JPS62271930A - Intake air cooling device for internal combustion engine - Google Patents

Intake air cooling device for internal combustion engine

Info

Publication number
JPS62271930A
JPS62271930A JP11481686A JP11481686A JPS62271930A JP S62271930 A JPS62271930 A JP S62271930A JP 11481686 A JP11481686 A JP 11481686A JP 11481686 A JP11481686 A JP 11481686A JP S62271930 A JPS62271930 A JP S62271930A
Authority
JP
Japan
Prior art keywords
intake air
cooling device
bypass passage
intake
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11481686A
Other languages
Japanese (ja)
Inventor
Shigeyuki Hori
堀 重之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP11481686A priority Critical patent/JPS62271930A/en
Publication of JPS62271930A publication Critical patent/JPS62271930A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve the enhancement in the cooling effect of intake air in a prescribed operating region by providing an intake air cooling device in the bypass passage of an intake pipe, and providing a changeover valve on the upstream side thereof so that it can be changed over in response to the relationship between the temperature of the cooling device and that of intake air to heighten the cold storage effect. CONSTITUTION:An intake air cooling device 22 is provided in the bypass passage 5 of an intake pipe 3, and a changeover valve 7 is provided at the branch part of the bypass passage 5. Temperature sensors 56 and 57 are provided on the intake pipe 3 and the cooling device 22 respectively, and the signals from both sensors are input into a transistor 62 via a comparator 60 to open or close an electromagnetic open/close valve 39. When the intake temperature is higher than the temperature of the cooling device, the open/close valve 39 is opened, and the negative pressure at the negative pressure port 2a is introduced into an actuator 8 to change over the changeover valve 7, so that intake air is introduced into the bypass passage 5 to cool the intake air. When the intake temperature is lower, the changeover valve 7 is closed to cool the cold storage medium in the cooling device.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 この発明は空調器の冷却媒体を利用して吸入空気の冷却
を行う装置に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an apparatus for cooling intake air using a cooling medium of an air conditioner.

〔従来の技術〕[Conventional technology]

内燃機関において吸入空気を冷却することにより空気密
度を下げ、充填効率を増大し、出力増加が期待される。
Cooling the intake air in an internal combustion engine lowers the air density, increases charging efficiency, and is expected to increase output.

吸入空気冷却装置として、通常運転時に熱交換部の蓄冷
を行い、加速時に放冷するものが提案されている(特開
昭60−43123号参照)。
As an intake air cooling device, one has been proposed that stores cold in a heat exchange section during normal operation and releases the cooled air during acceleration (see Japanese Patent Laid-Open No. 60-43123).

この従来技術では、吸入空気の冷却を行う熱交換部の周
囲に蓄冷層を形成し、通常の運転時に蓄冷を行い、必要
な運転時に放冷することにより吸入空気の冷却を図るも
のである。
In this conventional technology, a cold storage layer is formed around a heat exchange unit that cools intake air, and the intake air is cooled by storing cold during normal operation and releasing it during necessary operation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来方式では吸入空気冷却装置はエンジンの吸気管自体
に設置される。そのため吸入空気は常時吸入空気冷却装
置に接触する。そのため、必要でない運転時にも吸入空
気の冷却が行われることになり、蓄冷が十分に行われず
、冷却の必要となる加速時の冷却性が不十分となる問題
点がある。
Conventionally, the intake air cooling device is installed in the engine intake pipe itself. Therefore, the intake air is constantly in contact with the intake air cooling device. As a result, the intake air is cooled even during non-necessary operation, leading to insufficient cold storage and insufficient cooling performance during acceleration, which requires cooling.

そこで、本出願人はこの問題点を解決するため、蓄冷手
段を備えた吸入空気冷却装置を吸気管を迂回するバイパ
ス通路に設置し、通常時はバイパスを閉鎖して蓄冷を行
い、加速時にバイパスを開放して蓄冷された冷却装置に
より吸入空気の冷却を行う改良を提案している。
Therefore, in order to solve this problem, the present applicant installed an intake air cooling device equipped with a cold storage means in a bypass passage that bypasses the intake pipe, and during normal times, the bypass is closed to store cold, and when accelerating, the We are proposing an improvement in which the intake air is cooled by a cooling device that stores cold by opening the air.

この発明の目的はかかる改良技術において、蓄冷量に応
じてバイパス制御を行うことができるようにすることを
目的とする。
It is an object of the present invention to provide such an improved technique so that bypass control can be performed in accordance with the amount of cool storage.

〔問題点を解決するための手段〕[Means for solving problems]

この発明によれば、空調器を備えた車両用内燃機関にお
いて、内燃機関の吸気管を迂回するバイパス通路を備え
、該バイパス通路に吸入空気冷却装置を配置し、該吸入
空気冷却装置は空調器冷媒循環通路からの冷却媒体が循
環する熱交換管と、核熱交換管の周囲に配置される蓄冷
手段とより成り、かつバイパス通路への吸入空気の迂回
を制御する弁手段と、吸入空気の冷却を必要とするエン
ジンの所定の運転時においてバイパス通路を開放するよ
うに弁手段を制御する第1の制御手段と、吸入空気温度
と蓄冷手段の温度との温度差を検出する手段と、その温
度差に応じて弁手段を閉鎖状態に拘束する第2の制御手
段とを有したことを特徴とする内燃機関用吸入空気冷却
装置が提供される。
According to the present invention, a vehicle internal combustion engine equipped with an air conditioner is provided with a bypass passage that bypasses an intake pipe of the internal combustion engine, an intake air cooling device is disposed in the bypass passage, and the intake air cooling device is connected to the air conditioner. It consists of a heat exchange tube through which the cooling medium from the refrigerant circulation passage circulates, a cold storage means arranged around the nuclear heat exchange tube, and a valve means for controlling the detour of the intake air to the bypass passage, and a cooling means for controlling the detour of the intake air to the bypass passage. a first control means for controlling the valve means to open the bypass passage during a predetermined operation of the engine requiring cooling; a means for detecting a temperature difference between the intake air temperature and the temperature of the cool storage means; An intake air cooling device for an internal combustion engine is provided, comprising a second control means for restricting the valve means to a closed state in response to a temperature difference.

〔実施例〕〔Example〕

第1図において、内燃機関はエンジン本体1、サージタ
ンク2、吸気管3、スロットル弁4を備える。吸気管3
を迂回するバイパス通路5が設けられる。切替弁7は吸
入空気を矢印fのように吸気管3を通過させる位置と、
又はgのようにバイパス通路5を通過させる位置との間
で切り替わるものである。切替弁7はスイングドア式で
、ダイヤフラムアクチュエータ8に連結される。ダイヤ
フラムアクチュエータ8は切替弁7に連結されるダイヤ
フラム8aと、ばね8bとより成る。
In FIG. 1, the internal combustion engine includes an engine body 1, a surge tank 2, an intake pipe 3, and a throttle valve 4. intake pipe 3
A bypass passage 5 is provided to bypass the. The switching valve 7 is at a position where the intake air passes through the intake pipe 3 as indicated by the arrow f,
or the position where the bypass passage 5 is allowed to pass as shown in g. The switching valve 7 is of a swing door type and is connected to a diaphragm actuator 8. The diaphragm actuator 8 consists of a diaphragm 8a connected to the switching valve 7 and a spring 8b.

車室冷房用の空調器冷却システムはコンプレッサ12と
、コンデンサ14と、膨張弁16と、エバポレータ18
とより成り、これらの要素は冷媒循環配管20によって
相互に連結される。コンプレッサ12により圧縮された
冷媒はコンデンサ14のところで凝縮液化され、膨張弁
16で膨張され、エバポレータ18で気化され、この気
化によって熱が奪われ、車室冷房が行われるのは周知の
通りである。
The air conditioner cooling system for cooling the vehicle interior includes a compressor 12, a condenser 14, an expansion valve 16, and an evaporator 18.
These elements are interconnected by a refrigerant circulation pipe 20. As is well known, the refrigerant compressed by the compressor 12 is condensed and liquefied in the condenser 14, expanded in the expansion valve 16, and vaporized in the evaporator 18. This vaporization removes heat and cools the vehicle interior. .

この発明によれば、バイパス通路5に吸入空気冷却装置
22が配置され、この装置22は切替弁7がバイパス通
路5を閉鎖位置する通常運転時に蓄冷を行い、切替弁7
が開放する加速等の吸入空気冷却の必要な運転時にバイ
パス通路5を通過する吸入空気の冷却を行うものである
。第2図に示すように吸入空気冷却装置はバイパス通路
5の一部を構成するケーシング24と、ケーシング中に
蛇行配置される熱交換管としてのエバポレータ管26と
、エバポレータ管26の周囲に配置される蓄冷材保持体
28と、蓄冷材保持体28の周囲に形成されるフィン3
0とより構成される。蓄冷体保持体28中には比熱の高
い材料である蓄冷材(例えば水)が充填されている。蓄
冷材はウィック32に含浸させることができる。ケーシ
ング24の周囲は断熱材34により被覆される。エバポ
レータ管26は冷媒入口部26aと出口部26bとを形
成し、第1図に示すように、入口部26aは膨張弁36
を介して、コンデンサ14の下流の空調器冷媒配管に接
続され、出口部26bはコンプレッサ12の上流に接続
される。そのため、エバポレータ管26内での空調器冷
媒の分岐、wi環が行われ、蓄冷材を保冷することがで
きる。
According to this invention, the intake air cooling device 22 is disposed in the bypass passage 5, and this device 22 stores cold during normal operation when the switching valve 7 closes the bypass passage 5.
The intake air passing through the bypass passage 5 is cooled during operations that require intake air cooling, such as during acceleration when the bypass passage 5 is opened. As shown in FIG. 2, the intake air cooling device includes a casing 24 constituting a part of the bypass passage 5, an evaporator pipe 26 as a heat exchange pipe arranged in a meandering manner in the casing, and an arrangement around the evaporator pipe 26. A cold storage material holder 28 and fins 3 formed around the cold storage material holder 28.
It consists of 0 and 0. The cold storage body holder 28 is filled with a cold storage material (for example, water) that is a material with high specific heat. The wick 32 can be impregnated with the cold storage material. The periphery of the casing 24 is covered with a heat insulating material 34. The evaporator pipe 26 forms a refrigerant inlet portion 26a and an outlet portion 26b, and as shown in FIG.
The outlet section 26b is connected to the air conditioner refrigerant pipe downstream of the condenser 14 through the outlet section 26b, and the outlet section 26b is connected upstream of the compressor 12. Therefore, the air conditioner refrigerant is branched and recirculated within the evaporator pipe 26, and the cold storage material can be kept cold.

エンジンの運転条件に応じた蓄冷、放冷制御を行うため
、ダイヤフラム8aの下側の空間は負圧通路37を介し
てサージタンク2の負圧取出ポー)2aに接続される。
In order to perform cold storage and cooling control according to engine operating conditions, the space below the diaphragm 8a is connected to the negative pressure outlet port 2a of the surge tank 2 via a negative pressure passage 37.

チェック弁38がその途中に設置され、かつチェック弁
38を迂回するように電磁開閉弁39が負圧通路37に
接続される。
A check valve 38 is installed in the middle, and an electromagnetic on-off valve 39 is connected to the negative pressure passage 37 so as to bypass the check valve 38.

第1図において、40は空調器コンブレノサ12の制御
を行うための制御回路を示している。
In FIG. 1, reference numeral 40 indicates a control circuit for controlling the air conditioner combination 12. As shown in FIG.

制御回路40は周知の空調器制御回路41を備え、この
制御回路41は空調器冷媒温度、圧力に応じてコンプレ
ッサ12の作動信号を発生する。制御回路41はAND
ゲート42の一方の人力に接続され、他方の入力にスイ
ッチ43が設置され、このスイッチ43は切替弁7の位
置センサ部43aを有しており、切替弁7がバイパス5
を開放するように位置したとき、即ち吸入空気の冷却を
行うときコンプレッサ12を停止せしめるものである。
The control circuit 40 includes a well-known air conditioner control circuit 41, which generates an operating signal for the compressor 12 in response to the air conditioner refrigerant temperature and pressure. The control circuit 41 is an AND
A switch 43 is connected to one input of the gate 42 and installed at the other input, and this switch 43 has a position sensor section 43a of the switching valve 7, and the switching valve 7 is connected to the bypass 5.
The compressor 12 is stopped when the compressor 12 is positioned to open the compressor 12, that is, when cooling the intake air.

ANDゲート42の出力は空Am hコンプレッサ12
の作動ソレノイド12aの駆動用のトランジスタ54に
接続される。
The output of AND gate 42 is empty Am h compressor 12
It is connected to a transistor 54 for driving the operating solenoid 12a.

゛  吸気管3に吸入空気温度センサ56が設置され、
吸入空気温度T+に応じた信号が得られる。冷却装置2
2に温度センサ57が設けられ、蓄冷材の温度T2に応
じた信号が得られる。これらのセンサ56,57は比較
器60に接続される。比較器60は吸入空気温度と蓄冷
材温度との差に応じた論理信号を発生する。例えば、T
I  >T2のとき“1”の信号を発生し、T1 ≦T
2のとき“0”の信号を発生する。比較器60の出力は
電磁開閉弁39のソレノイド39aの駆動用トランジス
タ62に接続される。
゛ An intake air temperature sensor 56 is installed in the intake pipe 3,
A signal corresponding to the intake air temperature T+ is obtained. Cooling device 2
2 is provided with a temperature sensor 57, and a signal corresponding to the temperature T2 of the cold storage material is obtained. These sensors 56, 57 are connected to a comparator 60. Comparator 60 generates a logic signal according to the difference between the intake air temperature and the regenerator material temperature. For example, T
Generates a “1” signal when I > T2, and generates a “1” signal when T1 ≦T
When it is 2, a signal of "0" is generated. The output of the comparator 60 is connected to the driving transistor 62 of the solenoid 39a of the electromagnetic on-off valve 39.

以上述べた実施例の作動を説明すると、冷却装置22に
よる吸入空気の冷却が可能な状態では吸入空気温度Tl
 :>T2である。このときは比較器60から“1”の
信号が出るため、トランジスタ62がONとなり、ソレ
ノイド39aは励磁され、開閉弁39は開放される。開
閉弁39の開放状態ではチェック弁38は無いのと同じ
であり、サージタンク2の負圧ポート2aの負圧によっ
てダイヤフラムアクチュエータ8は切替弁7の制御を行
う。スロットル弁4の開度の小さい低負荷時には負圧取
出ポート2aの負圧は強くなるので、ダイヤフラム8a
はばね8aに抗して下降され、切替弁7はバイパス通路
5を閉鎖する。そのため、吸入空気は矢印fのように吸
気管3を介してエンジンに供給される。一方、切替弁7
がバイパス5を閉鎖した状態ではスイッチ43はOFF
となるので、空調器制御回路41からの空調器作動信号
は、ANDゲート42を介して空調器コンプレッサ駆動
トランジスタ54に印加され、その信号に応じてコンプ
レッサ12は回転駆動される。そして、コンプレッサ1
2からの冷却媒体はコンデンサ14で凝縮され、その後
一部が膨張弁36に分岐され、ここで膨張し、吸入空気
冷却装置22のエバポレータ管26に入り、ここで気化
する。その際の気化によって熱が奪われる。そして、部
分負荷時には吸入空気がバイパス通路5内を通過しない
ので、熱交換は行われず、気化によって奪われた熱はエ
バポレータ管26の回りの、保持体28中の蓄冷材中に
保持されることになる。
To explain the operation of the embodiment described above, when the intake air can be cooled by the cooling device 22, the intake air temperature Tl
:>T2. At this time, since a signal of "1" is output from the comparator 60, the transistor 62 is turned on, the solenoid 39a is energized, and the on-off valve 39 is opened. When the on-off valve 39 is open, it is the same as if the check valve 38 is not present, and the diaphragm actuator 8 controls the switching valve 7 by the negative pressure of the negative pressure port 2a of the surge tank 2. At low load with a small opening of the throttle valve 4, the negative pressure at the negative pressure outlet port 2a becomes strong, so the diaphragm 8a
is lowered against the spring 8a, and the switching valve 7 closes the bypass passage 5. Therefore, intake air is supplied to the engine via the intake pipe 3 as indicated by arrow f. On the other hand, the switching valve 7
When the bypass 5 is closed, the switch 43 is OFF.
Therefore, the air conditioner operation signal from the air conditioner control circuit 41 is applied to the air conditioner compressor drive transistor 54 via the AND gate 42, and the compressor 12 is rotationally driven in accordance with the signal. And compressor 1
The cooling medium from 2 is condensed in the condenser 14, after which a portion is branched off to the expansion valve 36, where it is expanded and enters the evaporator tube 26 of the intake air cooling device 22, where it is vaporized. Heat is removed by vaporization. During partial load, the intake air does not pass through the bypass passage 5, so no heat exchange takes place, and the heat taken away by vaporization is retained in the cool storage material in the holder 28 around the evaporator pipe 26. become.

機関高負荷時にはポート2aの負圧は弱まり、ダイヤフ
ラム8aはばね8bによって上界変位され、切替弁7は
バイパス通路5を開放せしめる。
When the engine is under high load, the negative pressure at the port 2a weakens, the diaphragm 8a is displaced upward by the spring 8b, and the switching valve 7 opens the bypass passage 5.

そのため、吸入空気は矢印gのようにバイパス通路5に
導入される。切替弁7がバイパス開放位置をとることに
よってスイッチ43はONとなり、ゲート42によって
トランジスタ54はOFFとなるので、コンプレッサ1
2は停止される。そのため、コンプレッサの分だけエン
ジン付加は軽くなるので良好な加速運転が行われる。そ
して、コンプレッサ12を停止しても冷却装置20に蓄
冷された液体(又は固体)からの熱伝導によって吸入空
気の冷却が効率的に行われる。加速の継続時間は短いの
で蓄冷材の蓄冷量は所期の冷却性能を得るのに不足する
ことはない。良好な冷却が行われる、結果充填効率が上
がりエンジン出力を高めることができる。
Therefore, intake air is introduced into the bypass passage 5 as indicated by arrow g. When the switching valve 7 assumes the bypass open position, the switch 43 is turned ON, and the gate 42 turns the transistor 54 OFF, so that the compressor 1
2 is stopped. Therefore, since the engine load is reduced by the amount of the compressor, good acceleration operation is achieved. Even if the compressor 12 is stopped, the intake air is efficiently cooled by heat conduction from the liquid (or solid) stored in the cooling device 20. Since the duration of acceleration is short, the amount of cold storage in the cold storage material is not insufficient to obtain the desired cooling performance. Good cooling is achieved, resulting in increased charging efficiency and increased engine output.

頻繁に加速、減速を繰り返すような運転時は蓄冷量が足
りず、冷却装置22による十分な冷却が得られない。こ
のような状態はこの実施例では吸入空気温度TI <T
2と見做しでいる。このとき、比較器60は′″05の
信号を発生するため、トランジスタ62はOFFとなり
、ソレノイド39aは消磁され、開閉弁39は閉鎖され
る。スロットル弁4の開度が小さいときにサージタンク
2の負圧取出ポート2aに発生する負圧はダイヤフラム
8aに作用し、ダイヤフラムをばね8bに抗して下降変
位させ切替弁7はバイパス通路5を閉鎖付勢する。スロ
ットル弁4の開度が大きいときはポート2aの負圧はダ
イヤフラム8aを下降させるiは足りな(なるが、開閉
弁39が閉鎖状態であること力)ら、チェック弁38の
(肋きによってダイヤフラム8aは切替弁7をバイパス
閉鎖状態に保持する。そのため、吸入空気は負荷に関わ
らず矢印fのように吸気管3を介してエンジンに導入さ
れる。蓄冷材の温度が高いとき吸入空気を冷却装置22
に通しても当然十分な冷却ができず、また空調器コンプ
レフサが常時稼働状態となって逆に出力が低下する問題
点があるが、このような問題点が解決される。
During operation in which acceleration and deceleration are frequently repeated, the amount of cool storage is insufficient, and sufficient cooling by the cooling device 22 cannot be obtained. In this embodiment, such a state occurs when the intake air temperature TI<T
I consider it to be 2. At this time, the comparator 60 generates a signal of ``05'', so the transistor 62 is turned off, the solenoid 39a is demagnetized, and the on-off valve 39 is closed. The negative pressure generated at the negative pressure outlet port 2a acts on the diaphragm 8a, displacing the diaphragm downward against the spring 8b, and forcing the switching valve 7 to close the bypass passage 5.The opening degree of the throttle valve 4 is large. At this time, the negative pressure in the port 2a is insufficient to lower the diaphragm 8a (but the opening/closing valve 39 is in the closed state), so the diaphragm 8a bypasses the switching valve 7 due to the check valve 38. It is maintained in the closed state.Therefore, regardless of the load, intake air is introduced into the engine through the intake pipe 3 as shown by arrow f.When the temperature of the cool storage material is high, the intake air is transferred to the cooling device 22.
Naturally, even if the air conditioner is passed through the air conditioner, sufficient cooling cannot be achieved, and the air conditioner compressor is always in operation, resulting in a decrease in output, but this problem can be solved.

第2図に示す変形例では、温度上フサが57A。In the modified example shown in FIG. 2, the thermal enclosure is 57A.

57Bのように二う設けられ、その検出値は平均回路7
0によって平均され、この平均値と吸入空気温度との大
小により制御が行われる。温度の平均を求めることによ
り、吸入空気温度との差を正確に検出することができる
57B, and the detected value is sent to the averaging circuit 7.
0, and control is performed based on the magnitude of this average value and the intake air temperature. By calculating the average temperature, the difference from the intake air temperature can be accurately detected.

実施例では吸入空気温度T1≧蓄冷材温度T2か否かを
判別することにより制御しているが、これらの温度差は
適当に設定することができ、これにより吸入空気冷却特
性を自由に変化させることが可能となる。
In the embodiment, control is performed by determining whether or not the intake air temperature T1≧cool storage material temperature T2, but these temperature differences can be set appropriately, thereby freely changing the intake air cooling characteristics. becomes possible.

〔効 果〕〔effect〕

この発明によれば、冷却装置に十分に蓄冷が行われてい
るときのみに吸入空気冷却を行い、吸入空気冷却が期待
できないときはバイパスさせることにより、圧力損失が
減少し、エンジン出力を増加させることができる。
According to this invention, the intake air is cooled only when there is sufficient cold storage in the cooling system, and the air is bypassed when intake air cooling cannot be expected, thereby reducing pressure loss and increasing engine output. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1実施例の全体構成図。 第2図は冷却装置の拡大断面図。 3・・・吸気管 5・・・バイパス通路 7・・・切替弁 8・・・アクチュエータ 12・・・コンプレッサ 22・・・冷却装置 26・・・エバポレータ管 28・・・蓄冷材保持体 38・・・チェック弁 39・・・電磁開閉弁 40・・・制御回路 41・・・空調器制御回路 56・・・吸入空気温度センサ 57・・・蓄冷材温度センサ 60・・・比較器 FIG. 1 is an overall configuration diagram of a first embodiment of the present invention. FIG. 2 is an enlarged sectional view of the cooling device. 3...Intake pipe 5...Bypass passage 7...Switching valve 8...actuator 12...Compressor 22...Cooling device 26... Evaporator pipe 28...Cold storage material holder 38...Check valve 39...Solenoid on-off valve 40...control circuit 41...Air conditioner control circuit 56...Intake air temperature sensor 57...Cold storage material temperature sensor 60...Comparator

Claims (1)

【特許請求の範囲】[Claims] 空調器を備えた車両用内燃機関において、内燃機関の吸
気管を迂回するバイパス通路を備え、該バイパス通路に
吸入空気冷却装置を配置し、該吸入空気冷却装置は空調
器冷媒循環通路からの冷却媒体が循環する熱交換管と、
該熱交換管の周囲に配置される蓄冷手段とより成り、か
つバイパス通路への吸入空気の迂回を制御する弁手段と
、吸入空気の冷却を必要とするエンジンの所定の運転時
においてバイパス通路を開放するように弁手段を制御す
る第1の制御手段と、吸入空気温度と蓄冷手段の温度と
の温度差を検出する手段と、その温度差に応じて弁手段
を閉鎖状態に拘束する第2の制御手段とを有したことを
特徴とする内燃機関用吸入空気冷却装置。
A vehicle internal combustion engine equipped with an air conditioner is provided with a bypass passage that bypasses the intake pipe of the internal combustion engine, and an intake air cooling device is disposed in the bypass passage, and the intake air cooling device receives cooling from the air conditioner refrigerant circulation passage. a heat exchange tube in which a medium circulates;
a cold storage means disposed around the heat exchange pipe, and a valve means for controlling detour of the intake air to the bypass passage; and a valve means for controlling the detour of the intake air to the bypass passage; a first control means for controlling the valve means to open; means for detecting a temperature difference between the intake air temperature and the temperature of the cold storage means; and a second control means for restraining the valve means in a closed state in response to the temperature difference. An intake air cooling device for an internal combustion engine, characterized in that it has a control means.
JP11481686A 1986-05-21 1986-05-21 Intake air cooling device for internal combustion engine Pending JPS62271930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11481686A JPS62271930A (en) 1986-05-21 1986-05-21 Intake air cooling device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11481686A JPS62271930A (en) 1986-05-21 1986-05-21 Intake air cooling device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62271930A true JPS62271930A (en) 1987-11-26

Family

ID=14647402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11481686A Pending JPS62271930A (en) 1986-05-21 1986-05-21 Intake air cooling device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62271930A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2625477B1 (en) * 2010-10-04 2020-02-12 va-Q-tec AG Refrigerator with a cold accumulator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2625477B1 (en) * 2010-10-04 2020-02-12 va-Q-tec AG Refrigerator with a cold accumulator

Similar Documents

Publication Publication Date Title
JP2000274838A (en) Freezing cycle having bypass pipe passage
US5477700A (en) Air conditioning system which can be used in an electric car
JP2001309506A (en) Inverter circuit device for driving vehicle traveling motor and cooling method thereof
JPS61101660A (en) Fuel cooling device for motorcar
JP3114369B2 (en) Heat pump type air conditioning system
JPS62271930A (en) Intake air cooling device for internal combustion engine
JPH11294164A (en) Control device for cooling fan
JPH0343653A (en) Fuel cooling device
JPH04218424A (en) Car airconditioner
JPS62271932A (en) Intake air cooling device for internal combustion engine
JP2507732B2 (en) Intake cooling system for automobile engine
JPS62271931A (en) Intake air cooling device for internal combustion engine
JPS62271929A (en) Intake air cooling device for internal combustion engine
JPH04187810A (en) Cooling and temperature keeping device for exhaust manifold
JP3799803B2 (en) Control device for cooling fan
JP2000203247A (en) Heat accumulating unit, and heating system with same
JPH11294872A (en) Refrigerant circuit of air conditioner
JPH074326A (en) Fuel cooling device
JPS62271928A (en) Intake air temperature control device for internal combustion engine
JPH11151935A (en) Air conditioning system for automobile
JP2529372Y2 (en) Vehicle heating system
JP3282391B2 (en) Vehicle fuel cooling system
JPH01106919A (en) Cooling device of engine
JPH0343045Y2 (en)
JPS61247856A (en) Heat accumulating system