JPS62276441A - Method and apparatus for inspection - Google Patents
Method and apparatus for inspectionInfo
- Publication number
- JPS62276441A JPS62276441A JP11922486A JP11922486A JPS62276441A JP S62276441 A JPS62276441 A JP S62276441A JP 11922486 A JP11922486 A JP 11922486A JP 11922486 A JP11922486 A JP 11922486A JP S62276441 A JPS62276441 A JP S62276441A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- inspection
- intensity signal
- light
- reflected light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007689 inspection Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000009826 distribution Methods 0.000 claims abstract description 17
- 230000007547 defect Effects 0.000 claims description 19
- 238000003860 storage Methods 0.000 claims description 16
- 239000004065 semiconductor Substances 0.000 claims description 13
- 230000003321 amplification Effects 0.000 claims description 11
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 abstract description 3
- 235000012431 wafers Nutrition 0.000 description 12
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
[産業上の利用分野]
本発明は、検査技術、特に、半導体装置の製造における
ウェハ処理工程において、半導体ウェハに付着した異物
などを検出する作業に適用して有効な技術に関する。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an inspection technique, in particular, to detect foreign matter attached to a semiconductor wafer in a wafer processing step in the manufacture of semiconductor devices. Concerning techniques that are effective when applied to work.
[従来の技術]
半導体ウェハに付着した異物の検査技術については、株
式会社工業調査会、昭和58年11月15日発行、[電
子材料J 1983年別冊、P2O4〜P2O9に記載
されている。[Prior Art] Techniques for inspecting foreign matter adhering to semiconductor wafers are described in Kogyo Kenkyukai Co., Ltd., published November 15, 1983, [Electronic Materials J, 1983 supplement, P2O4 to P2O9.
その概要は、半導体ウェハの表面にレーザなどの検査光
を照射し、この時半導体ウェハ表面に付着した異物など
から発生される散乱光を検出し、この散乱光の強度が所
定のしきい値以上の時に、異物として検出するものであ
る。The outline of this method is to irradiate the surface of a semiconductor wafer with inspection light such as a laser, and detect scattered light generated from foreign matter attached to the surface of the semiconductor wafer. It is detected as a foreign object when
[発明が解決しようとする問題点]
しかしながら、上記のような従来の検査=iでは、半導
体ウェハの種類の変化などにより、下地部分の反射率な
どが変動する毎に実験的にしきい値を求めて設定しなけ
ればならず、検査作業が煩雑となったり、異物の検出性
能が不安定になるという問題がある。[Problems to be solved by the invention] However, in the conventional inspection = i as described above, the threshold value is experimentally determined every time the reflectance of the underlying portion changes due to changes in the type of semiconductor wafer, etc. This poses problems such as complicated inspection work and unstable foreign object detection performance.
さらに、表面に所定の物質の薄膜が形成され凹凸が存在
する半導体ウェハでは異物からの散乱光が下地部分から
の散乱光の中に埋もれてしまい、異物検査そのものがで
きないなど、種々の問題があることを本発明者は見いだ
した。Furthermore, with semiconductor wafers that have a thin film of a certain substance on their surface and have irregularities, there are various problems such as the fact that the scattered light from the foreign matter is buried in the scattered light from the underlying part, making it impossible to perform a foreign matter inspection itself. The present inventor has discovered that.
本発明の目的は、試料表面の下地部分の条件の変化に影
響されることなり、該試料表面に存在する欠陥を安定か
つ簡便に検出することが可能な検査技術を提供すること
にある。An object of the present invention is to provide an inspection technique that can stably and easily detect defects existing on the surface of a sample, which are affected by changes in the conditions of the underlying portion of the sample surface.
本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述および添付図面から明らかになるであろ
う。The above and other objects and novel features of the present invention include:
It will become clear from the description herein and the accompanying drawings.
[問題点を解決するための手段]
本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、次の通りである。[Means for Solving the Problems] A brief overview of typical inventions disclosed in this application is as follows.
すなわち、試料からの反射光または散乱光の強度信号を
多階調に記憶する記憶部と、この記憶部に保持された情
報に基づいて強度信号の度数分布を算出するとともに、
該度数分布に基づいて反射光または散乱光の強度信号の
増幅率またはしきい値を設定する統計処理部とを設け、
予め試料表面に応じた強度信号の増幅率またはしきい値
を設定することにより試料表面における欠陥が検出され
るようにしたものである。That is, a storage section that stores intensity signals of reflected light or scattered light from a sample in multiple gradations, and a frequency distribution of the intensity signals is calculated based on the information held in this storage section.
and a statistical processing unit that sets an amplification factor or a threshold of the intensity signal of the reflected light or scattered light based on the frequency distribution,
Defects on the sample surface are detected by setting the amplification factor or threshold of the intensity signal in advance according to the sample surface.
[作用]
上記した手段によれば、試料の種類などが変化しても、
その都度作業者などを煩わすことなく、試料の下地に応
じた、強度信号の最適な増幅率やしきい値を設定するこ
とができるとともに、たとえば、試料の下地に凹凸など
が存在する場合でも、下地部分からの反射光や散乱光と
、異物などの欠陥からの反射光や散乱光とが明瞭に区別
され、試料表面の下池部分の条件の変化に影響されるこ
となく、該試料表面に存在する欠陥を安定かつ簡便に検
出することが可能となる。[Operation] According to the above-mentioned means, even if the type of sample changes,
It is possible to set the optimal amplification factor and threshold of the intensity signal according to the substrate of the sample without bothering the operator each time. The reflected light and scattered light from the underlying part and the reflected light and scattered light from defects such as foreign objects are clearly distinguished, and the light existing on the sample surface is not affected by changes in the conditions of the lower part of the sample surface. This makes it possible to stably and easily detect defects that occur.
[実施例]
第1図は、本発明の一実施例である検査装置の要部を示
す説明図である。[Example] FIG. 1 is an explanatory diagram showing the main parts of an inspection device that is an example of the present invention.
本実施例の検査装置は、試料表面に所定の検査光を照射
する際に、検出される反射光または散乱光の強度信号の
大小に基づいて、試料表面に存在する欠陥の検査を行う
ものである。The inspection device of this embodiment inspects defects existing on the sample surface based on the magnitude of the intensity signal of the reflected light or scattered light detected when the sample surface is irradiated with a predetermined inspection light. be.
たとえば、XYテーブルや回転台などからなる試料台l
の上には、半導体ウェハなどの試料2が′R置され、こ
の試料2には、所定の波長のレーザなどからなる検査光
3が照射されるように構成されている。For example, a sample stage consisting of an XY table or rotating table, etc.
A sample 2 such as a semiconductor wafer is placed on top of the sample 2, and the sample 2 is configured to be irradiated with an inspection light 3 such as a laser having a predetermined wavelength.
試料2の上方には、たとえば光電子増倍管などの検出器
4が設けられ、試料2の表面からの反射光または散乱光
5が検知され、電気的な信号に変換される構造とされて
いる。A detector 4 such as a photomultiplier tube is provided above the sample 2, and is configured to detect reflected light or scattered light 5 from the surface of the sample 2 and convert it into an electrical signal. .
前記検出器4には、増幅部6を介してA/D変換部7が
接続され、検出器4においてアナログ信号として検出さ
れた反射光または散乱光5の強度信号がディジタル信号
に変換された後、後段の比較部8または信号制御部9に
伝送されるように構成されている。An A/D converter 7 is connected to the detector 4 via an amplifier 6, and after the intensity signal of the reflected light or scattered light 5 detected as an analog signal by the detector 4 is converted into a digital signal. , and is configured to be transmitted to the comparison section 8 or the signal control section 9 at the subsequent stage.
比較部8にはしきい値保持部10が接続されており、た
とえば、しきい値保持部10に保持された所定のしきい
値よりも大きな反射光または散乱光5の強度信号のみが
、比較部8を経て信号制御部9に伝送されるものである
。A threshold holding unit 10 is connected to the comparison unit 8, and for example, only the intensity signal of the reflected light or scattered light 5 that is larger than a predetermined threshold held in the threshold holding unit 10 is subjected to comparison. The signal is transmitted to the signal control section 9 via the section 8.
信号制御部9には、記憶部11が接続されており、反射
光または散乱光5の強度信号が、所定の範囲の値毎に、
すなわち多階調に記憶されるように構成されている。A storage unit 11 is connected to the signal control unit 9, and the intensity signal of the reflected light or scattered light 5 is stored for each value in a predetermined range.
In other words, it is configured to be stored in multiple gradations.
記憶部11には、統計処理部12が接続され、この統計
処理部12においては、記憶部11に保持された情報に
基づいて反射光または散乱光5の強度信号の度数分布を
算出するとともに、該度数分布に基づいて前記しきい値
保持部10に所定のしきい値が設定されるものである。A statistical processing unit 12 is connected to the storage unit 11, and the statistical processing unit 12 calculates the frequency distribution of the intensity signal of the reflected light or scattered light 5 based on the information held in the storage unit 11, and A predetermined threshold value is set in the threshold value holding section 10 based on the frequency distribution.
統計処理部12には、プリンタやテレビ画面などの表示
部13が接続され、検査結果などが出力される構造とさ
れている。The statistical processing section 12 is connected to a display section 13 such as a printer or a television screen, and is configured to output test results and the like.
以下、本実施例の作用について説明する。The operation of this embodiment will be explained below.
まず、試料台1に半導体ウェハなどの試料2が載置され
ると、検査光3が照射され、試料台lを回転または水平
移動させることにより、検査光3が試料2の全面を走査
する。この時、検出器4において検出された反射光また
は散乱光5の強度信号は、増幅部6およびA/D変換部
7、さらには信号制御部9をへて記憶部11に至り、記
憶部11には、試料2の表面からの反射光または散乱光
5の強度信号が多階調に記tQされる。First, when a sample 2 such as a semiconductor wafer is placed on the sample stage 1, the inspection light 3 is irradiated, and by rotating or horizontally moving the sample stage 1, the inspection light 3 scans the entire surface of the sample 2. At this time, the intensity signal of the reflected light or scattered light 5 detected by the detector 4 passes through the amplification section 6, the A/D conversion section 7, and further the signal control section 9, and reaches the storage section 11. , the intensity signal of the reflected light or scattered light 5 from the surface of the sample 2 is recorded in multiple gradations tQ.
そして、統計処理部12においては、多階調に記憶され
ている反射光または散乱光5の強度信号などに基づいて
、たとえば第2図に示されるような反射光または散乱光
5の強度信号の度数分布が把握され、試料2の反射率な
どに応じた適切なしきい値がしきい値保持部10に設定
される。Then, in the statistical processing unit 12, based on the intensity signal of the reflected light or scattered light 5 stored in multiple gradations, for example, the intensity signal of the reflected light or scattered light 5 as shown in FIG. The frequency distribution is grasped, and an appropriate threshold value according to the reflectance of the sample 2 and the like is set in the threshold value holding unit 10.
また、この段階で、第2図に示されるように、試料2の
下地の平均反射率なども知ることができ、たとえば、同
一の種類の試料2において、試料2の下地の平均反射率
の差異などによって、試料2の表面に形成された薄膜の
膜質の良否などを判定できる。In addition, at this stage, as shown in Figure 2, it is possible to know the average reflectance of the base of sample 2. For example, for samples 2 of the same type, the difference in the average reflectance of the base of sample 2 is known. The quality of the thin film formed on the surface of the sample 2 can be judged by the above method.
その後、再び検査光3による試料2の表面の走査が行わ
れ、このとき検出器4において検出された反射光または
散乱光5の強度信号は、増幅部6およびA/D変換部7
を介して比較部8に至り、前記の操作で統計処理部12
によってしきい値保持部10に予め設定された所定のし
きい値と比較され、反射光または散乱光5の強度信号が
所定のしきい値よりも大きいとき、異物などの欠陥とし
て正確に判定され、その時の試料2の表面における異物
などの座標情報や反射光または散乱光5の信号強度の大
きさなどが記憶部11に保持され、随時、統計処理部1
2を介して表示部13に出力される。Thereafter, the inspection light 3 scans the surface of the sample 2 again, and the intensity signal of the reflected light or scattered light 5 detected by the detector 4 at this time is transmitted to the amplifier 6 and the A/D converter 7.
The comparison section 8 is reached through the above operation, and the statistical processing section 12 is reached through the above operation.
When the intensity signal of the reflected light or scattered light 5 is larger than the predetermined threshold, it is accurately determined as a defect such as a foreign object. , the coordinate information of the foreign matter on the surface of the sample 2, the signal intensity of the reflected light or the scattered light 5, etc. at that time are held in the storage unit 11, and are stored in the statistical processing unit 1 at any time.
2 to the display section 13.
このように、本実施例においては以下の効果を得ること
ができる。In this way, the following effects can be obtained in this embodiment.
(1)、検査に先立って、試料2の表面からの反射光ま
たは散乱光5の信号強度が多階調に記憶部11に保持さ
れ、この記憶部11からの情報に基づいて統計処理部1
2が反射光または散乱光5の度数分布を把握し、試料2
の表面状態などに応じた適切なしきい値がしきい値保持
部10に設定され、このしきい値に基づいて、その後の
検査における反射光または散乱光5の強度信号の判別が
行われるため、たとえば試料2の種類が変化され下地の
状態が変動される都度煩雑な手動操作などでしきい値を
設定する必要がなく、検査が簡略化されるとともに、た
とえば、試料2の下地に凹凸などが存在する場合でも、
下地部分からの反射光や散乱光5と、異物などの欠陥か
らの反射光や散乱光5とが明瞭に区別され、試料2の下
地部分の反射率などの変化に影響されることなく、該試
料2に存在する異物などの欠陥を安定かつ簡便に検出す
ることができる。(1) Prior to the inspection, the signal intensity of the reflected light or scattered light 5 from the surface of the sample 2 is stored in the storage unit 11 in multiple gradations, and based on the information from the storage unit 11, the statistical processing unit
2 grasps the frequency distribution of reflected light or scattered light 5, and
An appropriate threshold value is set in the threshold value holding unit 10 according to the surface condition of the surface, and the intensity signal of the reflected light or scattered light 5 is determined in subsequent inspections based on this threshold value. For example, there is no need to set a threshold value through complicated manual operations each time the type of sample 2 changes and the condition of the base changes, which simplifies the inspection. Even if it exists,
The reflected light and scattered light 5 from the underlying part and the reflected light and scattered light 5 from defects such as foreign objects are clearly distinguished, and the reflected light and scattered light 5 from the underlying part of the sample 2 are not affected by changes in the reflectance of the underlying part. Defects such as foreign substances present in the sample 2 can be detected stably and easily.
(2)、前記(1)の結果、半導体ウェハなどの試料2
における異物などの検査における信顛性が向上されると
ともに、検査に要する時間が短縮され、半4体gWの製
造におけるウェハ処理工程の生産性が向上される。(2) As a result of (1) above, sample 2 such as a semiconductor wafer
The reliability of the inspection for foreign matter etc. is improved, the time required for the inspection is shortened, and the productivity of the wafer processing process in the manufacture of the half-four body gW is improved.
(3)、前記(1)の結果、統計処理部12において把
握される反射光または散乱光5の強度信号の度数分布を
把握することにより、試料2の表面の平均反射率などを
知ることができ、たとえば、同一の種類の試料2におい
て、試料2の下地の平均反射率の差異などによって、試
料2の表面に形成された薄膜の改質の良否などを判定で
きる。(3) As a result of (1) above, it is possible to know the average reflectance of the surface of the sample 2 by understanding the frequency distribution of the intensity signal of the reflected light or scattered light 5 detected by the statistical processing unit 12. For example, for samples 2 of the same type, it is possible to judge whether the modification of the thin film formed on the surface of the sample 2 is good or bad based on the difference in the average reflectance of the base of the sample 2.
以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。たとえば、しきい値保持
部におけるしきい値を所定の値に固定して設定するとと
もに、統計処理部によって把握される反射光または散乱
光の強度信号の度数分布に基づいて、増幅部における増
幅率を制御することにより、試料の下地と異物などの欠
陥とが識別されるようにしてもよい。Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Nor. For example, the threshold value in the threshold holding section is fixed to a predetermined value, and the amplification factor in the amplification section is determined based on the frequency distribution of the intensity signal of reflected light or scattered light as determined by the statistical processing section. By controlling this, the base of the sample and defects such as foreign objects may be distinguished.
以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野である半導体装置の製造に
おけるウェハ処理工程の異物検査に適用した場合につい
て説明したが、それに限定されるものではなく、たとえ
ば、フォトマスクやレチクル、さらには光ディスクなど
の異物検査などに広く適用できる。In the above explanation, the invention made by the present inventor was mainly applied to the foreign matter inspection in the wafer processing process in the manufacture of semiconductor devices, which is the background field of application, but the invention is not limited to this. For example, it can be widely applied to foreign matter inspection of photomasks, reticles, and even optical discs.
[発明の効果]
本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下記の通りである
。[Effects of the Invention] The effects obtained by typical inventions disclosed in this application are briefly described below.
すなわち、試料表面に所定の検査光を照射する際に検出
される反射光または散乱光の強度信号の大小に基づいて
、該試料表面に存在する欠陥の検査を行う検査装置で、
前記反射光または散乱光の強度信号を多階調に記憶する
記憶部と、該記憶部に保持された情報に基づいて前記強
度信号の度数分布を算出するとともに、該度数分布に基
づいて前記反射光または散乱光の強度信号の増幅率また
はしきい値を設定する統計処理部とからなり、予め前記
試料表面に応した前記強度信号の増幅率またはしきい値
を設定することにより前記試料表面における欠陥を検出
するため、試料の種類などが変化しても、その都度作業
者などを煩わすことなく、試料の下地に応じた、強度信
−号の最適な増幅率やしきい値を設定することができる
とともに、たとえば、試料の下地に凹凸などが存在する
場合でも、下地部分からの反射光や散乱光と、異物など
の欠陥からの反射光や散乱光とが明瞭に区別され、試料
の下地部分の条件の変化に影響されることなく、該試料
表面に存在する欠陥を安定かつ筒便に検出することが可
能となる。That is, an inspection device that inspects defects present on the sample surface based on the magnitude of the intensity signal of reflected light or scattered light detected when the sample surface is irradiated with a predetermined inspection light,
a storage unit that stores the intensity signal of the reflected light or the scattered light in multiple gradations; and a storage unit that calculates the frequency distribution of the intensity signal based on the information held in the storage unit, and calculates the frequency distribution of the intensity signal based on the frequency distribution. and a statistical processing unit that sets an amplification factor or a threshold value for the intensity signal of light or scattered light. In order to detect defects, even if the type of sample changes, the optimal amplification factor and threshold of the intensity signal can be set according to the substrate of the sample without bothering the operator each time. For example, even if there are irregularities on the base of the sample, the reflected light and scattered light from the base part is clearly distinguished from the reflected light and scattered light from defects such as foreign objects, and the base of the sample can be clearly distinguished. It becomes possible to stably and conveniently detect defects existing on the surface of the sample without being affected by changes in the conditions of the part.
第1図は、本発明の一実施例である検査装置の要部を示
す説明図、
第2図は、その作用を説明する線図である。
!・・・試料台、2・・・試料、3・・・検査光、4・
・・検出器、5・・・反射光または散乱光、6・・・増
幅部、7・・・A/D変換部、8・・・比較部、9・・
・信号制御部、10・・・しきい値保持部、11・・・
記憶部、12・・・統計処理部、13・・・表示部。FIG. 1 is an explanatory diagram showing the main parts of an inspection device that is an embodiment of the present invention, and FIG. 2 is a diagram explaining its operation. ! ...Sample stand, 2...Sample, 3...Inspection light, 4.
...Detector, 5...Reflected light or scattered light, 6...Amplification section, 7...A/D conversion section, 8...Comparison section, 9...
- Signal control section, 10... Threshold holding section, 11...
Storage unit, 12... Statistical processing unit, 13... Display unit.
Claims (1)
反射光または散乱光の強度信号の大小に基づいて、該試
料表面に存在する欠陥の検査を行う検査方法であって、
予め試料表面における反射光または散乱光の強度信号を
多階調に検出して度数分布を把握し、該度数分布に基づ
いて、前記強度信号の増幅率またはしきい値を設定する
ことにより前記試料表面における欠陥を検出することを
特徴とする検査方法。 2、前記欠陥が前記試料表面に付着した異物であること
を特徴とする特許請求の範囲第1項記載の検査方法。 3、前記試料が半導体ウェハであることを特徴とする特
許請求の範囲第1項記載の検査方法。 4、試料表面に所定の検査光を照射する際に検出される
反射光または散乱光の強度信号の大小に基づいて、該試
料表面に存在する欠陥の検査を行う検査装置であって、
前記反射光または散乱光の強度信号を多階調に記憶する
記憶部と、該記憶部に保持された情報に基づいて前記強
度信号の度数分布を算出するとともに、該度数分布に基
づいて前記反射光または散乱光の強度信号の増幅率また
はしきい値を設定する統計処理部とからなり、予め前記
試料表面に応じた前記強度信号の増幅率またはしきい値
を設定することにより前記試料表面における欠陥を検出
することを特徴とする検査装置。 5、前記欠陥が前記試料表面に付着した異物であること
を特徴とする特許請求の範囲第4項記載の検査装置。 6、前記試料が半導体ウェハであることを特徴とする特
許請求の範囲第4項記載の検査装置。[Claims] 1. An inspection method for inspecting defects existing on a sample surface based on the magnitude of an intensity signal of reflected light or scattered light detected when the sample surface is irradiated with a predetermined inspection light. And,
The intensity signal of the reflected light or scattered light on the sample surface is detected in advance in multiple gradations to understand the frequency distribution, and the amplification factor or threshold of the intensity signal is set based on the frequency distribution. An inspection method characterized by detecting defects on a surface. 2. The inspection method according to claim 1, wherein the defect is a foreign substance attached to the surface of the sample. 3. The inspection method according to claim 1, wherein the sample is a semiconductor wafer. 4. An inspection device that inspects defects present on a sample surface based on the magnitude of an intensity signal of reflected light or scattered light detected when the sample surface is irradiated with a predetermined inspection light,
a storage unit that stores the intensity signal of the reflected light or the scattered light in multiple gradations; and a storage unit that calculates the frequency distribution of the intensity signal based on the information held in the storage unit, and calculates the frequency distribution of the intensity signal based on the frequency distribution. a statistical processing unit that sets an amplification factor or a threshold value for the intensity signal of light or scattered light; An inspection device characterized by detecting defects. 5. The inspection apparatus according to claim 4, wherein the defect is a foreign substance attached to the sample surface. 6. The inspection apparatus according to claim 4, wherein the sample is a semiconductor wafer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11922486A JPS62276441A (en) | 1986-05-26 | 1986-05-26 | Method and apparatus for inspection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11922486A JPS62276441A (en) | 1986-05-26 | 1986-05-26 | Method and apparatus for inspection |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62276441A true JPS62276441A (en) | 1987-12-01 |
Family
ID=14756028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11922486A Pending JPS62276441A (en) | 1986-05-26 | 1986-05-26 | Method and apparatus for inspection |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62276441A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333605A (en) * | 1989-06-30 | 1991-02-13 | Hitachi Ltd | Comparing/testing method of patterns and apparatus thereof |
JPH05133906A (en) * | 1991-04-17 | 1993-05-28 | Hitachi Electron Eng Co Ltd | Method for setting optimum threshold foreign matter inspecting apparatus |
US6185322B1 (en) | 1989-07-12 | 2001-02-06 | Hitachi, Ltd. | Inspection system and method using separate processors for processing different information regarding a workpiece such as an electronic device |
US6404911B2 (en) | 1989-07-12 | 2002-06-11 | Hitachi, Ltd. | Semiconductor failure analysis system |
JP2006194900A (en) * | 2005-01-13 | 2006-07-27 | Komag Inc | Method and device for selectively supplying data from test head to processor |
JP2009115753A (en) * | 2007-11-09 | 2009-05-28 | Hitachi High-Technologies Corp | Detection circuit and foreign matter inspection apparatus for semiconductor wafer |
WO2010113232A1 (en) * | 2009-03-31 | 2010-10-07 | 株式会社 日立ハイテクノロジーズ | Examining method and examining device |
JP2012159516A (en) * | 2012-05-14 | 2012-08-23 | Hitachi High-Technologies Corp | Foreign matter inspection device for semiconductor wafer |
-
1986
- 1986-05-26 JP JP11922486A patent/JPS62276441A/en active Pending
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0333605A (en) * | 1989-06-30 | 1991-02-13 | Hitachi Ltd | Comparing/testing method of patterns and apparatus thereof |
US6185322B1 (en) | 1989-07-12 | 2001-02-06 | Hitachi, Ltd. | Inspection system and method using separate processors for processing different information regarding a workpiece such as an electronic device |
US6330352B1 (en) | 1989-07-12 | 2001-12-11 | Hitachi, Ltd. | Inspection data analyzing system |
US6339653B1 (en) | 1989-07-12 | 2002-01-15 | Hitachi, Ltd. | Inspection data analyzing system |
US6404911B2 (en) | 1989-07-12 | 2002-06-11 | Hitachi, Ltd. | Semiconductor failure analysis system |
US6529619B2 (en) | 1989-07-12 | 2003-03-04 | Hitachi, Ltd. | Inspection data analyzing system |
US6628817B2 (en) | 1989-07-12 | 2003-09-30 | Hitachi, Ltd. | Inspection data analyzing system |
JPH05133906A (en) * | 1991-04-17 | 1993-05-28 | Hitachi Electron Eng Co Ltd | Method for setting optimum threshold foreign matter inspecting apparatus |
JP2006194900A (en) * | 2005-01-13 | 2006-07-27 | Komag Inc | Method and device for selectively supplying data from test head to processor |
JP2009115753A (en) * | 2007-11-09 | 2009-05-28 | Hitachi High-Technologies Corp | Detection circuit and foreign matter inspection apparatus for semiconductor wafer |
WO2010113232A1 (en) * | 2009-03-31 | 2010-10-07 | 株式会社 日立ハイテクノロジーズ | Examining method and examining device |
JP2012159516A (en) * | 2012-05-14 | 2012-08-23 | Hitachi High-Technologies Corp | Foreign matter inspection device for semiconductor wafer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6384909B2 (en) | Defect inspection method and apparatus for silicon wafer | |
US7557913B2 (en) | Optical apparatus for defect inspection | |
JP5357509B2 (en) | Inspection device, inspection method, and calibration system for inspection device | |
JPH0535983B2 (en) | ||
US8558999B2 (en) | Defect inspection apparatus and method utilizing multiple inspection conditions | |
JPH11101624A (en) | Flaw evaluating device, its method, and manufacture of semiconductor | |
US7433032B2 (en) | Method and apparatus for inspecting defects in multiple regions with different parameters | |
JP3101257B2 (en) | Method for inspecting sample surface and X-ray analyzer using the same | |
JPS62276441A (en) | Method and apparatus for inspection | |
WO2010113232A1 (en) | Examining method and examining device | |
US6172749B1 (en) | Method of and apparatus for detecting a surface condition of a wafer | |
JP3793668B2 (en) | Foreign object defect inspection method and apparatus | |
JP3031053B2 (en) | Cleaning ability evaluation method | |
JP2002231780A (en) | Method for inspecting hole by using charged particle beam | |
EP3290910A1 (en) | Method for judging whether semiconductor wafer is non-defective wafer by using laser scattering method | |
JP2002340811A (en) | Surface evaluation device | |
JP2003240723A (en) | Method and apparatus for examining defect | |
JP2008311364A (en) | Semiconductor inspecting device | |
JPH05215696A (en) | Method and apparatus for inspecting defect | |
KR20040107950A (en) | Method for measuring wafer warpage | |
JP2001284423A (en) | Semiconductor inspection appliance and method of manufacturing semiconductor device | |
JPH0518901A (en) | Wafer-surface inspecting apparatus | |
JPH07159333A (en) | Apparatus and method for inspection of appearance | |
JP5638098B2 (en) | Inspection device and inspection condition acquisition method | |
JP5074058B2 (en) | Foreign matter inspection method and foreign matter inspection device |