JPS62274202A - Laser measuring instrument for nc lathe - Google Patents

Laser measuring instrument for nc lathe

Info

Publication number
JPS62274202A
JPS62274202A JP11758186A JP11758186A JPS62274202A JP S62274202 A JPS62274202 A JP S62274202A JP 11758186 A JP11758186 A JP 11758186A JP 11758186 A JP11758186 A JP 11758186A JP S62274202 A JPS62274202 A JP S62274202A
Authority
JP
Japan
Prior art keywords
measurement
measured
rotating body
laser
touch sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11758186A
Other languages
Japanese (ja)
Inventor
Akihiro Sagou
佐郷 昭博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11758186A priority Critical patent/JPS62274202A/en
Publication of JPS62274202A publication Critical patent/JPS62274202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To take an accurate measurement which has no error by providing a laser length measuring instrument and an electronic computer which calculates the radial size and lateral size of an object of measurement from measured values based on the input signal of a touch sensor. CONSTITUTION:The touch sensor 12 is brought into contact with the reference point of a rotating body and a cutter base 10 is moved to bring the sensor 12 into contact with a measurement point of the rotating body; and the movement distance of the base 10 is measured with a laser beam from a laser light source 15 which is divided into two axes by optical equipment 18 for laser length measurement and the measured value is sent to a minicomputer 22 through a counter 19 to calculate the axial size of the rotating body. Further, when the radial size of the rotating body is calculated, the sensor 12 is brought into contact with the reference point and then the quantity of projection of an arm 13 for measurement is varied to bring the sensor 12 into contact with a measurement point of the rotating body; and variation in the quantity of projection of the arm 13 is measured with the light beam from the laser light source 16, and the computer 22 calculates the size. Consequently, an accurate, wide- range measurement is take without depending upon the sensation of an operator and measured values are read and recorded automatically by the touch sensor, electronic computer, etc.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分針〉 本発明は、大型のNC旋盤で加工される事業用蒸気ター
ビンロータ、発電機や原動機のロータ等、大型の回転体
の寸法計測に用いられるレーザ計測装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention <Industrial Application Minute Hand> The present invention is applicable to large-sized rotating machines such as commercial steam turbine rotors, generator and prime mover rotors that are machined using large-scale NC lathes. The present invention relates to a laser measuring device used for measuring body dimensions.

〈従来の技術〉 従来、蒸気タービンロータ等といった大型の回転体の寸
法測定は、マイクロメータを用いた手作業で計測する方
法か或いはNC旋盤に装備されているリニアスケール(
インダクトシンスケール、光学スケール等)とダイヤル
ゲージとを用いる方法かにより行われていた。
<Prior art> Conventionally, the dimensions of large rotating bodies such as steam turbine rotors have been measured manually using a micrometer or using a linear scale (
This was done using a method using an inductosin scale, optical scale, etc.) and a dial gauge.

fn者の方法(マイクロメータを用いろ方法)は、第4
図及び第5図に示すように、測定対象物である回転体1
の径方向寸法はその測定径に適した外側マイクロメータ
2を用いて直接計測し、軸方向寸法はマグネットストレ
ッチ3により位置出しをしてインサイドマイクロメータ
4により計測するものである。一方、後者の方法(リニ
アスケールを用いる方法)は、回転体1の外径が極端に
大きい場合や軸方向の計測箇所の段差が大きい場合等の
ようにマイクロメータが適用できない場合に有効であり
、第6図に示すように、NC旋盤の刃物台5に取付けた
ダイヤルゲージ6で位置決めをしながらリニアスケール
7で刃物台5の位置を読取って回転体1の軸方向寸法を
計測するものである。
fn's method (method using a micrometer) is the fourth
As shown in the figure and FIG.
The radial dimension is directly measured using an outside micrometer 2 suitable for the measurement diameter, and the axial dimension is measured using an inside micrometer 4 after positioning using a magnet stretch 3. On the other hand, the latter method (method using a linear scale) is effective in cases where a micrometer cannot be used, such as when the outer diameter of the rotating body 1 is extremely large or when there are large steps at the measurement point in the axial direction. As shown in Fig. 6, the axial dimension of the rotating body 1 is measured by reading the position of the tool rest 5 with a linear scale 7 while positioning it with a dial gauge 6 attached to the tool rest 5 of the NC lathe. be.

〈発明が解決しようとする問題点〉 上記した従来の計測方法にあってはそれぞれ次のような
問題点があった。
<Problems to be Solved by the Invention> The conventional measurement methods described above each have the following problems.

マイクロメータを用いた計測では、 (1)@定対象物の大きさに応じてマイクロメータが大
型になり、取扱いに非常な労力を要する。
Measurement using a micrometer: (1) The size of the micrometer increases depending on the size of the target object, and it takes a lot of effort to handle it.

(2)  マイクロメータの測定子の当り具合は作業者
の感触に依っているため、測定誤差が生じ易い。
(2) Since the contact level of the micrometer probe depends on the operator's touch, measurement errors are likely to occur.

(3)  マグネットストレッチの取付は方による測定
誤差が生じ易い。
(3) Measurement errors are likely to occur depending on how the magnet stretch is installed.

(4)測定対象物が全長数メートルにわたるような大型
のものである場合には計測が不可能である。
(4) Measurement is impossible if the object to be measured is large, with a total length of several meters.

また、NC旋盤に設けられたリニアスケールを用いた計
測では、 (1)  ダイヤルゲージによる位置決めに際して測定
の向き等を考慮しなければならず、作業に多くの時間を
要する。
Furthermore, in measurement using a linear scale installed on an NC lathe, (1) the direction of measurement must be taken into consideration when positioning with a dial gauge, which requires a lot of time;

+21NC旋盤のリニアスケールは測定対象物の計測箇
所から比較的離れた位置に装備されているため、刃物台
のねじれ、傾き等による誤差(マッペ誤差)や摺動用ベ
ッドの曲がりによる誤差等により測定精度が大きく影響
される。
+21 Since the linear scale of the NC lathe is installed relatively far from the measuring point of the object to be measured, measurement accuracy may be affected by errors caused by twisting or tilting of the tool post (Mappe error) or bending of the sliding bed. is greatly affected.

(3)NCi盤による加工と同じ規準で計測することと
なるため、厳密な意味での寸法チェック機能を果すこと
ができない。
(3) Since measurement is performed according to the same standards as for processing using an NCi board, it is not possible to perform a dimensional check function in a strict sense.

本発明は上記従来の事情に鑑みなされたもので、上記問
題点を合理的に解決しなレーザ計測装置を提供すること
を目的とする。
The present invention was made in view of the above-mentioned conventional circumstances, and it is an object of the present invention to provide a laser measurement device that rationally solves the above-mentioned problems.

く問題点を解決するための手段〉 本発明に係るNC旋盤のレーザ計測装置は、NC旋盤の
刃物台に設けられた計測用アームと、前記計測用アーム
の先端に設けられると共に前記NC旋盤に取付けられた
測定対象物に当接し得ろタッチセンサと、前記計測用ア
ームの突出量、酊記測定対象物の軸方向への前記刃物台
の移動距離及び該刃物台の真直度を計測するレーザ測長
器と、前記タッチセンサの入力信号に基づいて前記レー
ザ測長器による計測値から前記測定対象物の径方向寸法
及び軸方向寸法を演算する電算機とを備えたことを特徴
とする。
Means for Solving the Problems> A laser measurement device for an NC lathe according to the present invention includes a measurement arm provided on a tool rest of the NC lathe, and a measurement arm provided at the tip of the measurement arm and attached to the NC lathe. A touch sensor attached to the object to be measured and a laser sensor for measuring the amount of protrusion of the measuring arm, the moving distance of the turret in the axial direction of the object to be measured, and the straightness of the turret. The measuring device is characterized by comprising a length instrument and a computer that calculates the radial dimension and axial dimension of the object to be measured from the measurement value by the laser length measuring device based on the input signal of the touch sensor.

〈作   用〉 測定対象物の径方向寸法は、タッチセンサが測定対象物
の径方向の基準点から測定点に当接するまでの計測用ア
ームの突出量をレーザ測長器により計測して、電3@機
により演算して求める。一方、測定対象物の軸方向寸法
は、タッチセンサが測定対象物の軸方向の基準点から測
定点に当接するまでの刃物台の移動距離をレーザ測長器
により計測して、電算機により演算して求める。ここで
、刃物台にねじれ、傾き等がある場合には、計測用アー
ムの突出量及び刃物台の移動距離に誤差が含まれてしま
うが、これをレーザ測長器により計測した刃物台の真直
度から補正する。
<Operation> The radial dimension of the object to be measured is determined by measuring the amount of protrusion of the measurement arm from the reference point in the radial direction of the object to the point where the touch sensor touches the measurement point using a laser length measuring device. 3 Calculate using @ machine. On the other hand, the axial dimension of the object to be measured is calculated by a computer by measuring the travel distance of the tool post from the reference point in the axial direction of the object to the point where the touch sensor touches the measurement point using a laser length measuring device. and ask. If the turret is twisted or tilted, errors will be included in the amount of protrusion of the measuring arm and the moving distance of the turret. Correct from degree.

く実 施 例〉 本発明の一実施例を図面を参照して説明する。Example of implementation An embodiment of the present invention will be described with reference to the drawings.

レーザ計測装置の全体構成を表す第1図において、lO
t、tNcNC旋盤物台であり、この刃物台10は摺動
用ベッド11上を矢印X方向へ移動し得るようになって
いる。刃物台10には先端にタッチセンサ12を備えた
計測用アーム13が設けられており、この計測用アーム
13はモータ14の作動により矢印X方向と直角な矢印
Y方向へ繰出し得るようになっている。刃物台10に対
向する位置には3つのレーザ光源15,16,17、複
数のレーザ測長用光学機器(ミラー、ハーフミラ−、プ
リズム等)18、カウンタ19を備えたレーザ測長器本
体20が設けられており、刃物台10及び計測用アーム
13に設けられた複数のレーザ測長用光学機器(ミラー
、 I)−フミラー、プリズム等)21とレーザ測長器
本体20とによりレーザ測長器を構成している。尚、カ
ウンタ19にはミニコンピユータ(電算機)22が接続
されており、レーザ測長器の計測値から測定対象物の寸
法を演算する。
In FIG. 1 showing the overall configuration of the laser measurement device, lO
t, tNc This is an NC lathe turret, and this tool rest 10 can move on a sliding bed 11 in the direction of arrow X. The turret 10 is provided with a measuring arm 13 having a touch sensor 12 at its tip, and this measuring arm 13 can be extended in the direction of the arrow Y perpendicular to the direction of the arrow X by the operation of a motor 14. There is. At a position facing the tool post 10 is a laser length measuring device main body 20 that includes three laser light sources 15, 16, 17, a plurality of laser length measuring optical devices (mirrors, half mirrors, prisms, etc.) 18, and a counter 19. A laser length measuring device is constructed by a plurality of laser length measuring optical devices (mirrors, mirrors, prisms, etc.) 21 provided on the tool rest 10 and the measuring arm 13 and a laser length measuring device main body 20. It consists of A minicomputer (computer) 22 is connected to the counter 19, and calculates the dimensions of the object to be measured from the measured values of the laser length measuring device.

次に、上記レーザ計測装置による計測作業を説明する。Next, a measurement operation using the laser measurement device described above will be explained.

測定対象物である回転体30の軸方向寸法の計測は、第
2図に示すように、回転体300基準点にタッチセンサ
12を当接させた後、刃物台10を移動させてタッチセ
ンサ12を回転体30の測定したい点(測定点)に当接
させろことにより行う。そして、レーザ測長用光学機器
18により2軸に分けられたレーザ光[15からのレー
ザ光線により刃物台10の幅方向両端部で該刃物台10
の移動距離を計測する。この計測値はタッチセンサ12
が回転体30の測定点に当接した瞬間にカウンタ19か
らミニコンピユータ22に送られ、刃物台10の移動方
向に平行に設置されている回転体30の軸方向寸法aが
演算される。
To measure the axial dimension of the rotating body 30, which is the object to be measured, as shown in FIG. This is done by bringing the rotating body 30 into contact with the point to be measured (measurement point). The laser beam divided into two axes by the laser length measuring optical device 18 [ 15
Measure the distance traveled. This measured value is the touch sensor 12
At the moment the abuts on the measurement point of the rotating body 30, the counter 19 sends it to the mini-computer 22, and the axial dimension a of the rotating body 30, which is installed parallel to the moving direction of the tool rest 10, is calculated.

ここで、移動に際して刃物台10にねじれが生じてマッ
ペ誤差δが生じてしまった場合には、上記2軸に分けら
れたレーザ光綿の読取り値の間に差が生ずるため、この
差と後述する計測用アーム13の突出量とからミニコン
ピユータ22の演算により誤差δを補正する。
Here, if the turret 10 is twisted during movement and Mappe error δ occurs, a difference will occur between the readings of the laser beam divided into the two axes, and this difference will be explained later. The error δ is corrected by calculation by the minicomputer 22 based on the amount of protrusion of the measurement arm 13.

一方、回転体3Gの径方向寸法の計測は、第3図に示す
ように、予めマイクロメータによ咋基準径φAを計測し
た小径の基準点と測定点との半径の差すを計測用アーム
13の突出片(引込It)で計測するものであり、回転
体30の基準点にタッチセンサ12を当接させた後、計
測用アーム13の突出量を変更して回転体30の測定点
にタッチセンサ12を当接させることにより行う。そし
て、レーザ光源16からのレーザ光線により計測用アー
ム13の突出量の変化を計測し、上記と同様にこの計測
値からミニコンピユータ22にて回転体30の径方向寸
法φA+2bを演算する。ここで、摺動用ベッド11に
曲りがあって、この曲り量Cが上記演算値に含まれてし
まう場合には、レーザ光源17からのレーザ光線により
計測される曲り量(真直度)Cから、ミニコンピユータ
22にて演算値の補正を行う。更にここで、回転体30
を回転させて対角位置で上記と同様な計測を行い、これ
によって得られる基準点と測定点との半径の差b′と上
記半径の差すとにより測定点の直径(φA+b+b’)
を求めるようにすれば、より正確な計測を達成すること
ができる。
On the other hand, to measure the radial dimension of the rotating body 3G, as shown in FIG. After touching the touch sensor 12 to the reference point of the rotating body 30, the protruding amount of the measurement arm 13 is changed and the measuring point of the rotating body 30 is touched. This is done by bringing the sensor 12 into contact with it. Then, a change in the amount of protrusion of the measuring arm 13 is measured using a laser beam from the laser light source 16, and the radial dimension φA+2b of the rotating body 30 is calculated from this measured value by the minicomputer 22 in the same manner as described above. Here, if the sliding bed 11 is curved and this curve amount C is included in the above calculation value, from the curve amount (straightness) C measured by the laser beam from the laser light source 17, The minicomputer 22 corrects the calculated value. Furthermore, here, the rotating body 30
The diameter of the measuring point (φA+b+b') is obtained by rotating the , and taking the same measurement as above at the diagonal position, and by adding the difference b' in the radius between the reference point and the measuring point and the above radius.
A more accurate measurement can be achieved by calculating .

尚、レーザ光綿の光軸は基準点や測定点と同じ高さ位置
に設定しであるため、従来のように刃物台lOの傾きに
よる誤差は生じない。
Incidentally, since the optical axis of the laser beam is set at the same height as the reference point and the measurement point, there is no error caused by the inclination of the tool post lO as in the conventional case.

また、タッチセンサ12とレーザ測長器及びミニコンピ
ユータ22との間の信号の授受においてその伝達や読取
りの時間遅れによる誤差をなくすため、カウンタ19の
計測値の保持機能を利用してタッチセンサ12のトリガ
ー信号で測定点の測定値をいったへ保持させ、同じくタ
ッチセンサ12のトリガー信号でミニコンピユータ22
に読取り命令をかけろようにすれば、より正確な測定値
を確実に読込むことができる。
In addition, in order to eliminate errors due to time delays in transmission and reading of signals between the touch sensor 12 and the laser length measuring device and mini-computer 22, the touch sensor 12 uses the measurement value holding function of the counter 19. A trigger signal from the touch sensor 12 causes the measured value of the measurement point to be held, and a trigger signal from the touch sensor 12 causes the minicomputer 22 to hold the measured value.
If you issue a read command to , you can reliably read more accurate measured values.

〈発明の効果〉 本発明に係るNC旋盤のレーザ計測装置によれば、作業
者の感覚に依らず正確且つ広範囲な計測が実現できる。
<Effects of the Invention> According to the laser measurement device for an NC lathe according to the present invention, accurate and wide-range measurement can be realized without relying on the operator's senses.

更に、旋盤に装備されているリニアスケールを用いる従
来の計測方法に較べ、レーザ光線が測定点の近くに設定
されるため、誤差を含まない正確な計測が実現できる。
Furthermore, compared to the conventional measurement method using a linear scale equipped on a lathe, since the laser beam is set closer to the measurement point, accurate measurement without errors can be achieved.

更に、タッチセンサ、電算機等の採用により計測値の読
取り、記録が自動化され、計測作業の工数を大幅に削減
することができる。
Furthermore, by adopting touch sensors, computers, etc., reading and recording of measurement values can be automated, and the number of man-hours for measurement work can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るレーザ計測装置の全体
斜視図、第2図は軸方向寸法の計測作業を説明する概念
図、第3図は径方向寸法の計測作業を説明する概念図、
第4図及び第5図はそれぞれ従来のマイクロメータを用
いた計測作業を表す概念図、第6図は従来のリニアスケ
ールを用いた計測作業を表す概念図である。 図  面  中、 101よ刃物台、 12はタッチセンサ、 13は計測用アーム、 15.16,17はレーザ光源、 18.21はレーザ測長用光学機器、 22はミニコンピユータ、 30は回転体である。 第2図
FIG. 1 is an overall perspective view of a laser measuring device according to an embodiment of the present invention, FIG. 2 is a conceptual diagram illustrating axial dimension measurement work, and FIG. 3 is a conceptual diagram illustrating radial dimension measurement work. figure,
FIGS. 4 and 5 are conceptual diagrams showing measurement work using a conventional micrometer, and FIG. 6 is a conceptual diagram showing measurement work using a conventional linear scale. In the drawing, 101 is a tool rest, 12 is a touch sensor, 13 is a measuring arm, 15, 16, 17 are laser light sources, 18, 21 is an optical device for laser length measurement, 22 is a minicomputer, and 30 is a rotating body. be. Figure 2

Claims (1)

【特許請求の範囲】[Claims] NC旋盤の刃物台に設けられた計測用アームと、前記計
測用アームの先端に設けられると共に前記NC旋盤に取
付けられた測定対象物に当接し得るタッチセンサと、前
記計測用アームの突出量、前記測定対象物の軸方向への
前記刃物台の移動距離及び該刃物台の真直度を計測する
レーザ測長器と、前記タッチセンサの入力信号に基づい
て前記レーザ測長器による計測値から前記測定対象物の
径方向寸法及び軸方向寸法を演算する電算機とを備えた
ことを特徴とするNC旋盤のレーザ計測装置。
a measurement arm provided on a tool post of an NC lathe; a touch sensor provided at the tip of the measurement arm and capable of contacting a measurement object attached to the NC lathe; and a protrusion amount of the measurement arm; a laser length measuring device that measures the moving distance of the tool post in the axial direction of the object to be measured and the straightness of the tool post; A laser measuring device for an NC lathe, comprising a computer that calculates radial dimensions and axial dimensions of an object to be measured.
JP11758186A 1986-05-23 1986-05-23 Laser measuring instrument for nc lathe Pending JPS62274202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11758186A JPS62274202A (en) 1986-05-23 1986-05-23 Laser measuring instrument for nc lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11758186A JPS62274202A (en) 1986-05-23 1986-05-23 Laser measuring instrument for nc lathe

Publications (1)

Publication Number Publication Date
JPS62274202A true JPS62274202A (en) 1987-11-28

Family

ID=14715363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11758186A Pending JPS62274202A (en) 1986-05-23 1986-05-23 Laser measuring instrument for nc lathe

Country Status (1)

Country Link
JP (1) JPS62274202A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808740A (en) * 1995-08-31 1998-09-15 Sokkia Company Limited Multiaxis distance measurement device for NC machine tools
US5828456A (en) * 1995-11-15 1998-10-27 Sokkia Company Limited Multiaxis laser interferometry distance measuring device
US5841535A (en) * 1995-08-31 1998-11-24 Sokkia Company Limited Multiaxis distance measuring device requiring alignment along only one axis

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808740A (en) * 1995-08-31 1998-09-15 Sokkia Company Limited Multiaxis distance measurement device for NC machine tools
US5841535A (en) * 1995-08-31 1998-11-24 Sokkia Company Limited Multiaxis distance measuring device requiring alignment along only one axis
US5828456A (en) * 1995-11-15 1998-10-27 Sokkia Company Limited Multiaxis laser interferometry distance measuring device

Similar Documents

Publication Publication Date Title
JP2764103B2 (en) Method of using analog measuring probe and positioning device
JP4504818B2 (en) Workpiece inspection method
Farago et al. Handbook of dimensional measurement
JP2527996B2 (en) Workpiece inspection method and device
US7286949B2 (en) Method of error correction
EP0283486B1 (en) A method of calibration for an automatic machine tool
CN100462677C (en) Three-coordinate measuring machine-tool error compensation system and method
EP2013571B1 (en) Method of error correction
JPH02124417A (en) Method and apparatus for determining and correcting position error
US5341574A (en) Coordinate measuring machine test standard apparatus and method
EP0304460A1 (en) Method of and apparatus for calibration of machines.
Khan et al. A methodology for error characterization and quantification in rotary joints of multi-axis machine tools
JPH06213653A (en) Measurement for workpiece using surface contact measuring probe
KR20050016099A (en) Measuring method and apparatus
EP3189302B1 (en) Coordinate measuring method and apparatus for inspecting workpieces, comprising generating measurement correction values using a reference shape that is known not to deviate substantially from a perfect form
JP2008524576A (en) Sequential multi-probe method for straightness measurement of straight rulers
Oh Robot accuracy evaluation using a ball-bar link system
JPS62274202A (en) Laser measuring instrument for nc lathe
EP2818949A1 (en) Computer numerical control machining center with integrated coordinate measuring unit and method for measuring a workpiece in situ
Sartori et al. A way to improve the accuracy of a co-ordinate measuring machine
JPH10103905A (en) Measurement method
TWI220688B (en) A device and method of reflective diffraction grating measure revolving spindle
JPH0244002B2 (en)
JPH10296536A (en) Measuring device
Kirkham Improving precision in manufacturing