JPS6227553B2 - - Google Patents

Info

Publication number
JPS6227553B2
JPS6227553B2 JP14140185A JP14140185A JPS6227553B2 JP S6227553 B2 JPS6227553 B2 JP S6227553B2 JP 14140185 A JP14140185 A JP 14140185A JP 14140185 A JP14140185 A JP 14140185A JP S6227553 B2 JPS6227553 B2 JP S6227553B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
semiconductor
rectifier
layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14140185A
Other languages
Japanese (ja)
Other versions
JPS6139575A (en
Inventor
Yoshihito Amamya
Takayuki Sugata
Yoshihiko Mizushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14140185A priority Critical patent/JPS6139575A/en
Publication of JPS6139575A publication Critical patent/JPS6139575A/en
Publication of JPS6227553B2 publication Critical patent/JPS6227553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体整流装置の改良に関する。更
に詳しくは、高い逆方向耐圧を保ちながら順方向
電圧降下を低下させた半導体整流装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to improvements in semiconductor rectifier devices. More specifically, the present invention relates to a semiconductor rectifier that reduces forward voltage drop while maintaining high reverse breakdown voltage.

(従来の技術) 半導体整流装置として、従来、第2図を伴なつ
て次に述べる構成を有するものが提案されてい
る。
(Prior Art) Conventionally, a semiconductor rectifier having the configuration described below with reference to FIG. 2 has been proposed.

すなわち、例えば5×1018atom/cm3以上のよう
な高い不純物濃度を有し且つ例えばN+型を有す
る半導体層1と、その半導体層1上に形成されて
いるとともに、例えば5×1016atom/cm3以下のよ
うな半導体層1に比し低い不純物濃度を有し且つ
P-型を有する半導体層2と、その半導体層2の
半導体層1とは反対側に形成されているとともに
例えば5×1018atom/cm3以上のような高い不純物
濃度を有し且つP+型を有する半導体層3とを有
する。
That is, a semiconductor layer 1 having a high impurity concentration of, for example, 5×10 18 atoms/cm 3 or more and having, for example, N + type, is formed on the semiconductor layer 1, and is formed on the semiconductor layer 1, for example, 5×10 16 It has a lower impurity concentration than the semiconductor layer 1, such as atoms/cm 3 or less, and
A semiconductor layer 2 having a P - type is formed on the opposite side of the semiconductor layer 1 from the semiconductor layer 1, and has a high impurity concentration of, for example, 5×10 18 atoms/cm 3 or more, and has a P + It has a semiconductor layer 3 having a mold.

また、半導体層1の半導体層2側とは反対側に
オーミツクに付されている電極4と、半導体層3
の半導体層2側とは反対側にオーミツクに付され
ている電極5とを有する。
Further, an electrode 4 attached to the ohmic on the side opposite to the semiconductor layer 2 side of the semiconductor layer 1 and the semiconductor layer 3
It has an electrode 5 attached to the ohmic on the side opposite to the semiconductor layer 2 side.

以上が、従来提案されている半導体整流装置の
構成である。
The above is the configuration of a conventionally proposed semiconductor rectifier.

このような構成を有する半導体整流装置は、所
謂PIN型ダイオード構成を有する半導体整流装置
である。
A semiconductor rectifier having such a configuration is a semiconductor rectifier having a so-called PIN diode configuration.

ところで、このような構成を有する半導体整流
装置によれば、その電極4及び5間に、電極5側
を正とする電圧が与えられた場合、半導体領域1
側から半導体層2側に電子が注入され、この電子
の電荷を中和するために、半導体層3側から、半
導体層2側に正孔が供給される機構で、電極4及
び5間が導通状態となる。
By the way, according to the semiconductor rectifier having such a configuration, when a voltage is applied between the electrodes 4 and 5 with the electrode 5 side being positive, the semiconductor region 1
Electrons are injected from the side to the semiconductor layer 2 side, and in order to neutralize the charge of the electrons, holes are supplied from the semiconductor layer 3 side to the semiconductor layer 2 side, and conduction occurs between the electrodes 4 and 5. state.

また、このような状態から、電極4及び5間に
電極5側を負とする電圧が与えられた場合、電極
4及び5間が不導通状態になる。
Further, in such a state, if a voltage is applied between the electrodes 4 and 5 such that the electrode 5 side is negative, the electrodes 4 and 5 become non-conductive.

従つて、第2図に示す半導体整流装置は、整流
装置としての機能を呈する。
Therefore, the semiconductor rectifier shown in FIG. 2 functions as a rectifier.

(発明が解決しようとする問題点) しかし、このような従来の半導体整流装置の場
合、半導体層3は上述した導通状態が得られたと
き、上述したように半導体層2側に、正孔を供給
する作用を行つていると同時に、半導体層2に、
半導体層1側から注入された電子を吸収する作用
を行つている。この場合、半導体層3及び半導体
層2間には、半導体層3から半導体層2側に向う
正孔に対する電位障壁は存在しない。しかしなが
ら、P-P+接合があるので、半導体層2から半導
体層3側に向う電子に対する電位障壁が存在す
る。
(Problems to be Solved by the Invention) However, in the case of such a conventional semiconductor rectifier, when the above-mentioned conductive state is obtained, the semiconductor layer 3 releases holes to the semiconductor layer 2 side as described above. At the same time as supplying the semiconductor layer 2,
It functions to absorb electrons injected from the semiconductor layer 1 side. In this case, there is no potential barrier between the semiconductor layer 3 and the semiconductor layer 2 for holes moving from the semiconductor layer 3 toward the semiconductor layer 2 side. However, since there is a P - P + junction, a potential barrier exists for electrons moving from the semiconductor layer 2 toward the semiconductor layer 3 side.

換言すれば半導体層3は、半導体層1側より注
入された半導体層2中の電子を吸収する能力が低
いことになる。このため、半導体層1から半導体
層2に注入された電子は、電極5への到達がさま
たげられる傾向にあり、また半導体層2の中に電
子が蓄積する。
In other words, the semiconductor layer 3 has a low ability to absorb electrons in the semiconductor layer 2 injected from the semiconductor layer 1 side. Therefore, electrons injected from the semiconductor layer 1 to the semiconductor layer 2 tend to be prevented from reaching the electrode 5, and electrons are accumulated in the semiconductor layer 2.

従つて、上述した半導体整流装置の場合、その
導通時における電極4及び5間の電圧即ち順方向
降下電圧が、比較的大であると共に、導通状態か
ら電極4及び5間に与える電圧を遮断することに
よつて不導通状態に回復する時の、その回復迄に
要する時間即ち逆方向回復時間が比較的長い、と
いう欠点を有する。
Therefore, in the case of the semiconductor rectifier described above, the voltage between the electrodes 4 and 5 when the device is conductive, that is, the forward voltage drop, is relatively large, and the voltage applied between the electrodes 4 and 5 is cut off from the conductive state. This has the drawback that the time required to recover from the non-conducting state, that is, the reverse recovery time is relatively long.

(問題点を解決するための手段) このような問題点を解決するため、本発明は従
来と同じ導通型の素子として例示するならば、
P+形単結晶の面積をダイオード面積より少なく
し、かつ複数領域に分割して形成するとともに、
これら複数のP+形単結晶領域及びこれらが形成
されていないP-形単結晶半導体の上面に、オー
ミツクに連結して形成された高濃度P+形多結晶
半導体層を設け、多結晶半導体と単結晶半導体境
界面が、少数キヤリアたる電子を多結晶半導体中
に導くバンド構造であり、かつ多結晶半導体の結
晶粒界には高密度の再結合中心であることから、
電子吸収作用を有する点に着目し、これを電子吸
込層として動作させることにより順方向降下電圧
を小となすことを特徴とするものである。
(Means for Solving the Problems) In order to solve these problems, the present invention is exemplified as a conduction type element like the conventional one.
By making the area of the P + type single crystal smaller than the diode area and dividing it into multiple regions,
A high concentration P + type polycrystalline semiconductor layer formed in an ohmic connection is provided on the upper surface of the plurality of P + type single crystal regions and the P - type single crystal semiconductor where these regions are not formed, and the polycrystalline semiconductor and polycrystalline semiconductor layers are formed. Since the single-crystal semiconductor interface has a band structure that guides minority carrier electrons into the polycrystalline semiconductor, and the grain boundaries of the polycrystalline semiconductor have a high density of recombination centers,
It is characterized by focusing on the fact that it has an electron absorption effect, and by operating it as an electron absorption layer, the forward voltage drop can be reduced.

(実施例) 第1図は、本願発明による半導体整流装置の特
徴を最もよく示した実施例である。
(Example) FIG. 1 is an example that best illustrates the characteristics of the semiconductor rectifier according to the present invention.

第2図との対応部分には同一符号を付して示
す。
Components corresponding to those in FIG. 2 are designated by the same reference numerals.

第1図に示す本発明による半導体装置は、次に
述べる構成を有する。
The semiconductor device according to the present invention shown in FIG. 1 has the configuration described below.

すなわち、第2図で上述したと同様のN+型を
有する半導体層1と、 P-型を有する半導体層2とを有する。
That is, it has a semiconductor layer 1 having an N + type and a semiconductor layer 2 having a P - type similar to that described above in FIG.

また、半導体層2の半導体層1側とは反対側に
局部的に形成された、半導体層2に比し高い不純
物濃度を有し且つP+導電型を有する複数の半導
体領域13を有する。この半導体領域13は、半
導体層2に第1の電荷符号を有するキヤリアすな
わち正孔を供給する作用を行う領域として形成さ
れている。
Further, a plurality of semiconductor regions 13 having an impurity concentration higher than that of the semiconductor layer 2 and having a P + conductivity type are formed locally on the side of the semiconductor layer 2 opposite to the semiconductor layer 1 side. This semiconductor region 13 is formed as a region that functions to supply carriers, that is, holes having a first charge sign to the semiconductor layer 2 .

さらに、半導体層1の半導体層2側とは反対側
上にオーミツクに付されている電極4を有する。
Further, an electrode 4 is provided on the side of the semiconductor layer 1 opposite to the semiconductor layer 2 side, which is attached to an ohmic.

なおさらに、高不純物濃度のP+形多結晶(単
結晶領域と同一物質のもの、例えばシリコン)半
導体でなる層20が半導体領域13と、半導体層
2のP+形半導体領域13の形成されていない領
域とに連結して形成され、従つて、P+多結晶半
導体(例えばシリコン)20とP-単結晶半導体
(例えばシリコン)2の境界16を形成し、又多
結晶半導体層20の半導体層2とは反対側上に電
極15がオーミツクに付されている。
Furthermore, the semiconductor region 13 and the P + type semiconductor region 13 of the semiconductor layer 2 are formed by a layer 20 made of a highly impurity-concentrated P + type polycrystalline (same material as the single crystal region, for example, silicon) semiconductor. 2, and thus forms a boundary 16 between the P + polycrystalline semiconductor (e.g., silicon) 20 and the P - single-crystalline semiconductor (e.g., silicon) 2, and also forms a semiconductor layer of the polycrystalline semiconductor layer 20. On the side opposite to 2, an electrode 15 is attached to the ohmic.

このような構成によれば、電極4及び15間に
電極15側を正とする電圧が与えられた場合、半
導体層1及び2、及び半導体領域13が、夫々第
2図の半導体整流装置の半導体層1及び2、及び
半導体層3に対応し、また、電極4及び15が第
2図の半導体整流装置の電極4及び5に対応して
いるので、半導体領域1側から、半導体層2内に
電子が注入され、また、半導体層13側から半導
体層2内に正孔が供給される機構で電極4及び1
5間が導通状態となる。
According to such a configuration, when a voltage is applied between the electrodes 4 and 15 with the electrode 15 side being positive, the semiconductor layers 1 and 2 and the semiconductor region 13 are respectively connected to the semiconductor rectifying device of FIG. Since the electrodes 4 and 15 correspond to the electrodes 4 and 5 of the semiconductor rectifier shown in FIG. The electrodes 4 and 1 have a mechanism in which electrons are injected and holes are supplied from the semiconductor layer 13 side into the semiconductor layer 2.
5 becomes conductive.

また、このような状態から、電極4及び15間
に、電極15側を負とする電圧が与えられた場
合、電極4及び15間は不導電状態になる。
Further, in such a state, if a voltage is applied between the electrodes 4 and 15 with the electrode 15 side being negative, the electrodes 4 and 15 become non-conductive.

従つて、第2図の半導体整流装置の場合と同様
に、整流装置としての機能を呈する。
Therefore, like the semiconductor rectifier shown in FIG. 2, it functions as a rectifier.

然し乍ら、第1図に示す本発明による半導体整
流装置の実施例の場合、半導体領域13のほかに
これと並置している電子を吸収する作用を行う
『P+多結晶半導体層20とP-単結晶半導体2との
境界16』を有するので、上述した導通状態が得
られているとき、上記境界16が半導体層1側か
ら半導体層2内に注入される電子を吸収する作用
を行う。この動作原理を、半導体がシリコンであ
る場合を例にとつて説明する。単結晶上に堆積さ
れた多結晶シリコンは第3図に図示するように
結晶粒が重なつた構造となり、均一な層が積層す
るものではない。ここで、単結晶上に堆積された
多結晶シリコン及び単結晶をABで切つたとき、
その断面に沿つてみたバンド構造は第3図のよ
うになる。粒界部分a〜e及び多結晶と単結晶の
境界が、半導体がP型ならばバンドが第3図に
示すように下に曲り、n型ならば逆に上に曲がる
ことが知られている。多結晶シリコン中の各結晶
粒、及び粒界部のバンド構造が、第3図のよう
になることは、例えばジヤーナル・オブ・アプラ
イド・フイジツクスの1983年第54巻第1976頁〜
1980頁に記載されたトンプソンらの論文「エフエ
クツ・オブ・インターフエイス・ポテンシヤル・
ノンユニフオーミテイー・オン・キヤリヤ・トラ
ンスポート・アクロス・シリコン・グレイン・バ
ンダリーズ」(Journal of Applied Physics
vol54 No.4 PP1976〜1980(1983);D.J.
Thompson“Effects of interface−potential
nonuniformities on carrier transport across
silicon grain boundaries”)の第1図a(Fig1
(a))から論理的に導かれる。
However, in the case of the embodiment of the semiconductor rectifying device according to the present invention shown in FIG . Since the semiconductor layer 1 has a boundary 16 with the crystalline semiconductor 2, the boundary 16 acts to absorb electrons injected into the semiconductor layer 2 from the semiconductor layer 1 side when the above-mentioned conductive state is obtained. This principle of operation will be explained using an example in which the semiconductor is silicon. Polycrystalline silicon deposited on a single crystal has a structure in which crystal grains overlap, as shown in FIG. 3, and the layers are not uniformly laminated. Here, when the polycrystalline silicon deposited on the single crystal and the single crystal are cut at AB,
The band structure seen along the cross section is shown in Figure 3. It is known that if the semiconductor is P-type, the band will bend downwards as shown in Figure 3, and if the semiconductor is N-type, the band will bend upwards at the grain boundary parts a to e and the boundary between polycrystal and single crystal. . The band structure of each crystal grain and grain boundary in polycrystalline silicon is as shown in Figure 3, for example, as described in Journal of Applied Physics, 1983, Volume 54, Page 1976.
Thompson et al.'s paper “Effects of Interface Potential” published on page 1980.
“Nonuniformity on Carrier Transport Across Silicon Grain Bandages” (Journal of Applied Physics)
vol54 No.4 PP1976-1980 (1983); DJ
Thompson “Effects of interface−potential
nonuniformities on carrier transport across
Fig. 1 a (Fig. 1
It follows logically from (a)).

なおかつ、上記単結晶と多結晶の境界面、及び
多結晶内の粒界部には、高密度の再結合中心(界
面準位)が存在し、ライフタイムが短い再結合中
心となつて少数キヤリアを再結合させる作用があ
り、具体的にはライフタイムが数ps〜数nsと非
常に短時間で少数キヤリアをほとんど再結合させ
てしまうことが、例えばアイ・イー・イー・イ
ー、トランザクシヨン・オン・イー・デイーの
1977年第1025〜1031頁に記されたリーブリツヒら
の論文「ア・ポリシリコン−シリコン−エヌ・ピ
ージヤンクシヨン)(IEEE.Trans on ED vol
ED−24 No.8 PP1025〜1031、1977;Z.
Lieblich“A Polysilicon−Silicon n−P
Junction”)の第10図(Fig10)に示されてい
る。即ち、再結合中心のライフタイムと、その結
晶でp−n接合を作り、その接合部のライフタイ
ムを実測した結果とは、ほぼ等しくなる(高々約
1/2〜約2倍のちがい)ということが、本技術分
野で周知であるので上記Fig10より再結合中心の
ライフタイムも、やはり数ピコ〜数ナノ秒と非常
に短いことがわかる。従つて、第3図に示すよう
に、P形単結晶側から電子が多結晶方向に流れて
くると(で示す)多結晶との境界、若しくは境
界からわずかに入つた多結晶中の再結合中心を介
して急速に再結合する(、)。即ち、境界1
6は電子を吸収する作用を有する。(多結晶と単
結晶がn形のときは正孔吸収の作用を有する。) このため、第2図で上述した半導体整流装置と
比較した場合、半導体層1から半導体層2に注入
された電子は、P+形多結晶シリコン層20に容
易に注入することができ、またそのため半導体層
2の中に電子が蓄積する量は無視し得る程度に小
である。
Furthermore, there are high-density recombination centers (interface states) at the interface between the single crystal and polycrystal, as well as at the grain boundaries within the polycrystal, and these recombination centers have a short lifetime and become minority carriers. Specifically, most of the minority carriers are recombined in a very short time with a lifetime of several ps to several ns. On E.D.
Liebrich et al., 1977, pp. 1025-1031, “A Polysilicon-N.P. Yankee” (IEEE. Trans on ED vol.
ED-24 No.8 PP1025-1031, 1977; Z.
Lieblich“A Polysilicon-Silicon n-P
In other words, the lifetime of the recombination center and the result of making a p-n junction with the crystal and actually measuring the lifetime of the junction are approximately the same. be equal (at most about
Since it is well known in this technical field that the difference is 1/2 to about 2 times, it can be seen from Fig. 10 above that the lifetime of the recombination center is also very short, ranging from several picoseconds to several nanoseconds. Therefore, as shown in Figure 3, when electrons flow from the P-type single crystal side toward the polycrystal, they recombine at the boundary with the polycrystal (indicated by ) or within the polycrystal that slightly enters from the boundary. rapidly recombining through the center (,). That is, boundary 1
6 has the function of absorbing electrons. (When polycrystal and single crystal are n-type, they have a hole absorption effect.) Therefore, when compared with the semiconductor rectifier device described above in FIG. can be easily injected into the P + type polycrystalline silicon layer 20, and therefore the amount of electrons accumulated in the semiconductor layer 2 is negligibly small.

従つて、第1図に示す本発明による半導体整流
装置の実施例の場合、その導通時における電極4
及び15間の電圧すなわち順方向降下電圧が、第
2図で上述した従来の半導体整流装置の場合に比
し、格段的に小であるとともに、導通状態から、
電極4及び15間に与える電圧を遮断することに
よつて不導通状態に回復するまでの時間、すなわ
ち逆方向回復時間が、第2図で上述した従来の半
導体整流装置の場合に比し、格段的に短いという
特徴を有する。
Therefore, in the case of the embodiment of the semiconductor rectifier according to the invention shown in FIG.
The voltage between
The time taken to restore the non-conducting state by cutting off the voltage applied between the electrodes 4 and 15, that is, the reverse recovery time, is significantly shorter than that of the conventional semiconductor rectifier described above in FIG. It has the characteristic of being relatively short.

上述の効果を実証するために、第2図に示す従
来構造及び第1図に示す本発明の構造を有する電
力整流用ダイオードをそれぞれ試作し、逆方向回
復時間を実測した。それぞれのダイオードにおい
て、N+層は500μmの厚さで、0.01Ωcm、P-層は
15μmの厚さで5Ωcmとした。又、従来構造にお
けるP+層は0.5μm厚の単結晶で不純物濃度が
1019cm-3の層を用いた。一方、本発明の構造にお
いて、P+層20はボロンをドープした多結晶シ
リコンを用い不純物濃度は2×1020cm-3の層を用
い、部分的に存在するP+領域13は0.1μmの厚
さの拡散領域(不純物濃度1019cm-3)を用いた。
両者の逆方向回復時間を実測したところ第4図に
示すように、従来構造が約0.6μsであつたのに
対し(第4図a)、本発明の構造では約70nsであ
り(第4図b)、約1桁高速に動作することが確
認できた。
In order to demonstrate the above-mentioned effect, power rectifying diodes having the conventional structure shown in FIG. 2 and the structure of the present invention shown in FIG. 1 were manufactured as prototypes, and the reverse recovery time was actually measured. In each diode, the N + layer is 500μm thick, the P− layer is 0.01Ωcm, and the P− layer is 0.01Ωcm thick.
The thickness was 15μm and the resistance was 5Ωcm. In addition, the P + layer in the conventional structure is a 0.5 μm thick single crystal with a low impurity concentration.
A layer of 10 19 cm -3 was used. On the other hand, in the structure of the present invention, the P + layer 20 is made of boron-doped polycrystalline silicon with an impurity concentration of 2×10 20 cm -3 , and the partially existing P + region 13 has a thickness of 0.1 μm. A thick diffusion region (impurity concentration 10 19 cm -3 ) was used.
When we actually measured the reverse recovery time for both, as shown in Figure 4, it was approximately 0.6 μs for the conventional structure (Figure 4 a), while it was approximately 70 ns for the structure of the present invention (Figure 4). b), it was confirmed that it operated approximately one order of magnitude faster.

なお、上述においては、本発明の僅かな実施例
を示したに留まり、例えば、上述せる実施例にお
いて、「N+」を「P+」、「P-」を「N-」、「P+」を
「N+」、電子を正孔、正孔を電子に読替えた構成
とすることもでき、その他、本発明の精神を脱す
ることなしに、種々の変型、変更をなし得るであ
ろう。
In the above description, only a few embodiments of the present invention have been shown. For example, in the embodiments described above, "N + " is replaced by "P + ", "P - " is replaced by "N - ", "P + "" may be replaced with "N + ", electrons may be replaced with holes, and holes may be replaced with electrons, and various other modifications and changes may be made without departing from the spirit of the present invention. .

(発明の効果) 以上説明したように、本発明によれば順方向電
圧降下が小さく、整流効率が高く、更に逆方向回
復時間の短縮化が可能なPIN型ダイオードを簡単
な構造で実現することができる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to realize a PIN diode with a simple structure, which has a small forward voltage drop, high rectification efficiency, and shortens the reverse recovery time. I can do it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本願発明による半導体整流装置の実
施例を示す略線的断面図である。第2図は、従来
の半導体整流装置を示す略線的断面図である。第
3図は単結晶上の多結晶シリコン層の形態を説
明する概念図。第3図は、のABに沿つたバ
ンド構造及び少数キヤリア(電子)吸収作用の説
明図。第4図a,bは、それぞれ従来構造及び本
発明の構造で試作した電力整流用ダイオードの逆
方向回復時間の実測波形。 1……N+半導体層、2……P-半導体層、3,
13……P+半導体層(半導体領域)、4,5,1
5……電極、16……P+多結晶とP-単結晶の境
界、20……P+多結晶半導体、a,b,c,
d,e……多結晶内の結晶粒界。
FIG. 1 is a schematic cross-sectional view showing an embodiment of a semiconductor rectifier according to the present invention. FIG. 2 is a schematic cross-sectional view showing a conventional semiconductor rectifier. FIG. 3 is a conceptual diagram explaining the form of a polycrystalline silicon layer on a single crystal. Figure 3 is an explanatory diagram of the band structure along AB and minority carrier (electron) absorption effect. FIGS. 4a and 4b show actually measured waveforms of the reverse recovery time of power rectifier diodes prototyped with the conventional structure and the structure of the present invention, respectively. 1...N + semiconductor layer, 2...P - semiconductor layer, 3,
13...P + semiconductor layer (semiconductor region), 4, 5, 1
5... Electrode, 16... Boundary between P + polycrystal and P - single crystal, 20... P + polycrystalline semiconductor, a, b, c,
d, e: Grain boundaries within the polycrystal.

Claims (1)

【特許請求の範囲】 1 第1の導電型を有する第1の半導体層と、 該第1の半導体層上に形成されている、当該第
1の半導体層に比し低い不純物濃度を有し且つ第
1の導電型とは逆の第2の導電型を有する第2の
半導体層と、 該第2の半導体層の上記第1の半導体層側とは
反対側に、局部的に形成された、上記第2の半導
体層に比し高い不純物濃度を有し且つ第2の導電
型を有する半導体領域と、 上記第1の半導体層の上記第2の半導体層側と
は反対側上にオーミツクに附された第1の電極
と、 上記第2の半導体層の上記第1の半導体層側と
は反対側上に、上記半導体領域と、上記第2の半
導体層の上記半導体領域の形成されていない領域
とにオーミツクに連結して形成された、第2の導
電型を有する多結晶半導体層と、 上記多結晶半導体層上にオーミツクに付された
第2の電極とを有することを特徴とする半導体整
流装置。
[Claims] 1: a first semiconductor layer having a first conductivity type; and having an impurity concentration lower than that of the first semiconductor layer formed on the first semiconductor layer; a second semiconductor layer having a second conductivity type opposite to the first conductivity type, and locally formed on a side of the second semiconductor layer opposite to the first semiconductor layer side; a semiconductor region having a higher impurity concentration than the second semiconductor layer and a second conductivity type; and an ohmic semiconductor region on a side of the first semiconductor layer opposite to the second semiconductor layer side. the first electrode, the semiconductor region on the side of the second semiconductor layer opposite to the first semiconductor layer, and the region of the second semiconductor layer where the semiconductor region is not formed. A semiconductor rectifier comprising: a polycrystalline semiconductor layer having a second conductivity type formed in an ohmic connection with the polycrystalline semiconductor layer; and a second electrode attached to an ohmic on the polycrystalline semiconductor layer. Device.
JP14140185A 1985-06-27 1985-06-27 Semiconductor rectifying equipment Granted JPS6139575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14140185A JPS6139575A (en) 1985-06-27 1985-06-27 Semiconductor rectifying equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14140185A JPS6139575A (en) 1985-06-27 1985-06-27 Semiconductor rectifying equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP11321679A Division JPS5637683A (en) 1979-05-07 1979-09-04 Semiconductor rectifying device

Publications (2)

Publication Number Publication Date
JPS6139575A JPS6139575A (en) 1986-02-25
JPS6227553B2 true JPS6227553B2 (en) 1987-06-15

Family

ID=15291144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14140185A Granted JPS6139575A (en) 1985-06-27 1985-06-27 Semiconductor rectifying equipment

Country Status (1)

Country Link
JP (1) JPS6139575A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3633161A1 (en) * 1986-09-30 1988-04-07 Licentia Gmbh SEMICONDUCTOR COMPONENT WITH AN ANODE-SIDED P-ZONE AND A LOW-DOPED N-BASE ZONE
KR20010014774A (en) * 1999-04-22 2001-02-26 인터실 코포레이션 Fast Turn-Off Power Semiconductor Devices
JP2006086457A (en) * 2004-09-17 2006-03-30 Matsushita Electric Works Ltd Magnetic detection device
JP5194273B2 (en) * 2007-09-20 2013-05-08 三菱電機株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPS6139575A (en) 1986-02-25

Similar Documents

Publication Publication Date Title
EP0122598B2 (en) High speed diode
US4641174A (en) Pinch rectifier
US4587547A (en) Electrode structure for a semiconductor devices
US4607270A (en) Schottky barrier diode with guard ring
US5831287A (en) Bipolar semiconductor device having semiconductor layers of SiC and a method for producing a semiconductor device of SiC
US3159780A (en) Semiconductor bridge rectifier
US5290367A (en) Photoelectric element
JP3107287B2 (en) Solar cell
JP5103382B2 (en) Solar cell array with isotype heterojunction diodes
US4841350A (en) Static induction photothyristor having a non-homogeneously doped gate
US5298766A (en) Diamond heterojunction diode
JPS6227553B2 (en)
JP3072753B2 (en) Semiconductor device and manufacturing method
CN112216746B (en) Silicon carbide semiconductor device
US5572044A (en) Monocrystalline semiconductor commutator with grain boundry
JPH08316470A (en) Power semiconductor device
JPS5931869B2 (en) Electrostatic induction thyristor
JP3216315B2 (en) Insulated gate bipolar transistor
JPS6364060B2 (en)
JPS6245710B2 (en)
GB2191036A (en) Hot charge-carrier transistors
JPH0640581B2 (en) Switching element
JP2536703Y2 (en) Photo thyristor
RU2045111C1 (en) Semiconductor device
JPH0611362U (en) Rectifier