JPS62273494A - Primary hydraulic testing method of boiling water type reactor - Google Patents

Primary hydraulic testing method of boiling water type reactor

Info

Publication number
JPS62273494A
JPS62273494A JP61117957A JP11795786A JPS62273494A JP S62273494 A JPS62273494 A JP S62273494A JP 61117957 A JP61117957 A JP 61117957A JP 11795786 A JP11795786 A JP 11795786A JP S62273494 A JPS62273494 A JP S62273494A
Authority
JP
Japan
Prior art keywords
reactor
pressure vessel
piping
temporary
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61117957A
Other languages
Japanese (ja)
Other versions
JPH0469758B2 (en
Inventor
山ノ井 孝三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61117957A priority Critical patent/JPS62273494A/en
Publication of JPS62273494A publication Critical patent/JPS62273494A/en
Publication of JPH0469758B2 publication Critical patent/JPH0469758B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [発明の目的1 <a東上の利用分野) 本発明は沸謄水型原子炉(以下B wRという)の原子
炉圧力容器および原子炉回り配管類の一次水圧試験方法
に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Objective of the Invention 1 <A Field of Application of Tojo] The present invention is directed to the reactor pressure vessel and reactor surroundings of a boiling water reactor (hereinafter referred to as BwR). Concerning primary water pressure test method for piping.

(従来の技術) 第6図を参照して従来例を説明する。第6図はBWRの
原子炉圧力容器−次水圧試験方法の実唐を示す系統図で
あり、図中符号1は原子炉圧力容器である。この原子炉
圧力容器1内には冷却材および図示しない炉心が収容さ
れている。上記原子炉圧力容器1には原子炉回り配管2
が、さらには原子炉回り配管弁2aが接続されている。
(Prior Art) A conventional example will be explained with reference to FIG. FIG. 6 is a system diagram illustrating the actual method for testing the hydraulic pressure of a BWR reactor pressure vessel, and reference numeral 1 in the figure indicates the reactor pressure vessel. A coolant and a reactor core (not shown) are housed within the reactor pressure vessel 1. The reactor pressure vessel 1 has reactor piping 2
However, a reactor piping valve 2a is also connected.

一般にBWRプラントの建設にあっては原子炉圧力容器
1およびその近傍の原子炉回り配管2、原子炉回り配管
弁2a等を設置した後に一次水圧試験が行なわれる。こ
れはその後再循環系(PLR系)等の試運転等を行なう
関係でその前に原子炉圧力容器1等についての耐圧試験
を行なっておく必要があるからである。この−次水圧試
験に際しては原子炉圧力容器1、原子炉回り配管2およ
び原子炉回り配管弁28等を所定温度まで昇温させた状
態で所定圧力まで加圧する操作がなされる。ここで所定
温度とは各構造物或いは機器・配管類の最低使用温度に
ある余裕(実際の検査時までの温度降下を見込んだもの
)を付加した温度であり、jだ最低使用温度とは材料試
験の際に例えばt’Cで試験を行なった場合には、その
t℃に33℃を加えた(t+33)’Cをいっている。
Generally, in the construction of a BWR plant, a primary water pressure test is performed after installing the reactor pressure vessel 1, the reactor piping 2 in its vicinity, the reactor piping valve 2a, etc. This is because a test run of the recirculation system (PLR system) etc. will be carried out afterwards, and it is necessary to conduct a pressure test on the reactor pressure vessel 1 etc. before that. During this secondary water pressure test, the reactor pressure vessel 1, the reactor piping 2, the reactor piping valve 28, etc. are heated to a predetermined temperature and then pressurized to a predetermined pressure. Here, the predetermined temperature is the minimum operating temperature of each structure, equipment, and piping with a certain margin (accounting for the temperature drop until the actual inspection). For example, when a test is conducted at t'C, 33°C is added to that t°C (t+33)'C.

尚原子炉圧力容器1の最低使用温度は21℃であり、ま
た原子炉回り配管2のR低側用温度は38℃である。以
下かかる作用をなす設備について説明する。
The minimum operating temperature of the reactor pressure vessel 1 is 21°C, and the temperature of the R low side of the reactor piping 2 is 38°C. The equipment that performs this function will be explained below.

原子炉建屋(図示せず)の外には仮設タンク3が設置さ
れ、この仮設タンク3には蒸気ライン4を介して原子炉
圧力容器1を昇温する為の蒸気が供給される。図中符号
5は仮設循環ポンプであり、3台のvi設循環ポンプ5
が並列に設置されている。
A temporary tank 3 is installed outside the reactor building (not shown), and steam for heating the reactor pressure vessel 1 is supplied to the temporary tank 3 via a steam line 4. The reference numeral 5 in the figure is a temporary circulation pump, and there are three VI-installed circulation pumps 5.
are installed in parallel.

この仮設循環ポンプ5により仮設循環ライン6、PLR
ポンプ7の吐出配管8を介して原子炉圧力容器1内に供
給される。これによって原子炉圧力容器1内の水を15
℃(常温)から60℃まで昇温させる。この60℃が前
述した所定温度である。そして原子炉圧力容器1内の循
環ライン仕切弁9を介挿した仮設循環ライン10を介し
て前記仮設タンク3に戻される。このような循環により
原子炉圧力容器1の昇温をなす。尚図中符号6aは仮設
仕切弁である。
This temporary circulation pump 5 connects the temporary circulation line 6 and PLR.
It is supplied into the reactor pressure vessel 1 via the discharge pipe 8 of the pump 7 . This reduces the water inside the reactor pressure vessel 1 to 15
Raise the temperature from ℃ (room temperature) to 60℃. This 60° C. is the predetermined temperature mentioned above. Then, it is returned to the temporary tank 3 via a temporary circulation line 10 in which a circulation line gate valve 9 is inserted in the reactor pressure vessel 1 . Such circulation raises the temperature of the reactor pressure vessel 1. Note that the reference numeral 6a in the figure is a temporary gate valve.

又原子炉圧力容器1に接続された原子炉回り配管2の昇
温は以下のようにして行なわれる。すなわち原子炉回り
配管弁2aを開弁じて、ドレン弁11aを介挿した弁ド
レンライン11および仮設ライン12および前記仮設循
環ライン10を介して原子炉圧力容器1内の水を仮設タ
ンク3内に戻すことにより、原子炉圧力容器1と同様に
60℃まで昇温させる。尚原子炉回り配管2の最低使用
温度は前述したように38°Cであり、60℃まで昇温
させるのは、配管末端における温度降下が大きいことを
考慮して所定の期間(例えば何日後かの検査日まで)湿
度維持するためである。また場合によっては仮設ヒータ
を設置して昇温するようなこともなされている。
Further, the temperature of the reactor piping 2 connected to the reactor pressure vessel 1 is raised in the following manner. That is, the reactor piping valve 2a is opened, and the water in the reactor pressure vessel 1 is drained into the temporary tank 3 through the valve drain line 11 with the drain valve 11a inserted, the temporary line 12, and the temporary circulation line 10. By returning the reactor pressure vessel 1, the temperature is raised to 60° C. as in the reactor pressure vessel 1. As mentioned above, the minimum operating temperature of the reactor piping 2 is 38°C, and the temperature is raised to 60°C within a predetermined period (e.g., after several days), taking into consideration the large temperature drop at the end of the piping. (until the inspection date) to maintain humidity. In some cases, temporary heaters are also installed to raise the temperature.

次に加圧であるが、原子炉圧力容器1および原子炉回り
配管2が昇温された後、仮設循環ライン6に介挿された
循環ライン仕切弁13、原子炉回り配管弁2a、原子炉
圧力容器ドレンライン弁14(この原子炉圧力容器ドレ
ンライン弁14は原子炉圧力容器ドレンライン15に介
挿されている)を閉弁じて、仮設加圧ポンプ16を運転
する。
Next, regarding pressurization, after the reactor pressure vessel 1 and the reactor piping 2 are heated, the circulation line gate valve 13 inserted in the temporary circulation line 6, the reactor piping valve 2a, and the reactor The pressure vessel drain line valve 14 (this reactor pressure vessel drain line valve 14 is inserted into the reactor pressure vessel drain line 15) is closed, and the temporary pressurizing pump 16 is operated.

この仮設加圧ポンプ16の吸込配管17は前記仮設循環
ライン6に分岐接続されている。この仮設加圧ポンプ1
6の運転により仮設ヘッダ18、仮設ライン19、PL
Rポンプ7、PLR吐出弁20bおよび吐出配管8を介
して原子炉圧力容器1内に加圧された蒸気が供給され、
それによって原子炉圧力容器1内は加圧される。尚図中
符号20aは吸込弁である。また所定の圧力まで加圧さ
れたか否かについては、原子炉圧力容器1の上部に取付
けられた耐圧用圧力計装置21により監視する。この耐
圧用圧力計装置21は2台の圧力計よりなり、その内圧
力計218が正式であって圧力計21bが確認用である
。以上の操作により所定の加圧を行なう。また以上各設
備は全て仮設の設備であって、使用する前に耐圧試験を
行ない、その健全性の確認がなされた後使用されること
となる。尚図中符号22は機器サンプであり、この機器
サンプ22には前記仮設循環ライン6よりサンブライン
23が配設されているとともに、仮設循環ライン10に
分岐接続された配管24がらもサンブライン25が配設
されている。また図中符@26で示すのは全て開閉弁で
ある。尚第6図中破線で示したのは全て本設備に対する
仮設の設備であることを意味している。
A suction pipe 17 of this temporary pressurizing pump 16 is branched and connected to the temporary circulation line 6. This temporary pressure pump 1
Temporary header 18, temporary line 19, PL
Pressurized steam is supplied into the reactor pressure vessel 1 via the R pump 7, the PLR discharge valve 20b, and the discharge pipe 8,
As a result, the inside of the reactor pressure vessel 1 is pressurized. Note that the reference numeral 20a in the figure is a suction valve. Further, whether or not the pressure has been increased to a predetermined pressure is monitored by a pressure-resistant pressure gauge device 21 attached to the upper part of the reactor pressure vessel 1. This pressure-resistant pressure gauge device 21 consists of two pressure gauges, of which the pressure gauge 218 is the official pressure gauge and the pressure gauge 21b is for confirmation. A predetermined pressure is applied through the above operations. Furthermore, all of the above equipment is temporary equipment, and before use, a pressure test will be conducted to confirm its soundness before use. Reference numeral 22 in the figure is an equipment sump, and this equipment sump 22 is provided with a sunbrine 23 from the temporary circulation line 6, as well as piping 24 branched and connected to the temporary circulation line 10. is installed. Also, all of the items indicated by the symbol @26 in the figure are on-off valves. It should be noted that all of the broken lines in FIG. 6 mean temporary equipment for this equipment.

上記構成によると以下のような問題があった。According to the above configuration, there were the following problems.

(1)まず原子炉圧力容器1および原子炉回り配管2等
の昇温および加圧は各仮!Q設幅を使用して行なう構成
であるので、該仮設設備を設置した後でなければ昇温・
加圧作業を行なうことはできず、同時に試験終了後原子
炉圧力容器1回りの電気・計装工事を行なう場合には上
記仮設設備を撤去した後でなければ不可能であった。こ
れは電気・計装工事以外の場合も同様であり、仮設設備
の仮設配管が屋外〜屋内一原子炉圧力容器1に亘って配
設されており、これらを撤去しないと小配管あるいはサ
ポート類の施行が不可能であり、かつ作業条件も悪い。
(1) First, temporarily raise the temperature and pressurize the reactor pressure vessel 1, reactor piping 2, etc. Since it is configured to use the Q construction width, the temperature cannot be increased or increased until after the temporary equipment is installed.
Pressurization work could not be carried out, and at the same time, if electrical and instrumentation work around the reactor pressure vessel was to be carried out after the test was completed, it would only be possible after the above temporary equipment had been removed. This also applies to cases other than electrical and instrumentation work, where temporary piping for temporary equipment is installed from outdoors to indoors in the reactor pressure vessel 1, and if these are not removed, small piping or supports will be damaged. It is impossible to implement and the working conditions are poor.

このように仮設設備の設置およびその撤去がBWRプラ
ント1!設工期の延長を将来していた。
In this way, the installation and removal of temporary equipment is BWR plant number one! The construction period was expected to be extended in the future.

(2)次に原子炉圧力容器1および原子炉回りの昇温に
際しては多量の蒸気を浦費することとなり、上記仮設設
備と相まってプラント建設に要するコス1−を上昇させ
る結果となっていた。
(2) Next, when raising the temperature of the reactor pressure vessel 1 and the surroundings of the reactor, a large amount of steam is required to be used, which, combined with the above-mentioned temporary equipment, results in an increase in the cost required for plant construction.

(発明が解決しようとする問題点) このように従来にあっては、原子炉圧力容器および原子
炉回りの配管類の昇温・加圧の為の仮設設備の設置およ
び撤去がプラント建設工期の延長を将来するとともに、
仮設設備はもとより多量の蒸気を使用することによりコ
ストの上昇をも来たしており、本発明はまさにこのよう
な点に基づいてなされたものでその目的とするところは
、プラント建設に要する工期を短縮するとともに、コス
トの低減をも図り得る沸謄水型原子炉の一次水圧試験方
法を提供することにある。
(Problems to be Solved by the Invention) In the past, installation and removal of temporary equipment for heating and pressurizing the reactor pressure vessel and piping around the reactor was carried out during the plant construction period. With future extension,
The use of large amounts of steam as well as temporary equipment has led to an increase in costs, and the present invention was made based on this point, and its purpose is to shorten the construction period required for plant construction. It is an object of the present invention to provide a primary water pressure test method for a boiling water reactor, which can also reduce costs.

[発明の構成] (問題点を解決するための手段) すなわちMlの発明による沸謄水型原子炉の一次水圧試
験方法は、沸謄水型原子炉の原子炉圧力容器および原子
炉回り配管類の耐圧試験を行なう沸謄水型原子炉の一次
水圧試験方法において、原子炉圧力容器および原子炉回
り配管類の耐圧試験を本設機器を使用して行なうように
したことを特徴とづるものである。
[Structure of the invention] (Means for solving the problem) That is, the primary water pressure test method for a boiling water reactor according to the invention of Ml is a method for testing the reactor pressure vessel and reactor surrounding piping of a boiling water reactor. The primary water pressure testing method for boiling water reactors, which involves pressure testing, is characterized by the fact that the pressure testing of the reactor pressure vessel and piping around the reactor is carried out using the equipment. be.

(作用) つまり従来−次水圧試哉方法にあって、原子炉圧力容器
および原子炉圧力容器回り配管類の昇温・加圧をそれ専
用の仮設設備を設置して行なっていたのに対して、本設
備機器を使用して行なうものである。
(Function) In other words, in the conventional hydraulic testing method, the temperature and pressure of the reactor pressure vessel and the piping around the reactor pressure vessel was raised and pressurized by installing special temporary equipment. This is done using this equipment.

(実施例) 以下第1図および第2図を参照して本発明の第1実施例
を説明する。尚従来と同一部分には同一符号を付して示
しその説明は省略する。本実施例は従来原子炉圧力容器
1および原子炉回り配管2の昇1・加圧を仮設設備を使
用して行なっていたのに対して、これを本設備および一
部の仮設設備を使用して行なうもので、それによって工
期の短縮およびコストの低減を図るものである。その際
本実1例ではまず原子炉回り配管2の最低使用温度を従
来の38℃から10℃まで下げる操作が行なわれた。こ
れは従来行なわれていた材料試論温度を低下させ、該低
下させた温度で所定の試験を行なって所望の特性を満足
させたことがVf!認されればよいものである。本実施
例ではその結果上)ホしたように10℃まで最低使用温
度を低下させることができた。したがって原子炉圧力容
器1についてはその最低使用温度は従来通り21℃であ
り、原子炉回り配管2については10℃である。よって
昇温工程では21℃に5℃を付加した26℃まで昇温さ
せることとした。
(Embodiment) A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2. It should be noted that the same parts as in the prior art are denoted by the same reference numerals and the explanation thereof will be omitted. In this embodiment, while the reactor pressure vessel 1 and the reactor piping 2 were previously raised and pressurized using temporary equipment, this was done using this equipment and some temporary equipment. The aim is to shorten the construction period and reduce costs. At this time, in this first example, the minimum operating temperature of the reactor piping 2 was lowered from the conventional 38°C to 10°C. This was achieved by lowering the material testing temperature that had been conventionally used, and by conducting a predetermined test at the lowered temperature, the desired characteristics were satisfied with Vf! It would be good if it were approved. In this example, as a result, the minimum operating temperature could be lowered to 10° C. as shown in (1) above. Therefore, the minimum operating temperature of the reactor pressure vessel 1 is 21°C as before, and that of the reactor piping 2 is 10°C. Therefore, in the temperature raising step, it was decided to raise the temperature to 26°C, which is 21°C plus 5°C.

図中符@101は復水タンクであり、この復水タンク1
01には蒸気ライン102が接続されている。上記復水
タンク101内に貯留されている水温15℃の復水は、
MUWC(t![水補給水系)ポンプ103により、M
UWCライン104、RHR(残留熱除去系)ライン1
05、PLR配管8を介して原子炉圧力容器1内に供給
され、水張がなされる。次にRHRポンプ106の運転
を行なう。すなわち原子炉圧力容器1内に供給された上
記復水の水温は前述したように15℃であり、これを上
記RHRポンプ106の軸動力による熱量を利用して2
6℃まで昇温させるものである。その際原子炉圧力容器
1からの放熱を考慮すると、濃度上昇率は1℃/hr程
度であり、よって11℃(26℃−15℃)上昇させる
ためには、約11時間の運転が必要となる。また昇温後
の温度降下は0.1℃/40hr程度であり、大気温度
約10℃のデータからすると、検査臼までの期間を3日
として21℃以下に低下することはない。以上が4温操
作である。
The mark @101 in the figure is a condensate tank, and this condensate tank 1
01 is connected to a steam line 102. The condensate at a water temperature of 15°C stored in the condensate tank 101 is
By the MUWC (t! [water make-up water system) pump 103, M
UWC line 104, RHR (residual heat removal system) line 1
05, water is supplied into the reactor pressure vessel 1 via the PLR piping 8 and filled with water. Next, the RHR pump 106 is operated. In other words, the temperature of the condensate supplied into the reactor pressure vessel 1 is 15° C. as described above, and this temperature is 25° C. using the heat generated by the shaft power of the RHR pump 106.
The temperature is raised to 6°C. At that time, considering the heat radiation from the reactor pressure vessel 1, the concentration increase rate is about 1°C/hr, and therefore approximately 11 hours of operation is required to raise the concentration by 11°C (26°C - 15°C). Become. Further, the temperature drop after heating is about 0.1°C/40hr, and based on the data of the atmospheric temperature of about 10°C, it will not drop below 21°C if the period until the inspection mill is 3 days. The above is the 4-temperature operation.

尚図中符号106aはRHR熱交換器であり、また符号
106bはRHR隔離弁である。
In the figure, reference numeral 106a is an RHR heat exchanger, and reference numeral 106b is an RHR isolation valve.

次に加圧作業であるが、5LC(はう耐水注入系)ポン
プ107によりSLCタンク108内の水をSLC配@
109を介して原子炉圧力容器1内に底部より注入する
。これによって原子炉圧力容器1内の加圧をなす。上記
SLC配管109には5LC1llillli弁109
aが介挿すt’L T t、N ル。原子炉圧力容器1
の最高使用圧力は87.9Kg/cdであり、耐圧試験
としてはその1.25倍の109.875 K3/ c
tA、約110Kg/cdを必要とする。しかしながら
原子炉圧力容器1の高さは約22にであり、よってその
上部と下部とでは約2.2に’J/cdの圧力差がある
。したがって上部ではさらに5に9/cdを付加して1
15に9 / cdの圧力にて試験を行なう必要がある
。ところが前記SLCボン7107 テハ約80に9/
 crN¥aまでしか昇圧させることはできず、そこで
仮設加圧ポンプ110(図中破線で示す)を使用する。
Next is the pressurization work, and the water in the SLC tank 108 is distributed to the SLC using the 5LC (water-resistant injection system) pump 107.
109 into the reactor pressure vessel 1 from the bottom. As a result, the inside of the reactor pressure vessel 1 is pressurized. The above SLC piping 109 has a 5LC1llilli valve 109.
a inserts t'L T t, N le. Reactor pressure vessel 1
The maximum working pressure of is 87.9Kg/cd, and the pressure test is 109.875 K3/c, which is 1.25 times that.
tA, approximately 110 Kg/cd is required. However, the height of the reactor pressure vessel 1 is about 22 cm, so there is a pressure difference of about 2.2'J/cd between its upper and lower parts. Therefore, at the top, we further add 9/cd to 5 to make 1
The test should be carried out at a pressure of 15 to 9/cd. However, the SLC Bonn 7107 Teha is about 80 to 9/
The pressure can only be raised to crN\a, so a temporary pressurizing pump 110 (indicated by a broken line in the figure) is used.

この仮設加圧ポンプ110により80Kg/ciから1
15に9/ciまでの加圧をなす。尚図中符号111は
仮設ヘッダ、112仮設加圧ラインである。
With this temporary pressure pump 110, 80Kg/ci to 1
15 to 9/ci. In the figure, reference numeral 111 is a temporary header, and 112 is a temporary pressure line.

このように本実施例の場合には従来のように仮設の設備
を使用して原子炉圧力容器1の昇温・加圧作業を行なう
のではなく、本設備を使用して行なうものであり、加圧
の一部についてのみ仮設の設備を使用するものである。
In this way, in the case of this embodiment, instead of using temporary equipment as in the past to heat up and pressurize the reactor pressure vessel 1, this equipment is used to perform the work. Temporary equipment is used for only part of the pressurization.

尚図中符号112はRCIC(原子炉隔離時冷却系)で
あり、また符号113はドレンラインである。また符号
114は開閉弁である。
In the figure, reference numeral 112 is an RCIC (reactor isolation cooling system), and reference numeral 113 is a drain line. Further, reference numeral 114 is an on-off valve.

以上本実施例によると以下のような効果を奏することが
できる。
According to this embodiment, the following effects can be achieved.

(1)まず原子炉圧力容器1の昇温および加圧作業に際
して、従来のようにように仮設の設備のみにより行なう
のではなく、本設面を使用して行なっている。したがっ
て仮設設備の設置および撤去作業が大幅に軽減され、そ
の結果プラント建設に要する工数が大幅に軽減される。
(1) First, the work to raise the temperature and pressurize the reactor pressure vessel 1 is performed using a permanently installed surface, rather than using only temporary equipment as in the past. Therefore, installation and removal work of temporary equipment is significantly reduced, and as a result, the number of man-hours required for plant construction is significantly reduced.

そして従来仮設設備の設置・撤去の為に池の作業(′I
4気計装工事、小配管の設置等)への着手が遅延してい
たのに対して、本実施例ではそのようなことはなく、プ
ラント建設工期を大幅に短縮することができる。従来の
場合と本実施例の場合とを比較した第2図をみると工期
が短縮されることが明確に理解される。
In addition, pond work ('I
Whereas the start of 4-gas instrumentation work, installation of small piping, etc.) was delayed, this does not occur in this embodiment, and the plant construction period can be significantly shortened. Looking at FIG. 2, which compares the conventional case and the case of this embodiment, it is clearly understood that the construction period is shortened.

第2図中ATは空圧、HTは耐圧(水によって行なう)
、検は検査を夫々示す。またECC8は非常要炉心冷却
系、CRは制御環、CRDはIJ 10棒駆m□構を夫
々示す。この第2図から明らかなように工期が大幅に短
縮されている(具体的には14日程度)。
In Figure 2, AT is pneumatic, HT is pressure resistant (water is used)
, Inspection indicates the inspection respectively. Furthermore, ECC8 indicates the emergency core cooling system, CR indicates the control ring, and CRD indicates the IJ 10 rod drive system. As is clear from Figure 2, the construction period has been significantly shortened (specifically, about 14 days).

(2)さらに作業性に関しても仮設設備が大幅に低減さ
れたことにより改善され、安全性向上を図ることが可能
となる。
(2) Furthermore, workability has been improved as the number of temporary facilities has been significantly reduced, making it possible to improve safety.

(3)そして従来のように大規模な仮設設備を必要とせ
ず、かつ大量の蒸気も必要としないので、コストの低減
を図る上で極めて効果的である。
(3) Unlike conventional methods, this method does not require large-scale temporary facilities or a large amount of steam, so it is extremely effective in reducing costs.

次に第3図を参照して第2実施例を説明する。Next, a second embodiment will be described with reference to FIG.

この実施例はSLCポンプ17を115 Kfl / 
cliまで使用可能なものとして、前記第1実施例にお
ける仮設加圧ポンプ109の使用を不要としたものであ
る。他の構成は前記第1実施例と同様であり、その説明
は省略する。
This example uses SLC pump 17 at 115 Kfl/
Since it can be used up to cli, the use of the temporary pressure pump 109 in the first embodiment is unnecessary. The other configurations are the same as those of the first embodiment, and the explanation thereof will be omitted.

したがって前記第1実I7!!例と同様の効果を奏する
ことはもとより、仮設設備を全つく使用しないものであ
るので、プラント建設工期を第1実施例以上に短縮する
ことができる等その効果は大である。これを第4図に示
す。この第4図も前記第2図と同様、この実施例と従来
例とを比較したもので、それによるとプラント建設工期
期を20日程度短縮させることができ、前記第1実施例
以上の効果を秦するものであることがわかる。
Therefore, the first fruit I7! ! In addition to producing the same effects as in the example, since the temporary equipment is not used at all, the plant construction period can be shortened more than in the first example, and other effects are great. This is shown in FIG. Like the above-mentioned Fig. 2, this Fig. 4 is a comparison between this embodiment and the conventional example. According to this, the plant construction period can be shortened by about 20 days, and the effect is greater than that of the above-mentioned first embodiment. It can be seen that it was the one that ruled the Qin Dynasty.

尚第5図は前記第1実施例、第2実施例および従来の場
合について、原子炉圧力容器−次水圧日程を詳細に比較
したものであり、前記第1施例が従来に比べて工期を大
幅に短縮させること、さらには第2実施例がそれ以上に
工期を短縮するものであることが理解できる。
Fig. 5 shows a detailed comparison of the reactor pressure vessel hydraulic schedule for the first embodiment, the second embodiment, and the conventional case, and shows that the first embodiment has a shorter construction period than the conventional case. It can be seen that the construction period is significantly shortened, and that the second embodiment shortens the construction period even more.

尚前記第1;Bよび第2実施例では加圧をSLC系によ
り行なうようにしているが、これに限定されるものでは
なく、CRD系を使用することも可能である。この場合
にはCRD系の駆動水を利用して加圧することとなる。
Incidentally, in the first and second embodiments, pressurization is performed by an SLC system, but the present invention is not limited to this, and a CRD system may also be used. In this case, pressurization will be performed using driving water of the CRD system.

また原子炉圧力容器および原子炉回り配管類の最低使用
温度をさらに低下させることも考えられており、それに
よって昇温工程を大幅に軽減させる、あるいは無くすこ
とも可能である。
It is also being considered to further lower the minimum operating temperature of the reactor pressure vessel and the piping surrounding the reactor, which could significantly reduce or even eliminate the temperature raising process.

[発明の効果1 以上詳述したように本発明による′faIli水型原子
炉の一次水圧試験方法によると、水圧試験に際して仮設
の設備を一部の工程でしか必要としない、又は全く必要
としないので、プラントl!設工期を大幅に短縮させ、
かつ建設に要する工数の低減を図ることができ、コスト
の低減をおよび安全性の向上を図る上で極めて効果的で
ある。
[Effect of the invention 1] As detailed above, according to the primary water pressure testing method for a 'faIli water reactor according to the present invention, temporary equipment is required only in some steps or not at all during the water pressure test. So, plant l! Significantly shorten the construction period,
Moreover, it is possible to reduce the number of man-hours required for construction, which is extremely effective in reducing costs and improving safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実流例の実施を示す系統図、第2
図は従来と第1実施例の工程を比較して示す図、第3図
は第2実施例の実施を示す系統図、第4図は第2実施例
と従来との工程を比較して示す図、第5図は第1実施例
および第2実施例と従来との工程を比較して示す図、第
6図は従来例を示す系統図である。 1・・・原子炉圧力容器、2・・・原子炉介り配管、2
a・・・原子炉介り配管弁、106・・・RHR系ポン
プ、107・・・SLC系ポンプ、110・・・仮設加
圧ポンプ。
Fig. 1 is a system diagram showing the implementation of the first practical example of the present invention;
The figure shows a comparison of the process of the conventional example and the first embodiment, Fig. 3 is a system diagram showing the implementation of the second embodiment, and Fig. 4 shows a comparison of the process of the second embodiment and the conventional one. 5 is a diagram showing a comparison of the steps of the first embodiment and the second embodiment and the conventional method, and FIG. 6 is a system diagram showing the conventional example. 1... Reactor pressure vessel, 2... Nuclear reactor piping, 2
a... Nuclear reactor piping valve, 106... RHR system pump, 107... SLC system pump, 110... Temporary pressurizing pump.

Claims (3)

【特許請求の範囲】[Claims] (1)沸騰水型原子炉の原子炉圧力容器および原子炉回
り配管類の耐圧試験を行なう沸騰水型原子炉の一次水圧
試験方法において、原子炉圧力容器および原子炉回り配
管類の耐圧試験を本設機器を使用して行なうようにした
ことを特徴とする沸騰水型原子炉の一次水圧試験方法。
(1) In the primary water pressure test method for a boiling water reactor, the pressure test of the reactor pressure vessel and the piping around the reactor is carried out. A primary water pressure test method for a boiling water nuclear reactor, characterized in that it is carried out using the equipment provided.
(2)残留熱除去系のポンプを運転してその軸動力によ
る熱により原子炉圧力容器および原子炉回り配管類を所
定温度まで昇温させる昇温工程と、ほう酸水注入系又は
制卸棒駆動機構系により原子炉圧力容器および原子炉回
り配管類を所定圧力手前まで加圧する第1加圧工程と、
所定圧力手前から所定圧力まで原子炉圧力容器および原
子炉回り配管類を仮設加圧ポンプにより加圧する第2加
圧工程とを具備したことを特徴とする特許請求の範囲第
1項記載の沸謄水型原子炉の一次水圧試験方法。
(2) A heating process in which the residual heat removal system pump is operated to raise the temperature of the reactor pressure vessel and reactor piping to a predetermined temperature using the heat generated by its shaft power, and the boric acid water injection system or control rod drive a first pressurization step of pressurizing the reactor pressure vessel and the reactor surrounding piping to just below a predetermined pressure using a mechanical system;
The method according to claim 1, further comprising a second pressurizing step of pressurizing the reactor pressure vessel and the piping around the reactor from before a predetermined pressure to a predetermined pressure using a temporary pressurizing pump. Primary water pressure test method for water reactors.
(3)残留熱除去系のポンプを運転してその軸動力によ
る熱により原子炉圧力容器および原子炉回り配管類を所
定温度まで昇温させる昇温工程と、ほう酸水注入系又は
制御棒駆動機構系により原子炉圧力容器および原子炉回
り配管類を所定圧力まで加圧する加圧工程とを具備した
ことを特徴とする特許請求の範囲第1項記載の沸騰水型
原子炉の一次水圧試験方法。
(3) A heating process in which the residual heat removal system pump is operated to raise the temperature of the reactor pressure vessel and reactor piping to a predetermined temperature using the heat generated by its shaft power, and the boric acid water injection system or control rod drive mechanism 2. The primary water pressure test method for a boiling water reactor according to claim 1, further comprising a step of pressurizing a reactor pressure vessel and piping around the reactor to a predetermined pressure by means of a system.
JP61117957A 1986-05-22 1986-05-22 Primary hydraulic testing method of boiling water type reactor Granted JPS62273494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61117957A JPS62273494A (en) 1986-05-22 1986-05-22 Primary hydraulic testing method of boiling water type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61117957A JPS62273494A (en) 1986-05-22 1986-05-22 Primary hydraulic testing method of boiling water type reactor

Publications (2)

Publication Number Publication Date
JPS62273494A true JPS62273494A (en) 1987-11-27
JPH0469758B2 JPH0469758B2 (en) 1992-11-09

Family

ID=14724427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61117957A Granted JPS62273494A (en) 1986-05-22 1986-05-22 Primary hydraulic testing method of boiling water type reactor

Country Status (1)

Country Link
JP (1) JPS62273494A (en)

Also Published As

Publication number Publication date
JPH0469758B2 (en) 1992-11-09

Similar Documents

Publication Publication Date Title
Schulz Westinghouse AP1000 advanced passive plant
US9728281B2 (en) Auxiliary condenser system for decay heat removal in a nuclear reactor
US20040196948A1 (en) Integral pwr with diverse emergency cooling and method of operating same
JP2014513280A (en) Energy core cooling system for pressurized water reactors
JPS62273494A (en) Primary hydraulic testing method of boiling water type reactor
Yang et al. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility
Yan et al. Design and Development of GTHTR300
Memmott et al. Westinghouse Small Modular Reactor nuclear steam supply system design
EP2703704A2 (en) Nozzle repairing method and nuclear reactor vessel
JPH02309295A (en) Testing method of water pressure of reactor pressure vessel and attached pipings
Hill et al. The EBR-II Probabilistic Risk Assessment: lessons learned regarding passive safety
Lars et al. Fukushima plus: Testing for public safety
Ahn Creep Rupture Analysis of the RCS Pressure Boundary for a PWR SBO Accident
Perry et al. Seventeen years of LMFBR experience: Experimental breeder reactor II (EBR-II)
Motley et al. Modeling of the TMI-2 [Three Mile Island Unit-2] accident with MELPROG/TRAC and calculation results for Phases 1 and 2
Mirzamahmudov et al. ASSESSMENT OF THE TRANSIENT PROCESS WITH THE CONNECTION OF AN IDLE MCP WITHOUT PRELIMINARY REDUCTION OF POWER FOR THE BEGINNING AND END OF THE FUEL CAMPAIGN USING THE EXAMPLE OF THE VVER-1000 REACTOR
Di Giuli et al. Exploratory Studies of Small Modular Reactors Using the ASTEC Code
Lim et al. The effect of an aggressive cool-down following a refueling outage accident in which a pressurizer safety valve is stuck open
Wade et al. A proposed modular-sized integrated nuclear and hydrogen-based energy supply/carrier system
Kim et al. Major NSSS design features of the Korean next generation reactor
Wong et al. A robust helium-cooled shield/blanket design for ITER
Burtt Overview of the LOFT experimental program
Chung et al. aaa-aee-maa-aa¢
Suh et al. Design scope and level for standard design certification under a two step licensing process
Beeley et al. Operating experience with the sodium reactor experiment and its application to the hallam nuclear power facility

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term