JPS62272468A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPS62272468A
JPS62272468A JP61115851A JP11585186A JPS62272468A JP S62272468 A JPS62272468 A JP S62272468A JP 61115851 A JP61115851 A JP 61115851A JP 11585186 A JP11585186 A JP 11585186A JP S62272468 A JPS62272468 A JP S62272468A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
fuel
hydrogen
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61115851A
Other languages
Japanese (ja)
Inventor
Osamu Yamamoto
修 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61115851A priority Critical patent/JPS62272468A/en
Publication of JPS62272468A publication Critical patent/JPS62272468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase heat efficiency as the whole system by recovering excess hydrogen in fuel gas exhausted from a fuel cell and effectively using the recovered hydrogen. CONSTITUTION:A gas reformed in a reformer 1 is supplied as fuel gas from a reforming gas reaction tube 3 to a fuel electrode of a fuel cell 30 and electrochemically reacts with the air supplied to an oxidizing agent electrode in the fuel cell 30 to generate electricity, and electric power is supplied to a load 50. The gas exhausted from the fuel cell 30 is sent to a burner 2 of the reformer 1 and used as fuel for generating reforming gas. A part of exhaust gas is sucked with a sucker 21 in accordance with a value of the load 50, and hydrogen is separated with a hydrogen recovering unit 20. The separated hydrogen is stored in a storage tank 25 and supplied to the burner 2 or the fuel cell 30 through an outlet pipeline 29 to use as fuel. Therefore, heat efficiency as the whole system is increased.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、水素に富む改質ガスを生成する改質器と、改
質ガスを燃料ガスとする燃料電池とを組合わせてなる燃
料電池発電装置に係シ、特に燃料電池から排出される燃
料ガスを改質器のバーナに供給する燃料電池発電装置に
関する。
[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] The present invention relates to a fuel cell comprising a reformer that generates hydrogen-rich reformed gas and a fuel cell that uses the reformed gas as fuel gas. The present invention relates to a power generation device, and particularly to a fuel cell power generation device that supplies fuel gas discharged from a fuel cell to a burner of a reformer.

〔従来技術とその問題点〕[Prior art and its problems]

ている。第5図において改質器1にはケース状の炉体1
0の上部にバーナ2と炉体1o内に気化管、2と反応管
3とが配設されており、アルコールのような液体燃料等
からなる改質原料は改質原料タンク31から供給ポンプ
32にょ電気化管5に供給されている◎そして気化管5
を通流する改質原料はバーナ2による燃料の燃焼熱にょ
電気化されて気化ガスとな9、この気化ガスは改質触媒
を充填した反応管3にて燃焼熱にょシ加熱されて水素に
富んだ改質ガスとなシ、管路33を経て燃料電池30に
反応ガスとしての燃料ガスとして供給されている。
ing. In Fig. 5, the reformer 1 has a case-like furnace body 1.
A burner 2 is installed in the upper part of the furnace body 1o, and a vaporizing tube 2 and a reaction tube 3 are installed in the furnace body 1o.A reforming material made of liquid fuel such as alcohol is supplied from a reforming material tank 31 to a supply pump 32. It is supplied to the electrification pipe 5 ◎ and the vaporization pipe 5
The reforming raw material flowing through it is electrified by the combustion heat of the fuel by the burner 2 and becomes vaporized gas9, and this vaporized gas is heated by the combustion heat in the reaction tube 3 filled with a reforming catalyst and becomes hydrogen. The rich reformed gas is supplied to the fuel cell 30 via a pipe 33 as a fuel gas as a reaction gas.

燃料電池30には反応ガスとしての酸化剤ガス、例えば
空気が管路35を経て供給され、燃料ガスとともに電池
内にて電気化学反応をし、残余の空気は管路39から排
出されている。一方電気化学反応終了後燃料ガス中には
なお未反応水素を含有しているので燃料電池から排出す
る燃料ガス(以下オフガスという)を管路34を経てバ
ーナ2に供給し、改質器1の燃料としている。なおこの
燃料ガスの補完として液体燃料を使用することも行なわ
れている。また、バーナ2にて燃焼した燃焼ガスは改質
器1内を流れ、ダクト12により外部に排出されている
An oxidant gas, such as air, as a reactive gas is supplied to the fuel cell 30 through a pipe 35 and undergoes an electrochemical reaction together with the fuel gas within the cell, and the remaining air is discharged through a pipe 39. On the other hand, since the fuel gas still contains unreacted hydrogen after the electrochemical reaction is completed, the fuel gas discharged from the fuel cell (hereinafter referred to as off-gas) is supplied to the burner 2 through the pipe 34 and the reformer 1 It is used as fuel. Note that liquid fuel is also used as a supplement to this fuel gas. Furthermore, the combustion gas combusted in the burner 2 flows through the reformer 1 and is discharged to the outside through a duct 12.

ところで上記の反応管内に充填された改質触媒からなる
触媒層の作用によシ水素の富んだ改質ガスにするには、
触媒層をバーナのオフガスや燃料としての液体燃料の燃
焼熱により適正な動作温度範囲に保持する必要がある◎ しかし、所要の改質ガス量が多くなれば、当然気化管と
反応管に供給するアルコールのような液体燃料を増加さ
せねばならない。したがって反応管内の触媒の温度を適
正範囲に保持するためにはバーナでの燃焼量を増加する
必要がある。このためにはバーナに供給する液体燃料や
オフガスの流量を増加するように調整すればよい・この
場合液体燃料の供給流量の調整は、通常ポンプ等により
供給しているので容易である。しかし改質器の燃料は発
熱量の高いオフガスでほぼ間に合うため、燃焼用の液体
燃料は主炎であるオフガスの補助的な燃焼、また種火と
して使用されるので、実質的に液体燃料の流量調整は行
なわれていない。またオフガスは燃料電池の発電量に応
じてIN、量が定まるのでオフガスの流量調整も行なわ
れてない。
By the way, in order to make the reformed gas rich in hydrogen by the action of the catalyst layer consisting of the reforming catalyst filled in the reaction tube,
It is necessary to maintain the catalyst layer within an appropriate operating temperature range using off-gas from the burner and the combustion heat of liquid fuel as fuel. However, if the required amount of reformed gas increases, it will naturally be necessary to supply it to the vaporization tube and reaction tube. Liquid fuels such as alcohol must be increased. Therefore, in order to maintain the temperature of the catalyst in the reaction tube within an appropriate range, it is necessary to increase the amount of combustion in the burner. For this purpose, the flow rate of liquid fuel and off-gas supplied to the burner may be adjusted to increase. In this case, adjustment of the supply flow rate of liquid fuel is easy since it is usually supplied by a pump or the like. However, since the fuel for the reformer is mostly off gas with a high calorific value, the liquid fuel for combustion is used for auxiliary combustion of the off gas that is the main flame, and as a pilot flame, so the flow rate of liquid fuel is essentially No adjustments have been made. Further, since the amount of off-gas is determined depending on the amount of power generated by the fuel cell, the flow rate of off-gas is not adjusted.

いずれにしろ従来の改質器では、改質ガスの所要量に対
して反応管の触媒層の適正温度を保持するように燃料の
供給量を調整してはいない。
In any case, in conventional reformers, the amount of fuel supplied is not adjusted so as to maintain an appropriate temperature of the catalyst layer of the reaction tube with respect to the required amount of reformed gas.

第6図は上記の状態による燃料電池の負荷電流とオフガ
ス流量と触媒温度との関係を示すグラフであり、横軸に
時間を、縦軸にそれぞれ燃料電池の負荷電流囚、オフガ
スの流量(m3/h) 、触媒の温度(℃)をとって示
している。図において折線Pは負荷電流と時間、折線Q
はオフガスの流量と時間、折線Rは触媒の温度と時間と
の関係を示している。図において燃料電池の発電量、す
なわち負荷電流がPlからP2に低下すると、電気化学
反応が低下し、過渡的にオフガスの流量がQlからQ2
に増加する。このためオフガスによる燃焼量が増加し、
触媒の温度がR1からR2に上昇する。さらにこの場合
発電量が低下するため必要とする改質ガス量も低下する
ので、反応管に供給する改質ガス用の液体燃料も低減し
、その供給量が調整されて少なくなる。したがって触媒
の温度の上昇がますます助長されることになる0この結
果触媒温度が所定の温度以上になると触媒自身の寿命が
低下するという問題があった。なお、オフガスを使用せ
ずに供給量の調整可能な液体燃料のみをバーナにて燃焼
させ、反応管内の改質用触媒層の温度を適正な範囲に保
持することは可能である。しかし、オフガスは発熱量が
高いので燃料としてオフガスを使用しないのは、燃料電
池発電装置の熱効率の向上の点から不利である。
FIG. 6 is a graph showing the relationship between the fuel cell load current, off-gas flow rate, and catalyst temperature under the above conditions, with time on the horizontal axis and fuel cell load current and off-gas flow rate (m3) on the vertical axis. /h), the temperature of the catalyst (°C) is shown. In the figure, the broken line P is load current and time, and the broken line Q
indicates the relationship between the off-gas flow rate and time, and the broken line R indicates the relationship between catalyst temperature and time. In the figure, when the power generation amount of the fuel cell, that is, the load current decreases from Pl to P2, the electrochemical reaction decreases, and the off-gas flow rate transiently increases from Ql to Q2.
increases to As a result, the amount of combustion due to off-gas increases,
The temperature of the catalyst increases from R1 to R2. Furthermore, in this case, since the amount of power generation decreases, the amount of reformed gas required also decreases, so the liquid fuel for the reformed gas supplied to the reaction tube also decreases, and the amount of liquid fuel supplied is adjusted and reduced. Therefore, the rise in the temperature of the catalyst is further promoted.As a result, when the catalyst temperature exceeds a predetermined temperature, there is a problem that the life of the catalyst itself is shortened. Note that it is possible to maintain the temperature of the reforming catalyst layer in the reaction tube within an appropriate range by burning only liquid fuel whose supply amount can be adjusted in a burner without using off-gas. However, since off-gas has a high calorific value, not using off-gas as fuel is disadvantageous in terms of improving the thermal efficiency of the fuel cell power generation device.

また、改質器にて改質原料を水素に富むガスに改質する
反応は一般的に吸熱反応であり、このため反応を行なわ
せるために外部よシ熱エネルギーを、例えば上述したバ
ーナからの熱媒体としての燃焼ガスを与えていることと
、また上記の反応を促進して改質ガスにするのに必要な
改質触媒量を確保するための触媒空間があることとのた
めに、改質原料の供給量の変化に応じて、改質ガス量が
生成される応答速度が極めて遅い。これに反して燃料電
池の電気化学反応速度は非常に速いために、燃料電池の
燃料ガスが不足しないように常に改質器は長目の改質ガ
スを発生するようにしている。
In addition, the reaction of reforming the reformed raw material into a hydrogen-rich gas in a reformer is generally an endothermic reaction, so in order to carry out the reaction, external thermal energy is used, for example from the burner mentioned above. Because combustion gas is provided as a heat carrier and there is a catalyst space to secure the amount of reforming catalyst necessary to promote the above reaction and convert it into reformed gas, The response speed for generating the amount of reformed gas in response to changes in the amount of raw material supplied is extremely slow. On the other hand, since the electrochemical reaction rate of a fuel cell is very fast, the reformer always generates a long reformed gas so that the fuel cell does not run out of fuel gas.

このため余分の改質ガスを発生しているので燃料電池発
電装置としての熱効率を低下させるという問題がある。
As a result, excess reformed gas is generated, which poses a problem of lowering the thermal efficiency of the fuel cell power generation device.

〔発明の目的〕[Purpose of the invention]

本発明は、前述のような点に鑑み燃料電池から排出され
る燃料ガス中の余分の水素を回収し、この回収した水素
を有効に活用して装置全体としての一′効率を向上させ
ることのできる燃料電池発電装置を提供することを目的
とする。
In view of the above-mentioned points, the present invention is directed to recovering excess hydrogen from fuel gas discharged from a fuel cell and effectively utilizing the recovered hydrogen to improve the efficiency of the entire device. The purpose is to provide a fuel cell power generation device that can

〔発明の要旨〕[Summary of the invention]

上記の目的は、本発明によれば燃料電池から排出される
燃料ガスを改質器のバーナに供給する燃料電池発電装置
において、前記排出される燃料ガスの一部を取出す吸引
器と、該吸引器からの燃料りからの水素を前記バーナま
たは燃料電池に供給する送出手段と、燃料電池の電気出
力を検出する出力検出器と、この出力検出器の出力信号
にょ)前記吸引器が取)出す燃料ガスの量を制御する制
御器とを設けることにより達成される。
According to the present invention, in a fuel cell power generation device that supplies fuel gas discharged from a fuel cell to a burner of a reformer, the present invention provides a suction device for taking out a part of the discharged fuel gas; a sending means for supplying hydrogen from the fuel tank to the burner or the fuel cell, an output detector for detecting the electrical output of the fuel cell, and an output signal of the output detector; This is achieved by providing a controller for controlling the amount of fuel gas.

〔発明の実施例〕[Embodiments of the invention]

以下図面に基づいて本発明の詳細な説明する〇第1図は
本発明の実施例による燃料電池発電装置の系統図である
。なお、第1図および後述する第2図ないし第4図にお
いて第5図、第6図の従来例と同一部品には同じ符号を
付し、その構成1作用は従来技術と同じなので説明を省
略する。本実施例で従来技術と異なるのは、オフガスの
一部を取出し、てオフガス中の水素を回収して再利用す
る系統を設けたことである。すなわち、オフガスの管路
34から分岐した管路22に送風機のような吸引器21
を介して水素回収器20を設けている。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a system diagram of a fuel cell power generation device according to an embodiment of the present invention. In FIG. 1 and FIGS. 2 to 4, which will be described later, parts that are the same as those in the conventional example shown in FIGS. do. What differs from the prior art in this embodiment is that a system is provided to extract a portion of the off-gas, recover hydrogen in the off-gas, and reuse it. That is, a suction device 21 such as a blower is installed in a pipe line 22 branched from an off-gas pipe line 34.
A hydrogen recovery device 20 is provided via the.

水素回収器20には第2図に示すように水素透過性の良
好な水素選択透過膜からなる細管41が使用されている
。水素選択透過膜には、例えばミクロペンタン環を持つ
ポリイミド膜が使用されている0なおこの膜の水素透過
量は第3図に示した膜透過前層の差圧と水素透過量との
関係を有し、100℃において透過係数C= 3.5 
x 10−9(cd譚/1sec cmHg)を有して
いる。
As shown in FIG. 2, the hydrogen recovery device 20 uses a thin tube 41 made of a hydrogen selective permeation membrane with good hydrogen permeability. For example, a polyimide membrane having micropentane rings is used as the hydrogen selective permeation membrane.The hydrogen permeation rate of this membrane can be determined by the relationship between the differential pressure in the pre-membrane permeation layer and the hydrogen permeation rate shown in Figure 3. and has a permeability coefficient C=3.5 at 100°C
x 10-9 (cd tan/1sec cmHg).

第2図において水素回収器20は上記の細管41の複数
本のそれぞれの両端を管板42に取付けて管束とし、こ
の管束を円筒容器40内に収納し、管板42と円筒容器
端面40a、40bとで画成される空間をそれぞれオフ
ガスの入口室44と出口室45として形成し、入口室4
4には入口管路43を、出口室45には出口管路23を
設けている0また円筒容器40の側壁には細管41を流
れたオフガス中の水素が細管41の管壁を透過して分離
された水素を取出す水素取出管路24を設けているO 第1図に戻って水素回収器20のオフガスの出口管路2
3には絞!123aを設けている。これは細管41(第
2図参照)を形成する水素選択分離膜から透過する水素
量は、その前后の差圧に比例するので、細管41を流れ
るオフガスの圧力を適切に保ったのである。
In FIG. 2, the hydrogen recovery device 20 attaches both ends of each of the plurality of thin tubes 41 to a tube plate 42 to form a tube bundle, stores this tube bundle in a cylindrical container 40, and connects the tube plate 42 and the end surface 40a of the cylindrical container, 40b are formed as an inlet chamber 44 and an outlet chamber 45 for off-gas, respectively.
4 is provided with an inlet pipe line 43, and the outlet chamber 45 is provided with an outlet pipe line 23. Also, on the side wall of the cylindrical container 40, hydrogen in the off-gas flowing through the capillary tube 41 permeates the pipe wall of the capillary tube 41. Returning to FIG. 1, an off-gas outlet pipe 2 of the hydrogen recovery device 20 is provided.
Narrow it down to 3! 123a is provided. This is because the amount of hydrogen that permeates through the hydrogen selective separation membrane forming the capillary tube 41 (see FIG. 2) is proportional to the differential pressure before and after the membrane, so the pressure of the off-gas flowing through the capillary tube 41 was maintained appropriately.

水素回収器20にて回収された水素を貯溜する貯蔵タン
ク25は管路24によシ水素回収器20に接続されてい
る。そして貯蔵タンク25は調整弁26を備えた管路2
8によシ送出手段としての供給ポンプ27に接続されて
いる・供給ポンプ27の出口管路29はバーナ2または
燃料電池30に改質ガスを供給する管路33に接続され
ている。
A storage tank 25 that stores hydrogen recovered by the hydrogen recovery device 20 is connected to the hydrogen recovery device 20 through a pipe 24 . The storage tank 25 is connected to a conduit 2 equipped with a regulating valve 26.
8 is connected to a feed pump 27 as a delivery means. An outlet line 29 of the feed pump 27 is connected to a line 33 that supplies reformed gas to the burner 2 or the fuel cell 30.

燃料電池30の燃料電極と酸化剤電極とを結ぶ回路53
には電気負荷50が接続され、回路53に出力検出器と
しての負荷電流検出器51が設けられている。そして負
荷電流検出器51の出力信号が入力する制御器52が設
けられ、制御器52を介して吸引器21、例えば送風機
の回転数を制御して管路34を通流するオフガスから管
路22を経て取出すオフガス量を制御するようにしてい
る。
A circuit 53 connecting the fuel electrode and oxidizer electrode of the fuel cell 30
An electric load 50 is connected to the circuit 53, and a load current detector 51 as an output detector is provided in the circuit 53. A controller 52 is provided to which the output signal of the load current detector 51 is input. The amount of off-gas taken out through the process is controlled.

このような系統構成により改質器1で改質された改質ガ
ス反応管3から、管路33を経て燃料電池30の燃料電
極に燃料ガスとして送られ、酸化剤電極に送られる空気
とともに燃料電池で電気化学反応をして電気を発生して
負荷50に電力を供給する。そして燃料電池からのオフ
ガスは管路34を経て改質器1のバーナ2に送られ、改
質ガスを生成するための燃料として使用される。この際
、管路34からオフガスの一部を電気負荷50の負荷に
応じて吸引器21により吸引して水素回収器20によシ
水素を分離する。そして分離された水素は貯蔵タンク2
5に貯溜され、供給ポンプ27により出口管路2°9を
経てバーナ2に、あるいは燃料電池30に必要に応じて
供給され、燃料電池′発電装置の起動時における改質器
の昇温あるいは燃料電池の燃料として使用される。
With such a system configuration, the reformed gas reformed in the reformer 1 is sent as a fuel gas from the reaction tube 3 to the fuel electrode of the fuel cell 30 via the pipe 33, and the fuel is sent together with the air sent to the oxidizer electrode. An electrochemical reaction occurs in the battery to generate electricity and supply power to the load 50. The off-gas from the fuel cell is then sent to the burner 2 of the reformer 1 via the pipe 34 and used as fuel for producing reformed gas. At this time, a part of the off-gas is sucked from the pipe line 34 by the suction device 21 according to the load of the electric load 50, and the hydrogen is separated by the hydrogen recovery device 20. The separated hydrogen is stored in storage tank 2.
5, and is supplied to the burner 2 or the fuel cell 30 as needed by the supply pump 27 via the outlet pipe 2°9, and is used to raise the temperature of the reformer or fuel when starting up the fuel cell' power generator. Used as fuel for batteries.

つぎに上記の電力に応じて吸引器21によりオフガスを
吸引する制御について説明する。吸引器21によυ管路
34から吸引する流量の制御は、電気負荷50に供給さ
れる燃料電池3oの負荷電流を負荷電流検出器51で検
出し、負荷電流検出器51からの出力信号を制御器52
に久方し、制御器52を介して吸引器21を制御して行
なわれる。この制御経過を第4図のグラフによりさらに
詳細に説明する。
Next, control for sucking off gas by the suction device 21 in accordance with the above-mentioned electric power will be explained. The flow rate sucked from the υ pipe 34 by the suction device 21 is controlled by detecting the load current of the fuel cell 3o supplied to the electric load 50 with the load current detector 51, and detecting the output signal from the load current detector 51. Controller 52
After some time, the suction device 21 is controlled via the controller 52. This control progress will be explained in more detail with reference to the graph of FIG.

第4図は燃料電池発電装置の運転時の負荷電流とオフガ
スの流量と反応管の触媒温度との運転経過を示すグラフ
であり、横軸に時間を、縦軸にそれぞれ燃料電池の負荷
電流(2)、オフガスの流量(m3/h)、触媒の温度
(C)をとって示している。
FIG. 4 is a graph showing the operating progress of the load current, off-gas flow rate, and catalyst temperature of the reaction tube during operation of the fuel cell power generation device. The horizontal axis represents time, and the vertical axis represents the fuel cell load current ( 2), off-gas flow rate (m3/h) and catalyst temperature (C) are shown.

図において折線Pは負荷電流、Qlは燃料電池のオフガ
スの流量、折線(L−tは改質器へ供給されるオフガス
流量、折線q2は水素回収器へ供給されるオフガス流量
のそれぞれと運転経過時間との関係を示している◇燃料
電池の負荷変化が生じ、例えば負荷が減小し、第4図に
示すように燃料電池の発電量、すなわち負荷電流がPl
からP2に低下すると、電気化学反応が低下し、オフガ
ス流量がQlからQ2に増加する。負荷電流がP2に減
小すると、負荷電流検出器の出力信号と水素回収器に回
収されるオフガス流量q2との関係からなるプログラム
にょプ作動する制御器を介して吸引器が制御され、オフ
ガス流量q2が増加する。なおオフガス流量q2は、オ
フガスの流量Qから燃料電池の負荷電流に応じて必要な
改質エネルギー、すなわちバーナでの必要な燃焼熱量を
発生するためにバーナに供給されるオフガス量q1を差
引いたものであり、すなわちQ=qt+qiである。こ
の際、オフガス流量q1はあらかじめ負荷電流に応じて
計算できるため、オフガス流量q2も負荷電流に応じて
確定できる。
In the figure, the broken line P is the load current, Ql is the flow rate of off-gas of the fuel cell, and the broken line (L-t is the flow rate of off-gas supplied to the reformer, and the broken line q2 is the flow rate of off-gas supplied to the hydrogen recovery device, and the operation progress. ◇The load on the fuel cell changes, for example, the load decreases, and as shown in Figure 4, the amount of power generated by the fuel cell, that is, the load current, decreases to Pl.
When Q1 decreases from Q2 to P2, the electrochemical reaction decreases and the off-gas flow rate increases from Q1 to Q2. When the load current decreases to P2, the suction device is controlled via a program-operated controller consisting of the relationship between the output signal of the load current detector and the off-gas flow rate q2 recovered in the hydrogen recovery device, and the off-gas flow rate is increased. q2 increases. Note that the off-gas flow rate q2 is obtained by subtracting the off-gas amount q1 supplied to the burner in order to generate the necessary reforming energy according to the load current of the fuel cell, that is, the necessary amount of combustion heat in the burner, from the off-gas flow rate Q. That is, Q=qt+qi. At this time, since the off-gas flow rate q1 can be calculated in advance according to the load current, the off-gas flow rate q2 can also be determined according to the load current.

このためバーナで燃焼されるオフガスは改質エネルギに
必要な量のみを供給するようになるので、反応管内の改
質触媒の急激な温度上昇を防止でき、第4図に示すよう
に触媒温度Rは常に適正温度範囲内に保持することがで
きる0 〔発明の効果〕 以上の説明から明らかなように、本発明によれば燃料電
池のオフガスから、燃料電池の負荷電流に応じて改質器
で改質ガスを生成するのに必要なオフガス量以外のオフ
ガスを吸引器で取出し、このオフガス中の水素を水素回
収器により分離して貯溜するようにしたことによシ、燃
焼電池の負荷が変化しても、改質器には負荷に応じたオ
フガス量が供給されて燃焼されるので、改質触媒の温度
は適正範囲に保持することができ、改質触媒の寿命が長
くなるという効果がある。また回収した水素も再利用す
ることができるので燃料電池発電装置としての熱効率が
向上するという効果もある。
As a result, the off-gas combusted in the burner supplies only the amount necessary for reforming energy, which prevents a rapid temperature rise of the reforming catalyst in the reaction tube, and increases the catalyst temperature R as shown in Figure 4. [Effects of the Invention] As is clear from the above explanation, according to the present invention, the off-gas of the fuel cell is collected in the reformer according to the load current of the fuel cell. By extracting off-gas other than the amount of off-gas required to generate reformed gas using a suction device, and separating and storing hydrogen in this off-gas using a hydrogen recovery device, the load on the combustion battery changes. However, since the amount of off-gas is supplied to the reformer according to the load and is burned, the temperature of the reforming catalyst can be maintained within an appropriate range, which has the effect of extending the life of the reforming catalyst. be. Furthermore, since the recovered hydrogen can also be reused, there is also the effect of improving the thermal efficiency of the fuel cell power generation device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例による燃料発電装置の図は第1
図の燃料電池発電装置の運転経過を示すグラフ、第5図
は従来の燃料電池発電装置の系統図、第6図は第5図の
燃料電池発電装置の運転経過を示すグラフである。 1:改質器、2:バーナ、3:反応管、20:水素回収
器、21:吸引器、25:貯蔵タンク、27:送出手段
、30:燃料電池、51:出力検出器、52:制御器。 第1図 第2図 籠圧(kg/Crr12G) 第3図 第4図
FIG. 1 is a diagram of a fuel power generation device according to an embodiment of the present invention.
FIG. 5 is a system diagram of the conventional fuel cell power generation device, and FIG. 6 is a graph showing the operation progress of the fuel cell power generation device shown in FIG. 1: Reformer, 2: Burner, 3: Reaction tube, 20: Hydrogen recovery device, 21: Aspirator, 25: Storage tank, 27: Delivery means, 30: Fuel cell, 51: Output detector, 52: Control vessel. Fig. 1 Fig. 2 Cage pressure (kg/Crr12G) Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】[Claims] 燃料電池から排出される燃料ガスを改質器のバーナに供
給する燃料電池発電装置において、前記排出される燃料
ガスの一部を取出す吸引器と、該吸引器からの燃料ガス
中の水素を分離する水素回収器と、該水素回収器からの
水素を貯留する貯蔵タンクと、該貯蔵タンクから水素を
前記バーナまたは燃料電池に供給する送出手段と、前燃
料電池の電気出力を検出する出力検出器と、該出力検出
器の出力信号により前記吸引器が取り出す燃料ガスの量
を制御する制御器とを設けたことを特徴とする燃料電池
発電装置。
In a fuel cell power generation device that supplies fuel gas discharged from a fuel cell to a burner of a reformer, a suction device takes out a portion of the discharged fuel gas, and hydrogen in the fuel gas from the suction device is separated. a hydrogen recovery device for storing hydrogen from the hydrogen recovery device, a storage tank for storing hydrogen from the hydrogen recovery device, a delivery means for supplying hydrogen from the storage tank to the burner or the fuel cell, and an output detector for detecting the electrical output of the fuel cell. and a controller for controlling the amount of fuel gas taken out by the suction device based on the output signal of the output detector.
JP61115851A 1986-05-20 1986-05-20 Fuel cell power generating system Pending JPS62272468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115851A JPS62272468A (en) 1986-05-20 1986-05-20 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115851A JPS62272468A (en) 1986-05-20 1986-05-20 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPS62272468A true JPS62272468A (en) 1987-11-26

Family

ID=14672708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115851A Pending JPS62272468A (en) 1986-05-20 1986-05-20 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPS62272468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079473A3 (en) * 2002-03-15 2004-01-08 Nissan Motor Fuel cell system and its control method
JP2009176659A (en) * 2008-01-28 2009-08-06 Nippon Telegr & Teleph Corp <Ntt> Fuel cell generation system and its control method
US7687170B2 (en) 2005-08-04 2010-03-30 Honda Motor Co., Ltd. Fuel cell system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003079473A3 (en) * 2002-03-15 2004-01-08 Nissan Motor Fuel cell system and its control method
US7455921B2 (en) 2002-03-15 2008-11-25 Nissan Motor Co., Ltd. Fuel cell system having reformer temperature maintenance system and control method thereof
US7687170B2 (en) 2005-08-04 2010-03-30 Honda Motor Co., Ltd. Fuel cell system
JP2009176659A (en) * 2008-01-28 2009-08-06 Nippon Telegr & Teleph Corp <Ntt> Fuel cell generation system and its control method

Similar Documents

Publication Publication Date Title
US7846599B2 (en) Method for high temperature fuel cell system start up and shutdown
CN104752746A (en) Multi-combination independent alcohol-water hydrogen generation fuel cell car
JP2002530817A (en) Fuel cell system with improved startable output
JPS6359229B2 (en)
US20060024541A1 (en) Solid-oxide fuel cell system having an upstream reformate combustor
JP6134832B1 (en) Fuel cell system
JP2008300251A (en) Fuel cell cogeneration device
JP3644667B2 (en) Fuel cell power generator
JPS62272468A (en) Fuel cell power generating system
KR20110007843A (en) Fuel cull power generation system
JPH05129029A (en) Power generation system formed by using fuel cell
JP2001135336A (en) Fuel cell system
CN100361334C (en) Fuel battery generating system with hydrogen gas intermittence safety bleeder
JP2017183267A (en) Fuel cell system
JP2004247234A (en) Solid polymer type fuel cell generator and its operating method
JP2017183034A (en) Fuel cell system
JP2007269538A (en) Reforming apparatus
JP2595579B2 (en) Power generator for molten carbonate fuel cell
JPH06140067A (en) Fuel cell power generating system
JP2014123576A (en) Solid oxide fuel cell system
JP2019139859A (en) Fuel cell system
JP2002053307A (en) Device for generating hydrogen
JPS63181270A (en) Fuel reforming device for fuel cell system
JP2006066318A (en) Fuel cell system and its operation method
JP6993488B1 (en) Fuel cell power generation system and control method of fuel cell power generation system