た。
Figure 4 shows the second embodiment, in which the tube body 8 of the lamp of this embodiment consists of a cylindrical bulb with a diameter of about 301 mm and a length of about 50 m, and the anode 12 consists of a ring-shaped nickel electrode. The cathode 11 is an indirectly heated barium-impregnated cathode. There is several mmT inside the tube body 8 during operation.
Several to several tens of ag of mercury is sealed as a light emitting gas 10 so that the amount of mercury is about 100. is used. Thus, in the lamp of this example, the lamp voltage was about 20 V, the lamp power was about 5 W, the luminous flux was about 150 Qm, and the luminance of the space behind the anode 12 was about 10,000 Cd/m2.

尚点灯回路としてはトランジスタ定電流兼スイッチング
回路をもちいており、ツェナーダイオードZD、及び抵
抗Rによって設定された電流がフンブに流れるようにト
ランジスタ′rrを制御し、また調光信号部14の信号
によりデユティ−や振幅などをかえることにより調光を
も行えるようにしである。図中15はフィラメント16
を加熱するための電源である。
The lighting circuit uses a transistor constant current/switching circuit, and controls the transistor 'rr so that the current set by the Zener diode ZD and the resistor R flows through the terminal. The light can also be controlled by changing the duty, amplitude, etc. 15 in the figure is the filament 16
It is a power source for heating.

尚上記実施例では蛍光体9の塗布面は内天井面と内周面
とに塗布しているが、ディスプレイとしでの発光面は天
井面だけでよいから塗布面を内天井面だけとしてもよい
In the above embodiment, the phosphor 9 is coated on the inner ceiling surface and the inner circumferential surface, but since the light emitting surface for a display only needs to be the ceiling surface, it is also possible to apply the phosphor 9 only on the inner ceiling surface. .

及1鮭よ 本実施例は輝度及び発光効率を上記実施例より−m向上
するようにした第2発明のかかる実施例であり、この実
施例では第5図に示すように蛍光体9の塗布面を管体8
の内天井面のみに塗布し、アノード12としてはリング
状のカソードを用いたもので、カソード11に近接する
管体1の一端外にはカソード11とアノード12との間
の電界に略平行な方向に静磁界をかけるための永久磁石
あるいは電磁石からなる磁石17を密着配置しである。
1. This example is an example of the second invention in which the brightness and luminous efficiency are improved by -m compared to the above example. In this example, as shown in FIG. Turn the surface to tube 8
A ring-shaped cathode is used as the anode 12. On the outside of one end of the tube body 1 close to the cathode 11, there is a wire approximately parallel to the electric field between the cathode 11 and the anode 12. Magnets 17 made of permanent magnets or electromagnets are closely arranged to apply a static magnetic field in the direction.

しかしてカソード11がら出てアノード12を突き抜け
る電子は磁界により力を受けて第6図に示す磁力1/Q
xの回りで旋回運動する。つまり本来の電界による電気
力に加えて磁界による力が加わり、結果磁力#iXに巻
き付くような所謂磁力線トラップの形の運動をするため
である。従って結果として磁力線×の強い所つまり第6
図で示す管体8の中央及び磁石17の近辺へ電子が集ま
り、発光が強い状態となり、第7図のように磁界の無い
場合のように電子が管体8の全体に拡散するような無駄
がない。更に電子の運動は第8図に示すように磁力線に
の回りの小さい旋回運動となるため、第9図に示す磁界
が無い場合に比べて、あたかも平均自由行程が小さくな
ったかの性質を示し、封入しである水銀からなる光放射
気体10に衝突し、励起する機会が増えることになる。
The electrons coming out of the cathode 11 and penetrating the anode 12 are subjected to a force due to the magnetic field, and the magnetic force 1/Q is shown in FIG.
Rotate around x. In other words, in addition to the electric force due to the original electric field, the force due to the magnetic field is added, and as a result, it moves in the form of a so-called magnetic line of force trap in which it wraps around the magnetic force #iX. Therefore, as a result, the place where the magnetic field line × is strong, that is, the 6th
Electrons gather in the center of the tube 8 and near the magnet 17 shown in the figure, resulting in strong light emission, and as shown in FIG. There is no. Furthermore, since the movement of the electrons is a small circular motion around the magnetic field lines as shown in Figure 8, the mean free path appears to be smaller than in the case of no magnetic field as shown in Figure 9. This increases the chances of collision and excitation of the light emitting gas 10 made of mercury.

つまり1個当たりの電子の励起効率が増加し、全体の発
光効率が向上することになる。
In other words, the excitation efficiency of each electron increases, and the overall luminous efficiency improves.

次にアノード12を通過する電子の状態を実施例1のよ
うに磁界の無い場合と比べると次のようなる。つまり磁
界なしでは第10図に示すようにアノード12の電位に
近い電子エネルギを第12図に示すように平均的に得る
が、磁界がある場合には第11図に示すように中心のや
や低い空間分布電位で主に決まるエネルギとなるため、
磁界無しよりエネルギが第13図に示すように低下する
ことになり、その結果紫外線254na+の励起に望ま
・しい5〜10eVの方へ近付き発光効率を向上させる
ことになる。
Next, the state of electrons passing through the anode 12 is compared with the state of the electrons passing through the anode 12 when there is no magnetic field as in the first embodiment. In other words, without a magnetic field, the electron energy near the potential of the anode 12 as shown in Fig. 10 is obtained on average as shown in Fig. 12, but in the presence of a magnetic field, as shown in Fig. Since the energy is mainly determined by the spatially distributed potential,
The energy is lower than that without a magnetic field as shown in FIG. 13, and as a result, it approaches 5 to 10 eV, which is desirable for excitation of ultraviolet 254na+, and improves luminous efficiency.

このように本実施例では静磁界の印加により特定方向へ
の発光輝度の向上及び発光効率の向上という効果が負特
性利用上の効果に加わることになる。尚磁石17による
磁界の強さを管体8内のアノード12近辺の電子のラー
マ−半径がO0数〜数10m+*(例えば0. 1ma
+〜0. 3mm)になるような磁界強度としである。
As described above, in this embodiment, the effects of improving the luminance of light emitted in a specific direction and improving the light emitting efficiency by applying a static magnetic field are added to the effects of utilizing negative characteristics. The strength of the magnetic field generated by the magnet 17 is determined by adjusting the Larmor radius of electrons near the anode 12 in the tube 8 to several tens of meters + * (for example, 0.1 ma).
+~0. The magnetic field strength is set to 3 mm).

及m 上記各実施例の管体8は短長の円柱状管体であったが、
本実施例では細い直管状の管体8でも十分に全体に亘9
発光する効率のよい片口金ランプを実現した第3発明に
対応する実施例である。
and m The tube 8 in each of the above embodiments was a short cylindrical tube,
In this embodiment, even a thin straight tube 8 is sufficient to cover the entire body 9.
This is an embodiment corresponding to the third invention that realizes a single-base lamp with high efficiency of emitting light.

本実施例では第14図に示すように細い直管状の管体8
の一端側にカソード11と、メッシェ状又はリング状の
関口型アノード12とを配置し、管体8の両端の外側に
は永久磁石或いは電磁石からなる磁石17a、17bを
密着配置した構成となっている。そしてアノード12の
背後空間に対応する管体8の内周面に蛍光体9を塗布し
、また水銀からなる光放射気体10を動作時に管内圧力
が数m+aTorr程度となろように封入しである。
In this embodiment, as shown in FIG.
A cathode 11 and a mesh-shaped or ring-shaped Sekiguchi-type anode 12 are arranged at one end, and magnets 17a and 17b made of permanent magnets or electromagnets are closely arranged on the outside of both ends of the tube body 8. There is. A phosphor 9 is coated on the inner peripheral surface of the tube 8 corresponding to the space behind the anode 12, and a light emitting gas 10 made of mercury is sealed so that the pressure inside the tube is approximately several m+a Torr during operation.

そして対抗する磁石17a、17bの極性を+A極とし
ている。
The polarity of the opposing magnets 17a and 17b is set to +A pole.

しかして本実施例ではtls 151XI(a)に示す
ように管軸方向の磁力線Xのためアノード12を突き抜
けた電子が実施例3と同様にm16図のように磁力11
ixに巻き付きながら旋回運動を行って、アノード12
の背後空間で移動することになる。結果として移動途上
で水銀からなる光放射気体1゜と衝突して励起発光させ
るため第15図(ム)に示すようにアノード12の背後
空間全体に亘り略一様に発光する。尚実施例3との相違
は実施例3がカソード11側に磁石17を設け、磁力i
xが拡散方向に分布しているためアノード12の背後空
間でやや扇状に広がった発光となるが、本実施例では磁
力#X×を管体8の両端で絞る形となるため長い背後空
間で電子が閉じ込められて一様に発光する。くである、
尚磁石17ar17bによる磁界の強さを管体内のアノ
ード近辺の電子のラーマ−半径が0.数〜数10mm(
例えば0.1a+m−0,3mll1)になるような磁
界強度としである。
However, in this example, as shown in tls 151
The anode 12 is rotated while wrapping around the anode 12.
It will move in the space behind the. As a result, the anode 12 collides with the light-emitting gas 1° made of mercury during the movement and is excited to emit light, so that the light is emitted substantially uniformly over the entire space behind the anode 12, as shown in FIG. 15(m). The difference from Embodiment 3 is that Embodiment 3 has a magnet 17 on the cathode 11 side, and the magnetic force i
Since x is distributed in the diffusion direction, the light emitted spreads out in a fan shape in the space behind the anode 12, but in this embodiment, the magnetic force # Electrons are trapped and emit light uniformly. It's a lot,
The strength of the magnetic field generated by the magnets 17ar17b is determined when the Larmor radius of electrons near the anode in the tube is 0. Several to several tens of mm (
For example, the magnetic field strength is set to 0.1a+m-0.3ml1).

【1乱Σ 本実施例は実施例4の変形例であり、磁石17a、17
bの磁界強度を弱くし、第17図に示すように磁力Mx
の分布を広げ、管体8にラフビーボール状のような管体
を使用できるようにしたちのである。
[1 random Σ This embodiment is a modification of the fourth embodiment, and the magnets 17a, 17
By weakening the magnetic field strength of b, the magnetic force Mx is increased as shown in Fig. 17.
This widens the distribution of the particles and makes it possible to use a rough ball-shaped tube body for the tube body 8.

尚上記各実施例の光放射気体10は水銀であるが、ナト
リウムやセシウムなどの光放射気体でも良い。
Although the light emitting gas 10 in each of the above embodiments is mercury, it may be a light emitting gas such as sodium or cesium.

[発明の効果] 第1発明は管体内の一端に電子放出用カソードとメツシ
ュ状やリング状の開口アノードとを近接配置し、これら
アノードとカソードとの間の距離を管体全長に比べて十
分小さく設定し、且つアノードの反カソードI空間を十
分広い空間とし、管体内には動作R1mmTorrの圧
力となるように微量の光放出気体を封入し、アノードと
カソードとの間を負性抵抗放電をさせるので、アノード
の背後空間で発光をおこなわせることができ、そのため
アノードとカソードとを管体の一端に配置した片口金型
のランプが実現でき、更にアノードとカソードとを適度
に短くでき且つ管体内の圧力が光放射気体のみの低圧で
あるため低い電i1i!電圧で始動及び維持点灯が可能
なものであり、また負性抵抗特性動作のため、カソード
の機能の発揮する効率が高く、高輝度で且つ低いランプ
電圧が維持でき、更に上述のような構成であるからアノ
ード電圧のオンオフで容易に且つ高速で発光をオンオフ
でき、その為ディスプレイ等にも適用でき、しかも構造
が簡単であるからコストも安価であるという効果を奏し
、更に第2発明にあってはカソード側の管体の一端外に
はカソード・アノードとの間の電界と略平行方向となる
ように静磁界を印加するので、電子を磁力線に沿って旋
回運動させることができ、特定方向への発光輝度の向上
及び発光効率の向上が図れるという効果を第1発明の効
果と併せて奏し、又第3発明はカソード側の管体の−・
4外及び反対側の管体の他端外には互いに極性が反対と
なるように磁石を配置してるから、管体が長くても電子
を管体の両端間で拡散させることなく移動させることが
できるからアノードの背後空間が良くても一様に発光さ
せることができ、管体の形状にあった磁界を両端の磁石
で形成することにより管体全体を一様に発光させること
も可能であるという効果を第1発明の効果とともに奏す
る。
[Effects of the Invention] The first invention arranges an electron-emitting cathode and a mesh-shaped or ring-shaped opening anode close to each other at one end of a tube, and the distance between these anodes and the cathode is set to be sufficient compared to the entire length of the tube. In addition, the anti-cathode I space of the anode is set to be a sufficiently wide space, and a small amount of light emitting gas is sealed in the tube so that the operating pressure is 1 mm Torr, and a negative resistance discharge is created between the anode and the cathode. As a result, light can be emitted in the space behind the anode, making it possible to realize a single-ended lamp in which the anode and cathode are placed at one end of the tube. Because the pressure inside the body is low pressure of only the light emitting gas, the electric power i1i is low! It is possible to start and maintain lighting with voltage, and because it operates with negative resistance characteristics, the efficiency of the cathode function is high, and high brightness and low lamp voltage can be maintained. Because of this, the light emission can be easily and quickly turned on and off by turning on and off the anode voltage, and therefore it can be applied to displays, etc., and the structure is simple, so the cost is low. applies a static magnetic field to the outside of one end of the tube on the cathode side in a direction approximately parallel to the electric field between the cathode and the anode, making it possible to make electrons rotate along the lines of magnetic force, causing them to move in a specific direction. In addition to the effects of the first invention, the third invention has the effect of improving the luminous brightness and luminous efficiency of the tube on the cathode side.
4. Magnets are placed outside the other end of the tube on the opposite side so that their polarities are opposite to each other, so even if the tube is long, electrons can be moved between the ends of the tube without being diffused. This makes it possible to emit light uniformly even if the space behind the anode is good, and by forming a magnetic field that matches the shape of the tube with the magnets at both ends, it is also possible to make the entire tube emit light uniformly. This effect is achieved together with the effect of the first invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1発明に対応する実施例1の概略構成図、第
2図、第3図は同上の動作特性説明図、第4図は同上の
実施例2の概略構成図、第5図は第2発明に対応する実
施例3の概略構成図、第6図〜第13図は同上実施例3
の動作説明図、[14図は第3発明に対応する実施例4
の概略構成図、第15図〜第16図は同上実施例4の動
作説明図、第17図は同上の実施例5の概略構成図、第
18図、第19図は夫々従来例の概略構成図であり、8
が管体、10は光放射気体、11はカソード、12はア
ノード、17=17a、17bは磁石である。 代理人 弁理士 石 1)艮 七 第1図 第2図 77′ 第3図 第4図 第5図 第9図 第11図 第15図 第17図
FIG. 1 is a schematic configuration diagram of Example 1 corresponding to the first invention, FIGS. 2 and 3 are diagrams explaining the operating characteristics of the same as above, FIG. 4 is a schematic configuration diagram of Example 2 of the same as above, and FIG. is a schematic configuration diagram of the third embodiment corresponding to the second invention, and FIGS. 6 to 13 are the same as the above embodiment 3.
An explanatory diagram of the operation, [Figure 14 is Embodiment 4 corresponding to the third invention]
15 to 16 are operation explanatory diagrams of the fourth embodiment, FIG. 17 is a schematic diagram of the fifth embodiment, and FIGS. 18 and 19 are schematic diagrams of the conventional examples. 8
is a tube, 10 is a light emitting gas, 11 is a cathode, 12 is an anode, and 17=17a, 17b are magnets. Agent Patent Attorney Ishi 1) Ai 7 Figure 1 Figure 2 Figure 77' Figure 3 Figure 4 Figure 5 Figure 9 Figure 11 Figure 15 Figure 17

Claims (6)

【特許請求の範囲】[Claims] (1)管体内の一端に電子放出用カソードとメッシュ状
やリング状の開口アノードとを近接配置し、これらアノ
ードとカソードとの間の距離を管体全長に比べて十分小
さく設定し、且つアノードの反カソード側空間を十分広
い空間とし、管体内には動作時数mmTorrの圧力と
なるように微量の光放出気体を封入し、アノードとカソ
ードとの間を負性抵抗放電をさせることを特徴とする低
圧放電ランプ。
(1) An electron-emitting cathode and a mesh-shaped or ring-shaped opening anode are arranged close to each other at one end of the tube, and the distance between these anodes and the cathode is set to be sufficiently small compared to the overall length of the tube, and the anode The space on the side opposite to the cathode is made sufficiently large, and a small amount of light-emitting gas is sealed inside the tube so that the pressure is several mmTorr during operation, and a negative resistance discharge is generated between the anode and cathode. A low pressure discharge lamp.
(2)光放出気体を水銀とすることを特徴とする特許請
求の範囲第1項記載の低圧放電ランプ。
(2) The low-pressure discharge lamp according to claim 1, wherein the light-emitting gas is mercury.
(3)管体内の一端に電子放出用カソードとメッシュ状
やリング状の開口アノードとを近接配置し、これらアノ
ードとカソードとの間の距離を管体全長に比べて十分小
さく設定し、且つアノードの反カソード側空間を十分広
い空間とし、管体内には動作時数mmTorrの圧力と
なるように微量の光放出気体を封入し、カソード側の管
体の一端外にはカソード・アノードとの間の電界と略平
行方向となるように静磁界を印加し、アノードとカソー
ドとの間を負性抵抗放電をさせることを特徴とする低圧
放電ランプ。
(3) An electron-emitting cathode and a mesh-shaped or ring-shaped opening anode are arranged close to each other at one end of the tube, and the distance between these anodes and the cathode is set to be sufficiently small compared to the entire length of the tube, and the anode The space on the anti-cathode side of the tube is made sufficiently large, and a small amount of light emitting gas is sealed inside the tube so that the pressure is several mmTorr during operation. 1. A low-pressure discharge lamp characterized in that a static magnetic field is applied in a direction substantially parallel to an electric field to cause negative resistance discharge between an anode and a cathode.
(4)上記静磁界の強さを管体内のアノード近辺の電子
のラーマー半径が0.数〜数10mmになるような磁界
強度とすることを特徴とする特許請求の範囲第3項記載
の低圧放電ランプ。
(4) The strength of the static magnetic field is determined by the Larmor radius of electrons near the anode inside the tube being 0. The low-pressure discharge lamp according to claim 3, characterized in that the magnetic field strength is several to several tens of millimeters.
(5)管体内の一端に電子放出用カソードとメッシュ状
やリング状の開口アノードとを近接配置し、これらアノ
ードとカソードとの間の距離を管体全長に比べて十分小
さく設定し、且つアノードの反カソード側空間を十分広
い空間とし、管体内には動作時数mmTorrの圧力と
なるように微量の光放出気体を封入し、カソード側の管
体の一端外及び反対側の管体の他端外には互いに極性が
反対となるように磁石を配置し、アノードとカソードと
の間を負性抵抗放電をさせることを特徴とする低圧放電
ランプ。
(5) An electron-emitting cathode and a mesh-shaped or ring-shaped opening anode are arranged close to each other at one end of the tube, and the distance between these anodes and the cathode is set sufficiently small compared to the entire length of the tube, and the anode The space on the anti-cathode side of the tube is made sufficiently large, and a small amount of light emitting gas is sealed inside the tube so that the pressure is several mm Torr during operation. A low-pressure discharge lamp characterized in that magnets are arranged outside the end so that their polarities are opposite to each other, and negative resistance discharge is caused between an anode and a cathode.
(6)上記磁石の磁界の強さを管体内のアノード近辺の
電子のラーマー半径が0.数〜数10mmになるような
磁界強度とすることを特徴とする特許請求の範囲第5項
記載の低圧放電ランプ。
(6) The strength of the magnetic field of the above magnet is determined by the Larmor radius of electrons near the anode inside the tube. The low-pressure discharge lamp according to claim 5, characterized in that the magnetic field strength is several to several tens of millimeters.
JP12061386A 1986-05-26 1986-05-26 Low pressure discharge lamp Expired - Lifetime JPH0638331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12061386A JPH0638331B2 (en) 1986-05-26 1986-05-26 Low pressure discharge lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12061386A JPH0638331B2 (en) 1986-05-26 1986-05-26 Low pressure discharge lamp

Publications (2)

Publication Number Publication Date
JPS62276752A true JPS62276752A (en) 1987-12-01
JPH0638331B2 JPH0638331B2 (en) 1994-05-18

Family

ID=14790579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12061386A Expired - Lifetime JPH0638331B2 (en) 1986-05-26 1986-05-26 Low pressure discharge lamp

Country Status (1)

Country Link
JP (1) JPH0638331B2 (en)

Also Published As

Publication number Publication date
JPH0638331B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US20020121856A1 (en) Florescent lamps with extended service life
US4413204A (en) Non-uniform resistance cathode beam mode fluorescent lamp
JPS62276752A (en) Low pressure discharge lamp
US9288885B2 (en) Electrical power control of a field emission lighting system
US2763814A (en) Electronic fluorescent illuminating lamp
JP3400489B2 (en) Composite discharge lamp
US20130154520A1 (en) Energy efficient lamp
EP0577275A1 (en) Fluorescent lamp
RU2155416C2 (en) Light source of high brilliance
JPS62163252A (en) Fluorescent lamp
JPH0754694B2 (en) Electrodeless fluorescent lamp system
JPH0220800Y2 (en)
JPS62276747A (en) Luminous radiation electron tube
JPS618827A (en) Reverse view type fluorescent display tube
JPH0524116Y2 (en)
JPH0584633B2 (en)
JP2009032453A (en) Lighting control method for hot-cathode discharge lamp
JPH0582705B2 (en)
JPS6212058A (en) Luminous radiation electron tube
JPH0668847A (en) Cathode for electron tube
JPH0636354B2 (en) Light emitting electron tube
PT85099B (en) FLUORESCENT ILLUMINATION SYSTEM WITHOUT ELECTRODES
JPS6122560A (en) Light emitting electron tube
JPH0531266B2 (en)
JPS63264859A (en) Light emitting electron tube