JPS6227310A - Production of fine metallic oxide particle - Google Patents

Production of fine metallic oxide particle

Info

Publication number
JPS6227310A
JPS6227310A JP16400885A JP16400885A JPS6227310A JP S6227310 A JPS6227310 A JP S6227310A JP 16400885 A JP16400885 A JP 16400885A JP 16400885 A JP16400885 A JP 16400885A JP S6227310 A JPS6227310 A JP S6227310A
Authority
JP
Japan
Prior art keywords
hydrazine
metal
particles
reaction
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16400885A
Other languages
Japanese (ja)
Other versions
JPH0262481B2 (en
Inventor
Hirohisa Kajiyama
梶山 裕久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP16400885A priority Critical patent/JPS6227310A/en
Publication of JPS6227310A publication Critical patent/JPS6227310A/en
Publication of JPH0262481B2 publication Critical patent/JPH0262481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/36Methods for preparing oxides or hydroxides in general by precipitation reactions in aqueous solutions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain rapidly and efficiently nonacicular and spheroidal hyperfine metallic oxide particles having a sharp particles size distribution with ease at a low cost by decomposing a metallic salt of hydrazine by oxidation with an oxidizing agent. CONSTITUTION:A metallic salt such as FeCl2, CoCl2 or MnSO4 is reacted with hydrazine in water to prepare an aqueous soln. of a metallic salt of hydrazine having <=15wt% concn. An oxidizing agent such as H2O2 is added to the soln. while the soln, is vigorously stirred, they are brought into a reaction at 20-100 deg.C, and a formed precipitate is separated, wasted and dried to obtain the titled particles of magnetic oxide of iron, tricobalt tetroxide, manganese oxide or the like having <=0.05mum average particle size.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は極めて微小な非針状を有する、例えば四三酸化
鉄、四三酸化コバルト、酸化マンガンなどの金属酸化物
粒子を簡単に効率よく製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention easily and efficiently produces extremely fine non-acicular metal oxide particles such as triiron tetroxide, tricobalt tetroxide, and manganese oxide. Relating to a method of manufacturing.

[従来技術およびその問題点] 一般に微小な金属酸化物粒子は顔料用、研磨材用、電磁
気材料用などとして有用である。例えば三二酸化鉄は、
0.1am以下の微小粒子にすることによって、紫外線
を通過させ難い特殊顔料としての用途も生じ、その有用
性が増加する。また、フェライトは一般に酸化鉄と他の
金属酸化物もしくは炭酸塩とを混合し、1000℃以上
の高温で固体反応により合成されるが、そのような固体
反応を容易に達成するために、原料として微小な酸化鉄
が望まれている。
[Prior art and its problems] In general, fine metal oxide particles are useful as pigments, abrasives, electromagnetic materials, and the like. For example, iron sesquioxide
By making the particles smaller than 0.1 am, they can be used as special pigments that do not easily transmit ultraviolet rays, increasing their usefulness. In addition, ferrite is generally synthesized by mixing iron oxide with other metal oxides or carbonates and performing a solid-state reaction at high temperatures of 1000°C or higher. Minute iron oxide is desired.

従来、微小な金属酸化物粒子の製造方法としては、一般
に(1)金属陽イオンを難溶の水酸化物、炭酸塩、#J
酸塩などの形で沈殿させ、これを仮焼する方法、(2)
金属アルコキシドを加水分解して得られる沈殿物を仮焼
する方法、(3)鉄酸化物として、例えば特開昭58−
20733号で提案されているように、レビドクロサイ
トγ−Fe00Hをオートクレーブ中で撹拌しながら、
200℃で30分間程度の水熱処理をして微小なα型三
二酸化鉄を得る方法などがある。
Conventionally, methods for producing fine metal oxide particles generally include (1) converting metal cations into poorly soluble hydroxides, carbonates, #J
A method of precipitating in the form of an acid salt and calcining this, (2)
A method of calcining a precipitate obtained by hydrolyzing a metal alkoxide, (3) as an iron oxide, for example, JP-A-58-
As proposed in No. 20733, levidocrocite γ-Fe00H was stirred in an autoclave.
There is a method of obtaining minute α-type iron sesquioxide by hydrothermal treatment at 200° C. for about 30 minutes.

しかしながら、上記した如き従来法においては、沈殿の
生成時に粒子が微小であっても、粒径が不揃いであった
り、その後の焼成工程で粒子の二次成長が起こり易く粗
大化したりして、所望の微小な金属酸化物粒子が簡単に
得られなかったり、また高温、加圧下の反応を必要する
など工業的操作において工程が複雑であるなどの欠点を
有する。
However, in the conventional method as described above, even if the particles are minute when forming the precipitate, the particle size may be uneven, or the particles may easily undergo secondary growth in the subsequent firing process and become coarse. It has drawbacks such as the difficulty in obtaining minute metal oxide particles, and the complicated process in industrial operations, such as the need for reactions at high temperatures and under pressure.

口問題点を解決するための手段] 本発明者らは従来法における問題点を解決し、微小な金
属酸化物を簡便に得る方法について鋭意研究を重ねた。
Means for Solving the Problems] The present inventors have conducted intensive research on a method for solving the problems in conventional methods and easily obtaining minute metal oxides.

その結果、金属ヒドラジン塩が過酸化水素などの酸化剤
で瞬時に酸化分解され、粒度分布がシャープである微小
の金属酸化物粒子が簡単に得られることを見出し゛て、
本発明を提供するに至ったものである。即ち、本発明は
金属ヒドラジン塩を酸化分解することを特徴とする微小
な金属酸化物粒子の製造方法である。
As a result, they discovered that metal hydrazine salts can be instantly oxidized and decomposed with an oxidizing agent such as hydrogen peroxide, and that minute metal oxide particles with a sharp particle size distribution can be easily obtained.
This has led to the provision of the present invention. That is, the present invention is a method for producing minute metal oxide particles, which is characterized by oxidatively decomposing a metal hydrazine salt.

本発明に用いる金属ヒドラジン塩の金属としては、例え
ば鉄、コバルト、マンガン、ニッケル、錫などである。
Examples of the metal of the metal hydrazine salt used in the present invention include iron, cobalt, manganese, nickel, and tin.

かかる金属ヒドラジン塩は、一般に対応する金属塩の少
なくとも一種と、ヒドラジンまたはヒドラジン化合物と
を水溶液で反応させて得られる。したがって、金属塩と
しては一般に水溶性の金属化合物が好ましく、例えばF
eC12、CoCl2などの塩化物、FeSO4、Mn
SO4などの硫酸塩、あるいは硝酸塩などが好適に用い
られる。金属塩とヒドラジンとの反応は公知であり、例
えば下記式の如く FeCl2+2N2H4 +FeCl 2 (N2H4)2 COCI 2 + 2 N 2 H4 −+CoC12(N2H4)2 示される。
Such metal hydrazine salts are generally obtained by reacting at least one corresponding metal salt with hydrazine or a hydrazine compound in an aqueous solution. Therefore, water-soluble metal compounds are generally preferred as metal salts, such as F
Chlorides such as eC12, CoCl2, FeSO4, Mn
Sulfates such as SO4 or nitrates are preferably used. The reaction between a metal salt and hydrazine is known, and is represented by the following formula, for example: FeCl2+2N2H4 +FeCl2(N2H4)2 COCI2+2N2H4-+CoC12(N2H4)2.

次に、本発明における金属ヒドラジン塩の酸化分解反応
は、該金属ヒドラジン塩の反応液を激しく撹拌しながら
酸化剤の添加によって、良好に達成される。したがって
、本発明においては金属ヒドラジン塩の合成と該ヒドラ
ジン塩の酸化分解とを、同一の反応容器において連続し
て実施することが出来る。なお、酸化剤としては特に制
限されないが、不純物の混入を防ぐという点から、過酸
化水素が好適であるが、そのほか亜硝酸塩、次亜塩素酸
塩、硝酸なども適用される。
Next, the oxidative decomposition reaction of the metal hydrazine salt in the present invention is favorably achieved by adding an oxidizing agent while vigorously stirring the reaction solution of the metal hydrazine salt. Therefore, in the present invention, synthesis of a metal hydrazine salt and oxidative decomposition of the hydrazine salt can be carried out continuously in the same reaction vessel. The oxidizing agent is not particularly limited, but from the viewpoint of preventing contamination with impurities, hydrogen peroxide is preferred, but nitrites, hypochlorites, nitric acid, etc. are also applicable.

本発明において、特に粒度分布がシャープな金属酸化物
粒子を得るためには、金属ヒドラジン塩の濃度を一般に
15重量%以下、特に5〜10重量%に調整した水溶液
中で酸化分解することが好ましい。即ち、金属ヒドラジ
ン塩の酸化分解反応は極めて瞬時に達成されるため、該
金属ヒドラジン塩の濃度が高すぎる場合には、反応が局
所的となり、得られる金属酸化物の粒度分布が不揃いに
なる。金属ヒドラジン塩の濃度が5重量%より低い場合
にも反応は達成されるが、効率的でない。
In the present invention, in order to obtain metal oxide particles with a particularly sharp particle size distribution, it is preferable to carry out oxidative decomposition in an aqueous solution in which the concentration of the metal hydrazine salt is generally adjusted to 15% by weight or less, particularly 5 to 10% by weight. . That is, since the oxidative decomposition reaction of the metal hydrazine salt is accomplished very instantaneously, if the concentration of the metal hydrazine salt is too high, the reaction will be localized and the particle size distribution of the resulting metal oxide will be uneven. The reaction is also achieved when the concentration of metal hydrazine salt is lower than 5% by weight, but not efficiently.

また、反応温度が低すぎる場合には、反応がスムーズに
達成されなくなり効率的でなく、結果として微小で且つ
シャープな粒度分布を有する金属酸物粒子が得られにく
くなる。したがって、反応温度は一般に20〜100℃
、特に40〜90℃の範囲が好ましい。
Moreover, if the reaction temperature is too low, the reaction will not be achieved smoothly and will not be efficient, and as a result, it will be difficult to obtain metal oxide particles having a fine and sharp particle size distribution. Therefore, the reaction temperature is generally 20-100℃
, particularly preferably in the range of 40 to 90°C.

本発明における金属ヒドラジン塩の酸化剤による酸化分
解は、例えば下記式 %式% のように、速やかに反応が達成される。生成した金属酸
化物は反応液より常法により分離、水洗した後、乾燥す
ることにより微小な粒子状粉末として得られる。
In the oxidative decomposition of the metal hydrazine salt by an oxidizing agent in the present invention, the reaction is quickly achieved, for example, as shown in the following formula %. The generated metal oxide is separated from the reaction solution by a conventional method, washed with water, and then dried to obtain a fine particulate powder.

[効果コ 以上に説明したように、本発明は従来法に比べて焼成工
程を必要としないため、粒子の粗大化もなく、例えば0
.05μm以下の極めて微小かつ粒度分布がシャープで
ある、非針状でほぼ球状の金属酸化物粒子を得ることが
出来る。また、本発明は加圧下での反応なども必要とし
ないため、簡単な工程および操作で、迅速に効率よく且
つ安易に、所望の微小な金属酸化物を得ることが出来、
工業的にも・極めて有用である。
[Effects] As explained above, the present invention does not require a firing process compared to the conventional method, so there is no coarsening of particles, for example, 0.
.. It is possible to obtain non-acicular, substantially spherical metal oxide particles that are extremely small, 0.05 μm or less, and have a sharp particle size distribution. Furthermore, since the present invention does not require any reaction under pressure, it is possible to quickly, efficiently, and easily obtain the desired minute metal oxide through simple steps and operations.
It is also extremely useful industrially.

[実施例コ 以下、本発明の実施例を示すが、本発明はこれらの実施
例に制限されるものではない。
[Examples] Examples of the present invention will be shown below, but the present invention is not limited to these Examples.

実施例1 硫酸第1鉄(7水塩)30gを水に溶解した水溶液60
0mQを50℃に加熱した後、飽水ヒドラジン(NzH
4・H20)12gを撹拌しながら徐々に注油すること
によって、やや緑色を帯びた白色の沈殿物が生成した。
Example 1 Aqueous solution of 30 g of ferrous sulfate (heptahydrate) dissolved in water 60
After heating 0mQ to 50℃, saturated hydrazine (NzH
4.H20) was gradually added with oil while stirring, a slightly greenish white precipitate was formed.

次いで、これを撹拌しながら過酸化水素水(15重量%
)10gを徐々に添加することによって、ガスを発生し
ながら反応が進行し、沈殿物は最後に黒色に変化した。
Next, hydrogen peroxide solution (15% by weight) was added to this while stirring.
) By gradually adding 10 g, the reaction proceeded while generating gas, and the precipitate finally turned black.

生成した沈殿物を水洗、濾過および乾燥して微小な粉末
を得た。
The generated precipitate was washed with water, filtered and dried to obtain a fine powder.

上記で得た粉末は、X線回折によりFe3O4であるこ
とを確認した。また、粉末の比表面積は、Br’:T法
により測定した結果、74.4m’/gであった。第1
図に、この粉末の電子顕微鏡写真(200000倍)を
示す。この電子顕微鏡写真の観察により、粉末の粒子は
°平均直径が0.02μmのほぼ球形として認められる
The powder obtained above was confirmed to be Fe3O4 by X-ray diffraction. Further, the specific surface area of the powder was 74.4 m'/g as measured by the Br':T method. 1st
The figure shows an electron micrograph (200,000 times magnification) of this powder. Observation of this electron micrograph reveals that the powder particles are approximately spherical with an average diameter of 0.02 μm.

実施例2 塩化マンカン(4水塩)30gを水600見に溶解し、
80℃に加熱した後、撹拌しなから飽水ヒドラジン12
gを徐々注油することによって、黄白色の沈殿物が生成
した。次いで、直ちに撹拌しながら、これに過酸化水素
水(15重置火)20gを徐々に添加することによって
、黒褐色に変化した沈殿物が生成した。生成した沈殿物
を水洗、1!過および乾燥して微小な粉末を得た。
Example 2 30g of mankan chloride (tetrahydrate salt) was dissolved in 600ml of water,
After heating to 80°C, add saturated hydrazine 12 without stirring.
A yellowish white precipitate was formed by gradually adding oil. Next, 20 g of hydrogen peroxide solution (15 layers) was gradually added to the mixture while stirring, thereby producing a blackish brown precipitate. Wash the formed precipitate with water, 1! A fine powder was obtained by filtering and drying.

上記で得た粉末は、X線回折によりM n 203であ
ることを確認した。また、BET法による比表面積の測
定では、34.1d1gであった。
The powder obtained above was confirmed to have M n 203 by X-ray diffraction. In addition, the specific surface area was determined to be 34.1 d1g by BET method.

実施例:3 硫酸第1鉄(7水塩)27gおよび硫酸コバルト(7水
塩)30gを水600m見に溶解し、これを加熱して7
0℃に昇温した後、撹拌しなから飽水ヒドラジン13g
を徐々に添加することによって、灰白色の沈殿物が生成
した。次いて、90℃に昇温した後、撹拌しながら過酸
化水素水(15重量%)10gを注油することによって
、黒色に変化した沈殿物が生成した。生成した沈殿物を
水洗、濾過および乾燥して微小な粉末を得た。
Example: 3 27 g of ferrous sulfate (7 hydrate) and 30 g of cobalt sulfate (7 hydrate) were dissolved in 600 m of water and heated to 7 g.
After raising the temperature to 0°C, add 13 g of saturated hydrazine without stirring.
By gradually adding , an off-white precipitate was formed. Next, after raising the temperature to 90° C., 10 g of hydrogen peroxide solution (15% by weight) was poured into the solution while stirring, thereby producing a precipitate that turned black. The generated precipitate was washed with water, filtered and dried to obtain a fine powder.

上記で得た粉末をX線回折による分析の結果、ピークは
Fe3O4のピークを外れ鉄−コバルトの固溶体の存在
が示唆された。なお、粉末を蛍光X線による分析の結果
、コバルトの存在を確隠した。また、粉末のFJET法
による比表面積の測定では、80.7vn”/gであっ
た。
As a result of X-ray diffraction analysis of the powder obtained above, the peak deviated from the Fe3O4 peak, suggesting the presence of an iron-cobalt solid solution. Furthermore, as a result of analyzing the powder using fluorescent X-rays, the presence of cobalt was confirmed. Further, the specific surface area of the powder was measured by FJET method and was 80.7 vn''/g.

実施例4 酸化剤として過酸化水素水の代わりに亜硝酸ナトリウム
水溶液(10重量%)を用いた以外は、実施例1と同様
の方法によって、実施した結果、黒色の微小粉末を得た
Example 4 A fine black powder was obtained in the same manner as in Example 1, except that an aqueous sodium nitrite solution (10% by weight) was used as an oxidizing agent instead of aqueous hydrogen peroxide.

上記の粉末は、X線回折によりFe3O4であることを
確認し、またBET法により比表面積54.6i/gを
測定した。
The above powder was confirmed to be Fe3O4 by X-ray diffraction, and the specific surface area was measured to be 54.6 i/g by BET method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1で得た粉末の形状を示す電子顕微鏡
写真(200000倍)である。
FIG. 1 is an electron micrograph (200,000 times magnification) showing the shape of the powder obtained in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1)金属ヒドラジン塩を酸化分解することを特徴とする
微小な金属酸化物粒子の製造方法。
1) A method for producing minute metal oxide particles, which comprises oxidatively decomposing a metal hydrazine salt.
JP16400885A 1985-07-26 1985-07-26 Production of fine metallic oxide particle Granted JPS6227310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16400885A JPS6227310A (en) 1985-07-26 1985-07-26 Production of fine metallic oxide particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16400885A JPS6227310A (en) 1985-07-26 1985-07-26 Production of fine metallic oxide particle

Publications (2)

Publication Number Publication Date
JPS6227310A true JPS6227310A (en) 1987-02-05
JPH0262481B2 JPH0262481B2 (en) 1990-12-25

Family

ID=15785013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16400885A Granted JPS6227310A (en) 1985-07-26 1985-07-26 Production of fine metallic oxide particle

Country Status (1)

Country Link
JP (1) JPS6227310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842990A3 (en) * 1996-11-14 2000-02-23 Degussa-Hüls Aktiengesellschaft Spherical colour pigments, process for their preparation and their use
WO2000048939A1 (en) * 1999-02-16 2000-08-24 European Community, Represented By The Commission Of The European Communities Precipitation process
JP2008534423A (en) * 2005-03-30 2008-08-28 エスケー エネルギー 株式会社 Spherical manganese carbonate precipitation method and product produced thereby

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842990A3 (en) * 1996-11-14 2000-02-23 Degussa-Hüls Aktiengesellschaft Spherical colour pigments, process for their preparation and their use
US6080232A (en) * 1996-11-14 2000-06-27 Degussa Aktiengesellschaft Spherical color pigments, process for their production and use thereof
WO2000048939A1 (en) * 1999-02-16 2000-08-24 European Community, Represented By The Commission Of The European Communities Precipitation process
US6811758B1 (en) 1999-02-16 2004-11-02 European Community, Represented By The Commision Of The European Communities Precipitation process
JP2008534423A (en) * 2005-03-30 2008-08-28 エスケー エネルギー 株式会社 Spherical manganese carbonate precipitation method and product produced thereby

Also Published As

Publication number Publication date
JPH0262481B2 (en) 1990-12-25

Similar Documents

Publication Publication Date Title
JP5383623B2 (en) High purity iron oxide and its uses
EP0074442A1 (en) Yellow pigments stable at high temperatures
US4289746A (en) Process for preparation of micaceous iron oxide
US20140205664A1 (en) Method for producing finely divided haematite and for producing iron oxide red pigments
JP2008504202A (en) Method for producing iron oxide nanoparticles
JPS586688B2 (en) Method for producing black iron oxide pigment
Refait et al. Mechanisms of oxidation of Ni (II)-Fe (II) hydroxides in chloride-containing aqueous media: Role of the pyroaurite-type Ni-Fe hydroxychlorides
US4812302A (en) Process for preparing high purity Mn3 O4
JPH09132413A (en) Method for regeneration of tungsten carbide and tungsten material
Lisnevskaya et al. Low-temperature sol-gel synthesis of modified nickel ferrite
RU2410205C2 (en) Method of producing ultra-dispersed metal powder
JPS6227310A (en) Production of fine metallic oxide particle
JPS5869727A (en) Wet preparation of ferrite fine particle of magnet plumbite type
JPS6227309A (en) Production of fine metallic oxide particle
JPS6252129A (en) Production of fine metal oxide particle
JPH0623054B2 (en) Manufacturing method of hematite particle powder
Randhawa et al. Synthesis of potassium ferrite by precursor and combustion methods: A comparative study
JP2829644B2 (en) Production method of α-iron oxide
Glavee et al. Preparation of magnetic fine particles by borohydride reduction
JP2020125521A (en) Method of manufacturing acidic slurry, and method of recovering rare earth element
RU2035263C1 (en) Method for producing powder of iron-cobalt alloy
US5626788A (en) Production of magnetic oxide powder
JPH0733442A (en) Production of mn-zn ferrite
JPS63185822A (en) Production of high-purity antimony pentoxide powder
KR20020083651A (en) Preparation of ZnO Powder by Pyrophoric Synthesis Method