JPS62274716A - X-ray exposure equipment - Google Patents

X-ray exposure equipment

Info

Publication number
JPS62274716A
JPS62274716A JP61117275A JP11727586A JPS62274716A JP S62274716 A JPS62274716 A JP S62274716A JP 61117275 A JP61117275 A JP 61117275A JP 11727586 A JP11727586 A JP 11727586A JP S62274716 A JPS62274716 A JP S62274716A
Authority
JP
Japan
Prior art keywords
mirror
ray
rays
ray exposure
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61117275A
Other languages
Japanese (ja)
Inventor
Yasunari Hayata
康成 早田
Kozo Mochiji
広造 持地
Takeshi Kimura
剛 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61117275A priority Critical patent/JPS62274716A/en
Publication of JPS62274716A publication Critical patent/JPS62274716A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent the influence of secondary electrons which causes problems in the case of pattern transfer applying X-rays, and improve the accuracy of pattern transfer, by arranging a mirror reflecting all the X-rays with the same angle between an X-ray source and a light receiving surface. CONSTITUTION:When a 2-dimensional plane X-Y wherein an X-ray source 1 is situated at the origin is considered, an X-ray 3 radiated from the light source is expressed by y=ax((a) is a constant). Writing a mirror 2 as y=f(x) the intersection 4 of the mirror 2 and the X-ray 3 is given by a point x0 which satisfies ax0=f(x0). Then the tangent of reflection angle can be written as {f'(x0)-a}/{a+af'(x0)} which must be constant for all values of (a). Letting this value be (c), f'(x0)={f(x0)+cx0}/{x-cf(x0)} is derived from the two equations above. The function f (x) is obtained by solving the above differential equation, and the mirror may be manufactured according to the function. A 3-dimensional mirror 2 can be constituted by rotating this shape arround a center axis (y).

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はX線リソグラフィに係り、特に高精度な微細加
工に好適なXaクリソラフィに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to X-ray lithography, and particularly to Xa chrysolography suitable for highly accurate microfabrication.

〔従来の技術〕[Conventional technology]

x4リソグラフィにおいてはマスクや下地基板がx#!
の吸収に伴いて2次電子をいろいろな方向に放出し、こ
れがレジストに作用して転写精度を低下させる。このた
め従来は、例えば月刊真空科学技術、第82巻、1〜3
月号、 1984年、第63〜67頁(Y、 5ait
oh他“Sub+*1cron p*ttsrnrap
lication using a high con
trast mask andtwo−1ayer r
esist in X−ray lithograph
y、 ” J。
In x4 lithography, the mask and base substrate are x#!
As the secondary electrons are absorbed, secondary electrons are emitted in various directions, which act on the resist and reduce the transfer accuracy. For this reason, conventionally, for example, Monthly Vacuum Science and Technology, Vol. 82, 1-3
Monthly issue, 1984, pp. 63-67 (Y, 5ait
oh etc. “Sub+*1 cron p*ttsrnrap
lication using a high con
trust mask and two ayer r
esist in X-ray lithography
y,” J.

Vac、 Sci、 Technol、 Vol、 B
 2 (IL Jan、−Mar。
Vac, Sci, Technol, Vol, B
2 (IL Jan, -Mar.

1984、 p 63〜p67)tに記述されているよ
うに、マスクや被加工物に高分子膜を積層して2次電子
を吸収する方法が提案されている。
1984, p. 63-p. 67), a method has been proposed in which a polymer film is laminated on a mask or a workpiece to absorb secondary electrons.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、プロセスが複雑になり、膜厚の不均一
性が転写精度を低下させる。本発明の目的はこの様な欠
点を生じることなく2次電子の影響を防ぐことにある。
In the above-mentioned conventional technology, the process is complicated, and the non-uniformity of the film thickness deteriorates the transfer accuracy. An object of the present invention is to prevent the influence of secondary electrons without causing such drawbacks.

〔哲題点を解決するための手段〕[Means for solving philosophical issues]

上記目的は、X線を一度ミラーにより反射させることに
より達成される。この時、露光に用いるX線はすべて同
一角度で反射しなければならない。
The above object is achieved by reflecting the X-rays once by a mirror. At this time, all the X-rays used for exposure must be reflected at the same angle.

その概念図を第1図に示す。The conceptual diagram is shown in Fig. 1.

〔作用〕[Effect]

X線によって生じる2次電子のうち、転写精度を低下さ
せるものは、比較的短い波長のX線による。特に回転対
陰極型線源を用いると、連続X線の短波長成分が含まれ
、これが悪影響を及ぼす。
Of the secondary electrons generated by X-rays, those that reduce transfer accuracy are due to X-rays with relatively short wavelengths. In particular, when a rotating anticathode type radiation source is used, continuous X-rays contain short wavelength components, which have an adverse effect.

X線をミラーで反射することにより、露光したいX線よ
り短波長のX線を除去し、最終的に2次電子の影響を防
止することができる。この時ミラーでの反射角を一定に
しないと1反射角によるX線波長分布の差が生じ露光面
上での不均一性の原因となる。
By reflecting the X-rays with a mirror, it is possible to remove X-rays with wavelengths shorter than the X-rays to be exposed, and ultimately prevent the influence of secondary electrons. At this time, if the reflection angle on the mirror is not constant, a difference in the X-ray wavelength distribution will occur depending on one reflection angle, causing non-uniformity on the exposure surface.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

X線源としてSiをターゲットとした回転対陰極型線源
を用いた場合について説明する。電子の加速電圧は17
kVとした。この時の特性X線(S i Kα)の波長
は7.1Aである。
A case will be described in which a rotating anode-type radiation source targeting Si is used as an X-ray source. The accelerating voltage of electrons is 17
kV. The wavelength of the characteristic X-ray (S i Kα) at this time is 7.1A.

ミラーの設計は以下の様に行う。第2図に従って説明す
る。原点にX線源1を置きX−Y2次元平面内で考える
。光源から発生するX線3はy=ax(aは定数)で表
わされる。ミラー2をy=f (x)と書くとミラーと
X線の交点4はa xo=f(xo)を濶たすxoの点
となる。この時の反射角のtangentは(f’(x
o)−a)/(1+a f’(xo))と書くことがで
きる。この値をすべてのaについて一定にすればよい。
The design of the mirror is done as follows. This will be explained according to FIG. The X-ray source 1 is placed at the origin and considered within the X-Y two-dimensional plane. X-rays 3 generated from the light source are expressed as y=ax (a is a constant). If the mirror 2 is written as y=f (x), the intersection point 4 between the mirror and the X-ray becomes the point xo that satisfies axo=f(xo). The tangent of the reflection angle at this time is (f'(x
It can be written as o)-a)/(1+a f'(xo)). This value may be made constant for all a.

この値をCとおくと上記2式よりf ’ (xo)=(
f(xo)+cxo)/ (x −cf(xo))とな
る。この微分方程式を解き関数f (x)を求め、その
関数に従ってミラーを製作すれば良いことになる。この
微分方程式は、解析的には解くことができず、数値計算
で解くことになる。この形状をy軸を中心に回転させれ
ば3次元のミラーが形成される。このミラーはNC工作
機に上記数値計算結果を入力して石英板を加工し、その
表面に白金もしくは金を膜厚500人になるように蒸着
して作った。
Letting this value be C, f' (xo) = (
f(xo)+cxo)/(x-cf(xo)). All that is required is to solve this differential equation to obtain the function f (x), and then manufacture the mirror according to that function. This differential equation cannot be solved analytically, but must be solved numerically. By rotating this shape around the y-axis, a three-dimensional mirror is formed. This mirror was made by inputting the above numerical calculation results into an NC machine tool, processing a quartz plate, and depositing platinum or gold on its surface to a thickness of 500 mm.

第3図にこの方法に従って設計したミラーを搭載したx
i露光装置の構成を示す。反射角は1.5゜となるよう
にした、これにより4.7Å以下の波長のX線は反射さ
れず、除去されることになるにの装置によってX線レジ
スト上にパターンを形成した。Si基板上にWを蒸着し
、その上にX線レジスト(RE5000P、日立化成)
のパターンを形成した。第4図に露光時間によるパター
ン寸法の変化を示す。白点はミラーを用いない従来の露
光方法、黒点は本発明による露光装置を用いたものであ
る。図から明らかなように黒点の方が露光時間に関する
寸法安定性を示している。
Figure 3 shows an x equipped with a mirror designed according to this method.
The configuration of the i-exposure device is shown. The reflection angle was set to 1.5°, so that X-rays with a wavelength of 4.7 Å or less were not reflected and were removed.A pattern was formed on the X-ray resist using the apparatus. W is evaporated onto a Si substrate, and an X-ray resist (RE5000P, Hitachi Chemical) is applied on top of it.
formed a pattern. FIG. 4 shows changes in pattern dimensions depending on exposure time. The white spots are those obtained using a conventional exposure method that does not use a mirror, and the black spots are those obtained using an exposure apparatus according to the present invention. As is clear from the figure, the black dots show more dimensional stability with respect to exposure time.

ミラーの大きさを約71とじた場合、ミラーか1’+3
00nw離れたところでの強度変化は±5%以下であっ
た。
If the size of the mirror is approximately 71, the mirror is 1'+3
The intensity change at a distance of 00 nw was less than ±5%.

〔発明の効果〕〔Effect of the invention〕

上記実施例から明らかなように、本発明によれば、X線
の短波長成分を除去できるのでX線によるパターン転写
の際問題となる2次電子の影響を防止する効果がある。
As is clear from the above embodiments, according to the present invention, short wavelength components of X-rays can be removed, and therefore the influence of secondary electrons, which is a problem when transferring patterns using X-rays, can be prevented.

これによりパターン転写精度の向上を図ることができ、
生産性の向上が可能となる。
This makes it possible to improve pattern transfer accuracy.
It becomes possible to improve productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概念図、第2図は本発明によるミラー
の設計方法を説明するための図、第3図はxHc露光装
置の楕成図、第4図はレジストのパターン寸法精度を示
した図である。 1・・・x、ml、2・・・ミラー、3・・・X線、4
・・・xaとミラーとの交点、5・・・X線源チャンバ
ー、6・・・Heチャンバー、7・・・Bsg、8・・
・)lマスク。
Figure 1 is a conceptual diagram of the present invention, Figure 2 is a diagram for explaining the mirror design method according to the present invention, Figure 3 is an ellipse diagram of the xHc exposure apparatus, and Figure 4 shows the pattern dimensional accuracy of the resist. FIG. 1...x, ml, 2...mirror, 3...X-ray, 4
...Intersection of xa and mirror, 5...X-ray source chamber, 6...He chamber, 7...Bsg, 8...
・) l mask.

Claims (1)

【特許請求の範囲】 1、X線源と強光面との間にX線をすべて同じ角度で反
射するようなミラーを有することを特徴とするX線露光
装置。 2、上記ミラーの反射面の形状がf′(x)={f(x
)+cx}/{x−cf(x)}(但し、c=tanθ
;θは反射角)を満たす関数f(x)で表現されるミラ
ーであることを特徴とする特許請求の範囲第1項記載の
X線露光装置。 3、上記ミラーの反射面の形状が x=Ae^α^(^f^_^1^)^−^α^(^0^
),α(f_1)=▲数式、化学式、表等があります▼
(A,定数,c= tanθ;θは反射角、f_1=1−c{[f(x)]
/x})の形の関数f(x)で表現されるミラーである
ことを特徴とする特許請求の範囲第1項記載のX線露光
装置。
[Scope of Claims] 1. An X-ray exposure apparatus characterized by having a mirror between an X-ray source and a strong light surface that reflects all X-rays at the same angle. 2. The shape of the reflective surface of the above mirror is f'(x)={f(x
)+cx}/{x-cf(x)} (where c=tanθ
The X-ray exposure apparatus according to claim 1, wherein the X-ray exposure apparatus is a mirror expressed by a function f(x) that satisfies the following: ; θ is a reflection angle. 3. The shape of the reflective surface of the above mirror is x=Ae^α^(^f^_^1^)^-^α^(^0^
), α(f_1)=▲There are mathematical formulas, chemical formulas, tables, etc.▼
(A, constant, c= tanθ; θ is the reflection angle, f_1=1-c{[f(x)]
2. The X-ray exposure apparatus according to claim 1, wherein the X-ray exposure apparatus is a mirror expressed by a function f(x) of the form /x}).
JP61117275A 1986-05-23 1986-05-23 X-ray exposure equipment Pending JPS62274716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117275A JPS62274716A (en) 1986-05-23 1986-05-23 X-ray exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117275A JPS62274716A (en) 1986-05-23 1986-05-23 X-ray exposure equipment

Publications (1)

Publication Number Publication Date
JPS62274716A true JPS62274716A (en) 1987-11-28

Family

ID=14707725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117275A Pending JPS62274716A (en) 1986-05-23 1986-05-23 X-ray exposure equipment

Country Status (1)

Country Link
JP (1) JPS62274716A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214685A (en) * 1991-10-08 1993-05-25 Maxwell Laboratories, Inc. X-ray lithography mirror and method of making same
EP0883136A1 (en) * 1997-06-07 1998-12-09 Horiba, Ltd. X-Ray converging mirror

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214685A (en) * 1991-10-08 1993-05-25 Maxwell Laboratories, Inc. X-ray lithography mirror and method of making same
EP0883136A1 (en) * 1997-06-07 1998-12-09 Horiba, Ltd. X-Ray converging mirror
US6052431A (en) * 1997-06-07 2000-04-18 Horiba, Ltd. X-ray converging mirror for an energy-dispersive fluorescent X-ray system

Similar Documents

Publication Publication Date Title
US5222112A (en) X-ray pattern masking by a reflective reduction projection optical system
KR100221678B1 (en) Ringfield lithography
US4028547A (en) X-ray photolithography
EP0083394A2 (en) A method and apparatus for providing a uniform illumination of an area
US4887282A (en) Method and apparatus for changing the imaging scale in X-ray lithograph
JPS58200238A (en) Photomask
US3518083A (en) Method and apparatus for producing photolithographic structures,particularly on semiconductor crystal surfaces
JPS62274716A (en) X-ray exposure equipment
US3607382A (en) Method of producing photovarnish masks for semiconductors
JP2843249B2 (en) Method and apparatus for manufacturing a device
JP2645347B2 (en) Exposure mask for parallel X-ray
JPS63316434A (en) X-ray exposure
US3610125A (en) Apparatus for producing photolithographic structures,particularly on semiconductor crystal surfaces
JP2711194B2 (en) Exposure equipment
JP2000100758A (en) Electron-beam lithography apparatus and pattern formation
JP3230105B2 (en) X-ray multilayer mirror, reflective X-ray mask, method for manufacturing X-ray multilayer mirror, exposure apparatus, and method for manufacturing silicon wafer having pattern
Lawes Sub-micron lithography techniques
JPS5915380B2 (en) Fine pattern transfer device
JPS6279622A (en) Formation of pattern
JPS6340316A (en) Device for manufacturing semiconductor
Babin et al. Electron-beam lithography of optical elements for x-ray range (Poster Paper)
JPS6084814A (en) X-ray projecting apparatus
JPH0520892B2 (en)
JPS637628A (en) Integrator and exposure apparatus using same
JPS5935319B2 (en) A method of etching elaborate patterns on metal plates, semiconductors, etc.