JPS62272138A - Dimming type smoke detector - Google Patents

Dimming type smoke detector

Info

Publication number
JPS62272138A
JPS62272138A JP11565486A JP11565486A JPS62272138A JP S62272138 A JPS62272138 A JP S62272138A JP 11565486 A JP11565486 A JP 11565486A JP 11565486 A JP11565486 A JP 11565486A JP S62272138 A JPS62272138 A JP S62272138A
Authority
JP
Japan
Prior art keywords
light
smoke
output
fire
detection signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11565486A
Other languages
Japanese (ja)
Inventor
Hiromitsu Ishii
弘允 石井
Takashi Ono
隆 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP11565486A priority Critical patent/JPS62272138A/en
Publication of JPS62272138A publication Critical patent/JPS62272138A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Fire-Detection Mechanisms (AREA)

Abstract

PURPOSE:To make a smoke detection space substantially long by driving a light emitting device plural times in an arithmetic period based on a photodetection output to emit light, and integrating the quantity of attenuation of a photodetection output due to smoke and outputting a smoke detection signal and a fire detection signal. CONSTITUTION:Light from the light emitting device 10 of a light emission driving part 1 is sent to the light receiving device 20 of a light reception part 2 through the smoke detection space 15. The light receiving device 20 generates a light reception current and a driving signal is inputted to an operational amplifier 30 by capacitors C1 and C2 and switches S1-S4 of the circuit of the light reception part 2 and the switching driving circuit 60 of an arithmetic control part 50 to drive the light emitting device 10 set times in the arithmetic period. Then when the light is attenuated in the smoke detection space 15 owing to smoke, the quantity of light attenuation is integrated by the operational amplifier 24 by set times. The integration output is inputted to a smoke quantity arithmetic part 64 and a fire level detecting circuit 66 and compared with their threshold levels to output the smoke detection signal or fire detection signal. Thus, the light emitting device is driven by plural times to integrate the quantity of light attenuation, so the effective length of the smoke detection space is made long and the detector is reduced in size.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、発光部と受光部を所定の検煙空間をおいて対
向して設け、検煙空間に流入した煙による減衰光を受光
部で受光し、受光部の受光出力に基づいて火災を検出す
るようにした減光式煙検出器に関する。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) The present invention provides a light emitting part and a light receiving part facing each other with a predetermined smoke detection space in between. The present invention relates to a dimming type smoke detector in which a light receiving section receives attenuated light due to smoke and detects a fire based on the light receiving output of the light receiving section.

(従来の技術) 従来の一体型の減光式煙検出器では、発射光を発射する
発光部と、発光部からの発射光を受光する受光部とを所
定の検煙空間をおいて対向させ、検煙空間に煙が流入す
ると、発光部からの発射光が煙により減衰され、減衰し
た受光部の受光出力に基づいて火災検出を行なっており
、限られた筐体内で発光部と受光部間の光路長を得るた
め、発光部からの発射光をミラー等により複数回反射さ
せて受光部に入射させ実質的に検煙空間を広く設定した
と同等の機能をもたせ、検煙空間に流入した煙による減
衰量を大きくして検出感度を上昇させるようにしていた
(Prior art) In a conventional integrated type attenuation smoke detector, a light emitting part that emits light and a light receiving part that receives light emitted from the light emitting part face each other with a predetermined smoke detection space in between. When smoke enters the smoke detection space, the light emitted from the light emitting part is attenuated by the smoke, and fire detection is performed based on the attenuated light receiving output of the light receiving part. In order to obtain an optical path length between The detection sensitivity was increased by increasing the amount of attenuation caused by smoke.

(発明が解決しようとする問題点) しかしながら、このような減光式煙検出器では、発光部
からの発射光をミラーにより反射させる毎に発射光が減
衰され、且つ経年変化によるミラーの汚れで更にその減
衰率が高まるのみならず、ミラーによる光学的な調整機
構が複雑化しコストが上昇するという問題があった。
(Problems to be Solved by the Invention) However, in such a dimming type smoke detector, the emitted light is attenuated each time the emitted light from the light emitting part is reflected by the mirror, and the mirror becomes dirty due to aging. Furthermore, not only does the attenuation rate increase, but the optical adjustment mechanism using the mirror becomes complicated, leading to an increase in cost.

このため、本願発明者等は、複数の発光部のそれぞれに
対向して受光部を設け、各発光部からの発射光を対応す
るそれぞれの受光部に入射し、各受光部からの煙により
減衰した煙検出信号を統合手段で統合して煙量を演算処
理し、発光部と受光部の間隔、即ち検煙空間を実質的に
広く設定したと同等の機能をもたせ、且つコストの低減
を図った減光式煙検出器を提案している(特願昭59−
85605号)。
For this reason, the inventors provided a light receiving section facing each of the plurality of light emitting sections, and the light emitted from each light emitting section was incident on the corresponding light receiving section, and the light was attenuated by smoke from each light receiving section. The integrated means integrates the smoke detection signals obtained and calculates the amount of smoke, thereby providing the same function as if the distance between the light emitting part and the light receiving part, that is, the smoke detection space, was set substantially wider, and at the same time reducing costs. proposed a dimming type smoke detector (patent application 1983-
No. 85605).

ところで、このような減光式煙検出器では、複数の発光
部及び発光部と同数の受光部を必要としており、多数の
発光部及び受光部を用いることなく更にコストを低減さ
せ、且つ一体型の減光式煙検出器を一段と小型化するこ
とが望まれていた。
By the way, such a dimming type smoke detector requires a plurality of light emitting parts and the same number of light receiving parts as the light emitting parts. It has been desired to further reduce the size of dimming type smoke detectors.

(問題点を解決するための手段〉 本発明は、上記問題点に鑑みてなされたもので、限られ
た筐体内で発光部と受光部間の光路長を長くして実質的
に検煙空間を長く設定したと同等の機能をもたせつつ、
大幅なコスト低減を図り、更に小型化した一体型の減光
式煙検出器を提供するすることを目的とする。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned problems, and is designed to increase the length of the optical path between the light emitting part and the light receiving part within a limited housing so as to substantially create a smoke detection space. While having the same functionality as when set for a long time,
The object of the present invention is to significantly reduce costs and provide an integrated dimming type smoke detector that is further miniaturized.

この目的を達成するため本発明にあっては、一対の発光
器と受光器を対向して設けた減光式煙検出器において、
演算周期内に受光器からの受光出力に基づいて発光器を
複数回駆動する駆動手段を設け、演算周期毎に受光器か
らの煙による光の減衰量が累積された受光出力に基づい
て煙検出信号を出力し、更に、発光器の駆動毎に得られ
る受光出力を所定の閾値レベルと比較して該閾値レベル
以下に低下しときに火災検出信号を出力する火災レベル
検出手段を設ける。
In order to achieve this object, the present invention provides a dimming type smoke detector in which a pair of light emitting device and light receiving device are provided facing each other.
A driving means is provided to drive the emitter multiple times based on the light reception output from the light receiver within the calculation cycle, and smoke is detected based on the light reception output that is the cumulative amount of attenuation of light due to smoke from the light receiver in each calculation cycle. A fire level detection means is provided which outputs a signal and further compares the received light output obtained each time the light emitter is driven with a predetermined threshold level and outputs a fire detection signal when the light reception output falls below the threshold level.

(作用) このような構成による本願発明の作用は、まず、駆動手
段により演算周期内で発光器を受光出力に基づいて複数
回発光駆動し、この発光駆動の繰返しにより煙による光
の減衰量が累積された受光出力を得ることで、発光器と
受光器の設置距離に発光回数を掛は合わせた距離で煙を
検出したと実質的に同じになる煙による受光出力のレベ
ル変化を得ることができ、発光器と受光器の設置間隔が
短くとも煙による光の減衰で充分に大きく変化した受光
出力が得られる。
(Function) The function of the present invention with such a configuration is that first, the driving means drives the light emitter to emit light multiple times based on the received light output within the calculation cycle, and by repeating this light emitting drive, the amount of attenuation of light due to smoke is reduced. By obtaining the accumulated received light output, it is possible to obtain a level change in the received light output due to smoke that is essentially the same as detecting smoke at a distance equal to the installation distance of the emitter and receiver multiplied by the number of times the light is emitted. Even if the installation interval between the emitter and receiver is short, a sufficiently large change in the received light output can be obtained due to the attenuation of light due to smoke.

更に、発光駆動の繰返しにより煙による光の減衰量が累
積された受光出力が得られる演算周期以前に受光出力が
閾値レベル以下となった時には、直ちに火災と判断して
火災検出信号を送出し、煙濃度が高いときには発光駆動
の繰返しによる遅れ時間をもつことなく直ちに火災を検
出できるようにしたものである。
Furthermore, if the light reception output falls below the threshold level before the calculation cycle in which the light reception output is obtained by accumulating the amount of light attenuation due to smoke due to repeated light emission driving, it is immediately determined that there is a fire, and a fire detection signal is sent. When the smoke concentration is high, a fire can be detected immediately without the delay time caused by repeated light emission driving.

(実施例) 第1図は、本発明の一実施例を示した回路ブロック図で
ある。
(Embodiment) FIG. 1 is a circuit block diagram showing an embodiment of the present invention.

まず構成を説明すると、1は発光駆動部、2は受光部で
ある。まず発光駆動部1側には、受光部2側のスイッチ
ング制御で転送された受光出力を帰還入力した演算増幅
器30が設けられ、演算増幅器30からの帰還出力を演
算増幅器9の非反転入力端子に入力し、演算増幅器9の
出力は抵抗R1を介して発光駆動用のトランジスタQ1
のベースに与えられる。1〜ランジスタQ1のコレクタ
側には発光器10が接続され、エミッタ側には過電流防
止の抵抗R2が接続されている。発光器10の光は、光
ファイバー16を介して受光器11に与えられており、
受光器11の受光電流を抵抗R3に流すことにより得ら
れる帰遷電圧を演算増幅器9の反転入力端子に与え、発
光器10の汚れ補償及び温度補償を行ないつつ、発光器
100発光輝度を演算増幅器30からの帰還受光レベル
に応じた発光量となるように制御している。
First, to explain the configuration, 1 is a light emitting drive section, and 2 is a light receiving section. First, on the light emitting drive section 1 side, an operational amplifier 30 is provided which feeds back the light reception output transferred by the switching control of the light receiving section 2 side.The feedback output from the operational amplifier 30 is input to the non-inverting input terminal of the operational amplifier 9. The output of the operational amplifier 9 is connected to a transistor Q1 for driving light emission via a resistor R1.
given on the basis of. A light emitter 10 is connected to the collector side of transistor Q1, and a resistor R2 for overcurrent prevention is connected to the emitter side. The light from the emitter 10 is given to the receiver 11 via the optical fiber 16.
The feedback voltage obtained by passing the light receiving current of the light receiver 11 through the resistor R3 is applied to the inverting input terminal of the operational amplifier 9, and while the light emitter 10 is compensated for dirt and temperature, the luminance of the light emitter 100 is controlled by the operational amplifier. The amount of light emitted is controlled in accordance with the level of feedback light received from 30.

発光器10に対しては、所定距離を持った検煙空間15
を介して受光部2の受光器20が対向配置されており、
検煙距離は例えば10cm程度に設定されている。受光
器20には、受光電流により充電される受光レベル記・
憶手段としての第1のコンデンサC1が直列接続され、
コンデンサC1には検煙空間15に流入した煙によって
減衰された光に応じた受光電圧が充電される。第1のコ
ンデンサC1の充電電圧は演算増幅器22の非反転入力
端子に接続されており、この非反転入力端子はFETを
用いたアナログスイッチS1を介して基準電圧子V r
efの印加端子に接続されると共に、アナログスイッチ
S2及び抵抗R7を介して接地接続される。
A smoke detection space 15 is provided at a predetermined distance from the light emitter 10.
The light receivers 20 of the light receiving unit 2 are arranged opposite to each other via the
The smoke detection distance is set to, for example, about 10 cm. The light receiver 20 has a light receiving level record that is charged by the light receiving current.
A first capacitor C1 as a storage means is connected in series,
The capacitor C1 is charged with a light receiving voltage corresponding to the light attenuated by the smoke flowing into the smoke detection space 15. The charging voltage of the first capacitor C1 is connected to the non-inverting input terminal of the operational amplifier 22, and this non-inverting input terminal is connected to the reference voltage voltage V r via the analog switch S1 using an FET.
It is connected to the application terminal of ef, and is also connected to ground via an analog switch S2 and a resistor R7.

演算増幅器22の出力は、逆流防止用のダイオードD2
、アナログスイッチS3及び抵抗R8を介して出力用の
演算増幅器24の非反転入力端子に接続されており、演
算増幅器24は出力端を反転入力端子に帰還接続するこ
とでバッファ増幅器として作動する。更に抵抗R8の出
力側と接地間には受光出力の記憶手段としての第2のコ
ンデンサC2が接続され、第2のコンデン勺C2はアナ
ログスイッチS3の制御により第1のコンデンサC1に
充電保持された受光電圧が転送充電される。
The output of the operational amplifier 22 is connected to a diode D2 for backflow prevention.
, an analog switch S3 and a resistor R8 to a non-inverting input terminal of an output operational amplifier 24, and the operational amplifier 24 operates as a buffer amplifier by connecting its output end to the inverting input terminal. Further, a second capacitor C2 is connected between the output side of the resistor R8 and the ground as a storage means for the received light output, and the second capacitor C2 is charged and held in the first capacitor C1 under the control of the analog switch S3. The received light voltage is transferred and charged.

コンデンサC2の充電電圧はアナログスイッチS4を介
して発光駆動部1側の演算増幅器30の非反転入力端子
に帰還接続されており、この非反転入力端子と接地間に
は抵抗R10が接続されていることから、アナログスイ
ッチS4がオンした時、第2のコンデンサC2内の電荷
は抵抗R10を通し放電させるので、この抵抗R10の
端子電圧が帰還電圧となる。
The charging voltage of the capacitor C2 is feedback-connected to the non-inverting input terminal of the operational amplifier 30 on the light-emitting driver 1 side via the analog switch S4, and a resistor R10 is connected between this non-inverting input terminal and ground. Therefore, when the analog switch S4 is turned on, the charge in the second capacitor C2 is discharged through the resistor R10, so that the terminal voltage of this resistor R10 becomes the feedback voltage.

このような受光部2側に於ける第1及び第2のコンデン
サC1,C2及びアナログスイッチ81〜S4により受
光出力をスイッチング制御により一定時間遅延させて発
光側に帰還させるスイッチング遅延手段が構成される。
The first and second capacitors C1 and C2 and the analog switches 81 to S4 on the light receiving section 2 side constitute a switching delay means that delays the light receiving output by a certain period of time under switching control and returns it to the light emitting side. .

この受光出力をスイッチング制御により遅延して発光側
に帰還させるためのアナログスイッチ81〜S4の制御
は、クロックパルス発生器62のクロックパルスに基づ
いて作動づるスイッチング駆動回路60からのスイッチ
ング信号01〜e4により行なわれ、例えばスイッチン
グ信号01〜e4は第2図のタイミングチャートに示す
ようになる。
The control of the analog switches 81 to S4 for delaying the received light output by switching control and returning it to the light emitting side is performed using switching signals 01 to e4 from the switching drive circuit 60 that operate based on clock pulses from the clock pulse generator 62. For example, the switching signals 01 to e4 are as shown in the timing chart of FIG.

第2図において、まず第1ザイクルT1にあっては、発
光器10の発光駆動は行なわれず、受光器20に直列接
続したコンデンサC1には受光電圧の充電がないことか
ら、T1サイクルの時刻t11に於いてアナログスイッ
チS1及びS3を同時にオンし、基準電圧yrerを演
算増幅器22を介して第2のコンデンサC2に充電させ
る。この時、同時に第1のコンデンサC1も基準電圧V
refに充電されることから、次の時刻t12でアナロ
グスイッチS2をオンし、第1のコンデンサC1を放電
リセットする。
In FIG. 2, first, in the first cycle T1, the light emitter 10 is not driven to emit light, and the capacitor C1 connected in series with the light receiver 20 is not charged with the light receiving voltage. At this point, the analog switches S1 and S3 are turned on simultaneously, and the second capacitor C2 is charged with the reference voltage yrer via the operational amplifier 22. At this time, the first capacitor C1 is also connected to the reference voltage V at the same time.
Since the first capacitor C1 is charged to ref, the analog switch S2 is turned on at the next time t12, and the first capacitor C1 is discharged and reset.

続いて時刻t13でアナログスイッチS4をオンし、コ
ンデンサC2に充電されているMQ電圧V rcfを受
光側の演算増幅器30に帰還入力(微分入力)させ、こ
の演算増幅器30の出力を受けて発光器10は最初の発
光駆動を行なう。このため時刻t13に於ける発光器1
0の発光駆動で検煙空間15を介して受光器20に光が
入射し、受光電流によりコンデンサC1に検煙空間15
に流入した煙の減衰を受けた光の強さに応じた受光電圧
が充電される。
Subsequently, at time t13, the analog switch S4 is turned on, and the MQ voltage Vrcf charged in the capacitor C2 is fed back (differentially input) to the operational amplifier 30 on the light receiving side. 10 performs the first light emission drive. Therefore, the light emitter 1 at time t13
With the light emission drive of
A received light voltage is charged according to the intensity of the light that has been attenuated by the smoke that has flowed into the device.

このT1サイクルのスイッチング制御が終了すると、次
のT2サイクルの時刻t21に於いてアナログスイッチ
S3がオンし、コンデンサC1に充電保持された受光電
圧をコンデンサC2に転送充電する。尚、時刻t21で
はコンデンサC1に受光電圧が1qられていることから
、アナログスイッチS1はオフとなっている。続いて時
刻t22でアナログスイッチS2がオンしてコンデンサ
C1の受光電圧を抵抗R7を介して放電リセットし、次
の時刻t23で再びアナログスイッチS4がオンし、コ
ンデン(J C2に転送充電された受光電圧を演算増幅
器30に帰還させ、発光器10の2回目の発光駆動を行
なう。
When the switching control of the T1 cycle is completed, the analog switch S3 is turned on at time t21 of the next T2 cycle, and the light reception voltage held in the capacitor C1 is transferred and charged to the capacitor C2. Note that at time t21, since the light receiving voltage is 1q applied to the capacitor C1, the analog switch S1 is turned off. Subsequently, at time t22, the analog switch S2 is turned on to discharge and reset the light receiving voltage of the capacitor C1 via the resistor R7, and at the next time t23, the analog switch S4 is turned on again, and the charged light is transferred to the capacitor (J C2). The voltage is fed back to the operational amplifier 30, and the light emitter 10 is driven to emit light for the second time.

以下、T3〜Tnサイクルについて同様にアナログスイ
ッチ33.32及びS4を順次オンするスイッチング制
御を繰り返し、アナログスイッチS1が次にオンする所
定の演算周期Ta内で受光出力の帰還による発光駆動を
N回繰り返す。
Hereinafter, the switching control in which the analog switches 33, 32 and S4 are sequentially turned on is repeated in the same manner for cycles T3 to Tn, and the light emission drive is performed N times by feedback of the light reception output within a predetermined calculation cycle Ta in which the analog switch S1 is turned on next. repeat.

ここで若し検煙空間15に煙の流入がなければ、N回の
発光駆動を繰り返しても演算増幅器24からの受光出力
は基準電圧V refとなっているが、火災により検煙
空間15に煙の流入があった時には、受光出力の帰還に
よる発光駆動で最初の光はN回の発光駆動の繰り返しで
検煙空間15の煙により減衰され、N回の繰返しで煙に
よる光の減衰量が累積された受光出力が演算増幅器24
から得られるようになる。
Here, if there is no smoke flowing into the smoke detection space 15, the light reception output from the operational amplifier 24 will remain at the reference voltage V ref even if the light emission drive is repeated N times. When smoke inflows, the first light is attenuated by the smoke in the smoke detection space 15 by repeating the light emission drive N times by the light emission drive by feedback of the light reception output, and the amount of light attenuation due to the smoke is reduced by repeating the light emission drive N times. The accumulated received light output is transmitted to the operational amplifier 24.
You will be able to get it from

このT1〜TnサイクルでなるN回の駆動期間は演算周
期Ta以内に定められており、■1〜Tnサイクルのス
イッチング制御が終了すると再びT1サイクルに戻り、
同様にスイッチング制御を繰り返す。
The N driving periods consisting of the T1 to Tn cycles are determined within the calculation period Ta, and when the switching control of the 1 to Tn cycles is completed, the process returns to the T1 cycle again.
Switching control is repeated in the same way.

再び第1図を参照するに50は演算制御部であり、発光
駆動部1の発光駆動による受光部2からの受光に基づい
て、煙量の演算および火災検出を行なう。
Referring again to FIG. 1, reference numeral 50 denotes an arithmetic control section, which calculates the amount of smoke and detects a fire based on the light received from the light receiving section 2 by driving the light emitting drive section 1 to emit light.

即ち、演算制御部50には、スイッチング駆動回路60
が設けられ、受光部2側のアナログスイッチ81〜S4
を第2図のタイミングチャートに示すようにスイッチン
グ制御するためのスイッチング信号01〜e4をクロッ
クパルス発生器・62のクロックパルスに基づいて発生
する。
That is, the calculation control section 50 includes a switching drive circuit 60.
are provided, and analog switches 81 to S4 on the light receiving section 2 side are provided.
As shown in the timing chart of FIG. 2, switching signals 01 to e4 for controlling switching are generated based on clock pulses from a clock pulse generator 62.

またスイッチング駆動回路60のスイッチングサイクル
T1〜Tnで定まる演算周!1llTa内の発光駆動の
回数Nnは、発光回数設定回路65により例えばNn=
10回に設定されている。
Also, the calculation cycle determined by the switching cycles T1 to Tn of the switching drive circuit 60! The number of times Nn of light emission driving within 1llTa is set by the number of light emission setting circuit 65, for example, Nn=
It is set to 10 times.

一方、64は煙量演算部であり、演算周期Ta毎に得ら
れる受光部2の演算増幅器24からのN0回の発光駆動
の繰返しで煙による光の減衰量が累積された受光出力を
受けこの受光出力の信号レベルに基づいて煙量を演算し
、煙量の検出信号を出力回路68に与え、例えば電流信
号(4〜20mA)、電圧信号(1〜5V)またはデジ
タルデータにに変換して図示しない監視センタ等の火災
受信機へ送出する。
On the other hand, 64 is a smoke amount calculating section, which receives the light receiving output obtained from the operational amplifier 24 of the light receiving section 2 obtained every calculation period Ta, which is the accumulated amount of attenuation of light due to smoke by repeating the light emission drive N0 times. The amount of smoke is calculated based on the signal level of the received light output, and the smoke amount detection signal is given to the output circuit 68 and converted into, for example, a current signal (4 to 20 mA), a voltage signal (1 to 5 V), or digital data. It is sent to a fire receiver such as a monitoring center (not shown).

ここで煙量演算部64による煙量の演算は、N0回の発
光駆動の繰返しで煙による光の減衰量が累積された受光
レベル[)Xと煙量との関係を例えば実際の煙実験等に
より求め、この実験結果に基づいて受光レベル[)Xと
煙量の変換テーブル表を作成して煙量演算部64に記憶
しておき、この変換テーブル表に基づいて受光レベル[
)Xを煙量に変換して煙量の検出信号を出力回路68に
送出する。
Here, the calculation of the smoke amount by the smoke amount calculation unit 64 is based on the relationship between the received light level [) Based on this experimental result, a conversion table between the received light level [)
) Converts X into a smoke amount and sends a smoke amount detection signal to the output circuit 68.

尚、この実施例において、煙量演算部64は受光部2か
らの受光信号レベルを煙量に変換して出力しているが、
煙量演算部64は煙■に変換することなく、受光信号レ
ベルを直接出力するようにしてもよい。
In this embodiment, the smoke amount calculating section 64 converts the light reception signal level from the light receiving section 2 into a smoke amount and outputs it.
The smoke amount calculating section 64 may directly output the received light signal level without converting it into smoke (2).

更に、演算制御部50には受光部2からの受光出力を入
力した火災レベル検出回路66が説【プられる。火災レ
ベル検出回路66には火災と判断する所定の閾値レベル
が設定されており、受光部2の受光出力と閾値レベルを
比較しており、受光出力が閾値レベル以下に低下すると
、火災検出信号を出力回路68に出力する。即ち、火災
レベル検出回路66は煙量演算部64における演算周期
Ta毎の煙量の演算処理とは独立に設けられており、演
算周期Taのいかんにかかわらず発光駆動による受光出
力が閾値レベル以下にさがったならは直ちに火災と判断
して火災検出信号を出力するようになる。
Further, the arithmetic control section 50 includes a fire level detection circuit 66 into which the light receiving output from the light receiving section 2 is input. A predetermined threshold level for determining a fire is set in the fire level detection circuit 66, and the light reception output of the light receiving section 2 is compared with the threshold level, and when the light reception output falls below the threshold level, a fire detection signal is output. It is output to the output circuit 68. That is, the fire level detection circuit 66 is provided independently of the smoke amount calculation process for each calculation period Ta in the smoke amount calculation section 64, and the light reception output due to light emission drive is below the threshold level regardless of the calculation period Ta. If it goes down, it is immediately determined that there is a fire and a fire detection signal is output.

この火災レベル検出回路66からの火災検出信号を受(
プだ出力回路68は、煙量演算部64の出力のいかんに
係わらず火災であることを示す電流信号、電圧信号また
はデジタル信号をセンタ側の火災受信機に送出するよう
になる。
Receives the fire detection signal from this fire level detection circuit 66 (
The output circuit 68 sends a current signal, a voltage signal, or a digital signal indicating that there is a fire to the fire receiver on the center side, regardless of the output of the smoke amount calculating section 64.

次に演算制御部に設けた煙量演算部64および火災レベ
ル検出回路66の動作を説明する。
Next, the operations of the smoke amount calculation section 64 and the fire level detection circuit 66 provided in the calculation control section will be explained.

通常の監視状態にあっては、演算周期Ta毎に、煙量演
算部64が演算周期Ta内でのNn回の発光駆動で煙に
よる光の減衰量が累積された受光レベル[)Xから変換
テーブル表を用いて煙量を求め、出力回路68によって
煙量を現わす検出信号をセンタの火災受信機等に伝送し
、センタ側で煙量を表示すると共に火災か否かの判断処
理を行なっており、もし火災による煙が流入すると、所
定の煙量を検出したとき火災と判断する。
In a normal monitoring state, every calculation cycle Ta, the smoke amount calculation unit 64 converts the received light level [) The amount of smoke is determined using a table, and the output circuit 68 transmits a detection signal indicating the amount of smoke to a fire receiver at the center, and the center side displays the amount of smoke and processes to determine whether or not there is a fire. If smoke from a fire enters the system, it will be determined that there is a fire when a predetermined amount of smoke is detected.

一方、火災レベル検出回路66は発光駆動毎に得られる
受光出力を閾値レベルと比較しており、例えば火災によ
り高い濃度の煙が流入した場合には、演算周期Taに達
する前の発光駆動回数の段階で煙による光の減衰量が累
積された受光出力が大きく低下し、閾値レベル以下にさ
がったときに火災検出信号を出力回路68に与え、セン
タ側の火災受信機などに対し火災検出信号を送出させ、
センタ側で煙量を判断することなく直ちに火災警報を出
させるようになる。
On the other hand, the fire level detection circuit 66 compares the light reception output obtained each time the light emission is driven with a threshold level. When the received light output, which is the accumulation of light attenuation due to smoke, decreases significantly and falls below the threshold level, a fire detection signal is given to the output circuit 68, and a fire detection signal is sent to the fire receiver on the center side. send it out,
A fire alarm can now be issued immediately without the center having to judge the amount of smoke.

(発明の効果) 以上説明してきたように本発明によれば、演算周期内に
受光器からの受光出力に基づいて発光器を複数回発光駆
動すると共に、演算周期毎に受光器からの煙による光の
減衰量が累積された受光出力に基づいて煙検出信号を出
力し、更に発光駆動毎に得られる受光出力を所定の閾値
レベルと比較して該閾値レベル以下に低下したときに火
災検出信号を出力するようにしたため、検煙空間の実効
長を実質的に長く設定したと同等の受光出力の変化を1
qることができ、減光式煙検出器を大幅に小型化し、且
つ減光式煙検出器のコストを低減させることができると
いう効果が得られる。
(Effects of the Invention) As described above, according to the present invention, the light emitter is driven to emit light multiple times based on the light reception output from the light receiver within the calculation cycle, and the smoke from the light receiver is driven to emit light in each calculation cycle. A smoke detection signal is output based on the light reception output in which the amount of light attenuation is accumulated, and the light reception output obtained for each light emission drive is compared with a predetermined threshold level, and a fire detection signal is generated when the light reception output falls below the threshold level. , the change in light reception output equivalent to setting the effective length of the smoke detection space longer is
q, the dimming type smoke detector can be significantly miniaturized, and the cost of the dimming type smoke detector can be reduced.

また発光駆動毎に得られる受光出力を閾値レベルと比較
して火災か否かをセンサ側で判断しているため、高い濃
度の煙が流入した場合には複数回の発光駆動による遅れ
時間を生ずることなく火災が検出でき、更にセンサ側で
火災を検出するのでセンサからの煙量の検出信号に基づ
いて火災を判断するセンタ側の処理負担を軽減すること
ができる。
Additionally, the sensor side judges whether there is a fire or not by comparing the light reception output obtained each time the light is driven with a threshold level, so if a high concentration of smoke flows in, there will be a delay time due to the light being driven multiple times. Furthermore, since the sensor side detects the fire, it is possible to reduce the processing burden on the center side, which judges the fire based on the smoke amount detection signal from the sensor.

一方、受光出力を発光側へ帰還させるときの遅延手段と
して、スイッチング制御によるコンデンサの転送充電で
所定の遅延時間を得るようにしたため、遅延線や遅延素
子を使用した場合の伝送歪を防ぐことができ、受光信号
を正確に帰還して発光駆動を繰返すことかできる。
On the other hand, as a delay means when returning the light receiving output to the light emitting side, a predetermined delay time is obtained by transfer charging of a capacitor using switching control, which prevents transmission distortion when using a delay line or delay element. It is possible to accurately feed back the light reception signal and repeat the light emission drive.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した回路ブロック図、第
2図は第1図の複数回の発光駆動を行なうスイッチング
信号のタイミングチャートである。 1:発光駆動部 2:受光部 9.22,24,30:演算増幅器 10:発光器 1’l、20:受光器 Ql:トランジスタ R1,R2,R3,R7,R8,R10:抵抗C1,C
2:コンデンサ 31.S2.S3.S4 :アナログスイッチ50:演
算制御部 60ニスイツチング駆動回路 62:クロツタパルス発生器 64:煙量演算部 65:発光回数設定回路 66二火災レベル検出回路 68:出力回路
FIG. 1 is a circuit block diagram showing an embodiment of the present invention, and FIG. 2 is a timing chart of switching signals for driving the light emission a plurality of times as shown in FIG. 1: Light emission driving section 2: Light receiving section 9.22, 24, 30: Operational amplifier 10: Light emitter 1'l, 20: Light receiver Ql: Transistor R1, R2, R3, R7, R8, R10: Resistor C1, C
2: Capacitor 31. S2. S3. S4: Analog switch 50: Arithmetic control unit 60 Niswitching drive circuit 62: Kurotsuta pulse generator 64: Smoke amount calculation unit 65: Number of light emission setting circuit 66 Fire level detection circuit 68: Output circuit

Claims (1)

【特許請求の範囲】 一対の発光器と受光器を対向して備えた減光式煙検出器
において、 演算周期内に前記受光器からの受光出力に基づいて前記
発光器を複数回駆動する駆動手段と、前記演算周期毎に
前記受光器からの煙によって減衰された光の減衰量が累
積された受光出力に基づいて煙検出信号を出力する出力
手段と、前記駆動手段による発光器の駆動毎に得られた
受光出力を所定の閾値レベルと比較して該閾値レベル以
下に低下したときに火災検出信号を出力する火災レベル
検出手段とを設けたことを特徴とする減光式煙検出器。
[Scope of claims] In a dimming smoke detector including a pair of light emitters and a light receiver facing each other, the light emitter is driven a plurality of times based on the received light output from the light receiver within a calculation cycle. means, an output means for outputting a smoke detection signal based on a received light output in which the amount of attenuation of light attenuated by smoke from the light receiver is accumulated for each calculation cycle, and each time the light emitter is driven by the drive means. 1. A dimming type smoke detector comprising fire level detection means for comparing the received light output obtained in the above with a predetermined threshold level and outputting a fire detection signal when the received light output falls below the threshold level.
JP11565486A 1986-05-20 1986-05-20 Dimming type smoke detector Pending JPS62272138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11565486A JPS62272138A (en) 1986-05-20 1986-05-20 Dimming type smoke detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11565486A JPS62272138A (en) 1986-05-20 1986-05-20 Dimming type smoke detector

Publications (1)

Publication Number Publication Date
JPS62272138A true JPS62272138A (en) 1987-11-26

Family

ID=14667993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11565486A Pending JPS62272138A (en) 1986-05-20 1986-05-20 Dimming type smoke detector

Country Status (1)

Country Link
JP (1) JPS62272138A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230099A (en) * 1984-04-05 1985-11-15 エレクトリシテ デ フランス セルビス ナシヨナル Method of removing deposit formed in steam generator for pressurized water type reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230099A (en) * 1984-04-05 1985-11-15 エレクトリシテ デ フランス セルビス ナシヨナル Method of removing deposit formed in steam generator for pressurized water type reactor

Similar Documents

Publication Publication Date Title
JPS61267900A (en) Dimmer type smoke detector
US4695734A (en) Photoelectric smoke sensor including a photosensing data correction ratio correction circuit
US4638304A (en) Environmental abnormality detecting apparatus
KR0144191B1 (en) Point type wireless adjusting apparatus using infrared rays
EP0571843B1 (en) Fire detector
JPS62272138A (en) Dimming type smoke detector
US4757306A (en) Separation type light extinction smoke detector
JPS59878B2 (en) sensor
JPS62272139A (en) Dimming type smoke detector
JP3867965B2 (en) Flame detector
JPS62235547A (en) Dimmer type smoke sensor
JP2553806B2 (en) Photoelectric switch
JPS6310514Y2 (en)
JP3122676B2 (en) Distance measuring device
JPS62153736A (en) Extinction type smoke detector
SU1243006A1 (en) Smoke detector
JP2544069B2 (en) Multi-optical axis photoelectric switch
JPH0332836B2 (en)
JPS6026173B2 (en) Smoke detectors
JPH10241075A (en) Photoelectric type smoke detector
JPH0983333A (en) Photoelectric sensor
JPS63124935A (en) Dimming type smoke sensor
JP2759478B2 (en) Photoelectric smoke detector
JP2530024B2 (en) Fire detector
JPH0452696Y2 (en)