JPS6227094B2 - - Google Patents

Info

Publication number
JPS6227094B2
JPS6227094B2 JP58213272A JP21327283A JPS6227094B2 JP S6227094 B2 JPS6227094 B2 JP S6227094B2 JP 58213272 A JP58213272 A JP 58213272A JP 21327283 A JP21327283 A JP 21327283A JP S6227094 B2 JPS6227094 B2 JP S6227094B2
Authority
JP
Japan
Prior art keywords
resin
epoxy
triazine ring
epoxy equivalent
equivalent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58213272A
Other languages
Japanese (ja)
Other versions
JPS60106823A (en
Inventor
Tsugio Inaba
Takero Taniguchi
Takanori Matsuzaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUAIN HORIMAAZU KK
Original Assignee
FUAIN HORIMAAZU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUAIN HORIMAAZU KK filed Critical FUAIN HORIMAAZU KK
Priority to JP21327283A priority Critical patent/JPS60106823A/en
Publication of JPS60106823A publication Critical patent/JPS60106823A/en
Publication of JPS6227094B2 publication Critical patent/JPS6227094B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はトリアジン環含有エポキシ樹脂の製造
法に関する。 しかしてその目的は、特に耐熱性にすぐれ、良
好な機械特性および電気特性を併有してエポキシ
樹脂や硬化剤(後記)とよく相溶し、相溶後硬化
物となる新規なトリアジン環含有エポキシ樹脂の
製造法を一般に提供することにある。 周知のようにエポキシ樹脂硬化物は、寸法安定
性、耐薬品性および電気絶縁性等にすぐれている
ため、それなりにその特性を活用した用途に使用
されているが、このものは耐熱性が悪いことか
ら、耐熱性を必要とする硬化物用途には不適とさ
れ、その改善方が特に要請されて来た。 こゝにおいて本発明者等は上記の点を改善すべ
く、種々研究の結果、エポキシ樹脂硬化物の耐熱
性の悪いことは、公知のトリアジン環を有する化
合物が高融点で溶剤難溶性であるため、エポキシ
樹脂にトリアジン環を導入することが実質的に至
難であることに起因してこれが実用化され得なか
つたことを実験的につきとめた。 そこで本発明者等はさらに研究を進めた結果、
トリアジン環を有するイソシアヌル酸と、一分子
中に少なくとも2個のエポキシ基を有するエポキ
シ化合物とを混合し、触媒の存在または非存在下
に加熱反応せしめる時は、得られたトリアジン環
含有のエポキシ樹脂が一般エポキシ樹脂同様脂肪
族ポリアミン、芳香族ポリアミン、シアノエチル
化ポリアミン、ポリアミド、多塩基性カルボン酸
またはその酸無水物、BF3錯化合物等の硬化剤と
よく相溶し、しかもこのものは加熱または常温下
で硬化反応が進行して硬化する。得られた硬化物
はエポキシ樹脂本来の特性(寸法安定性、耐薬品
性、電気絶縁性等)を何等損うことなく、所望す
る耐熱性の付与されることを見出し本発明を完成
した。 すなわちこの発明は、イソシアヌル酸1モルと
一分子中に少なくとも2個のエポキシ基を有する
エポキシ化合物3〜12モルとを混合し触媒の存在
または非存在下に反応せしめることからなる。 こゝに使用するエポキシ化合物としては、公知
の芳香族エポキシ樹脂、脂環式エポキシ樹脂およ
び脂肪族エポキシ樹脂等が挙げられ、芳香族エポ
キシ樹脂として特に好ましいものにビスフエノー
ルAとエピクロールヒドリンとの反応物であるビ
スフエノールAジグリシジルエーテル
(AER330、331:商品名、旭化成工業社製)があ
り、また脂環式エポキシ樹脂で特に好ましいもの
には、シクロヘキセン環含有化合物を過酢酸でエ
ポキシ化した3・4−エポキシシクロヘキシルメ
チル−3・4−エポキシシクロヘキサンカルボキ
シレート(セロキサイド2021:商品名、ダイセル
社製)があり、さらに脂肪族エポキシ樹脂として
特に好ましいものには、脂肪族多価アルコールお
よびそのアルキレンオキサイド付加物並にそれら
のグリンジルエーテルがある。その代表例として
1・6−ヘキサンジオ−ルジグリシジルエーテル
(エポライト1600:商品名、共栄社油脂化学工業
社製)がある。上記物質は適用する芳香族、脂環
式および脂肪族3者の各エポキシ樹脂の一例を挙
げたもので、もとよりこのものに限定されるもの
ではない。 しかして前記イソシアヌル酸と上記エポキシ化
合物とを反応させるには、イソシアヌル酸1モル
に対し、前記エポキシ化合物の3〜12モル好まし
くは3〜9モルを常法により混合し、90〜250℃
好ましくは110〜170℃、3〜5時間加熱すればよ
く、この場合必要に応じて前記反応をより一層促
進させるためには、触媒として3級アミン例えば
トリメチルアミン、トリエチルアミン、トリブチ
ルアミン、ベンジルジメチルアミン、ジエチルメ
チルアミン、または4級アンモニウム塩例えば塩
化テトラメチルアンモニウム、塩化テトラエチル
アンモニウム、塩化テトラブチルアンモニウム、
塩化テトラプロピルアンモニウム、臭化テトラエ
チルアンモニウム、沃化テトラメチルアンモニウ
ム等の一種または二種を任意に採択することがよ
い。 上記イソシアヌル酸とエポキシ化合物との反応
において前者の1モルに対し後者を3〜12モル好
ましくは3〜9モルの範囲で適用することは、後
者の適用量が前者の1モルに対し3モル以下であ
ると、反応時にこれがゲル化して所望するトリア
ジン環含有のエポキシ樹脂が得られず、またその
適用量が12モル以上となると、反応時のゲル化は
避けられるが、得られた樹脂の耐熱性は決して良
好とはいえず、所望する物性を付与することはで
きないことによる。 また上記反応において、反応温度および時間を
それぞれ110〜170℃、3〜5時間としたことは、
前記反応を効果的に進行させる上で良結果の得ら
れることが実験的に確認されたことによる。 以下実施例(含比較例)によつて本発明をさら
に具体的に説明する。 実施例 1 イソシアヌル酸129g(1モル)とエポキシ当
量185のビスフエノールAジグリシジルエーテル
1110g(3モル)およびトリエチルアミン1gと
を撹拌機付き3口フラスコ(2)に秤取し、
110℃、3時間撹拌しつゝ反応させた後放冷し
た。得られた生成物は固形の樹脂としてそのエポ
キシ当量は413であつた。次いでこのものの赤外
線吸収スペクトルを赤外分光々度計(日立製作所
製)を介してトリアジン環含有エポキシ樹脂(以
下トリアジン環樹脂という)の生成を確認したと
ころ、2800cm-1と1400cm-1の位置に現われるイソ
シアヌル酸に基づく吸収が減少して新たに1690cm
-1付近にトリアジン環に基づく吸収が現われたこ
とから、トリアジン環樹脂の生成したことが確認
された。そこでこのトリアジン環樹脂413g(1
エポキシ当量)を前記同様の別容器に秤取し、こ
れにメチルテトラヒドロフタル酸無水物150g
(0.9酸無水物当量)とベンジルジメチルアミン
0.5gとを加えて均一に撹拌混合した後110℃、3
時間加熱して生成物の予備硬化を図り、次いで
150℃に昇温して5時間加熱後放冷して生成物を
二次硬化させた。得られた硬化物の物性(別表参
照)を測定すべく所定の供試片をそれぞれ作製
し、所定の試験に供したところ別表記載の満足す
べき結果が得られた。 実施例 2 イソシアヌル酸129g(1モル)とエポキシ当
量185のビスフエノールAジグリシジルエーテル
2220g(6モル)およびトリエチルアミン2gと
を実施例1と同様の容器に秤取し、同様の条件下
に反応させて半固形樹脂としてエポキシ当量261
のものを得た。次いでこのものを実施例1と同様
に赤外線吸収スペクトル分析に供したところ、前
例同様2800cm-1と1400cm-1の位置に現われるイソ
シアヌル酸に基づく吸収が減少して新たに1690cm
-1付近にトリアジン環に基づく吸収が現われ、ト
リアジン環樹脂の生成したことが確認された。次
にこの生成樹脂の261g(1エポキシ当量)を実
施例1と同様に別容器に秤取し、これにメチルテ
トラヒドロフタル酸無水物150g(0.9酸無水物当
量)とベンジルジメチルアミン0.2gとを加え実
施例1と同様の条件下に処理して生成物の予備硬
化を図り次いでこれを二次硬化させた。次いでこ
の硬化物から物性測定上必要な供試片を作成し、
所定の試験に供したところ、別表記載通りの良結
果を得た。 実施例 3 実施例1においてイソシアヌル酸129g(1モ
ル)とエポキシ当量185のビスフエノールAジグ
リシジルエーテル3330g(9モル)およびトリエ
チルアミン3gを使用し110℃、5時間反応さ
せ、放冷してエポキシ当量230の半固形樹脂を得
た後、このものを実施例1と同様に赤外線吸収ス
ペクトル分析に供したところ、2800cm-1と1400cm
-1の位置に現われるイソシアヌル酸に基く吸収が
減少して新たに1690cm-1付近にトリアジン環に基
く吸収が現われ、トリアジン環樹脂の生成したこ
とが確認された。次いでこの樹脂230g(エポキ
シ当量)とメチルテトラヒドロフタル酸無水物
150g(0.9酸無水物当量)およびベンジルジメチ
ルアミン0.2gとを実施例1と同様別容器に秤取
し、同様に処理して生成物の予備硬化を図り次い
でこれを二次硬化させた。次にこのものゝ物性を
測定すべく供試片を作製して所定の試験に供し
た。その結果は別表の通り良好であつた。 実施例 4 実施例1においてイソシアヌル酸129g(1モ
ル)とエポキシ当量140の3・4−エポキシシク
ロヘキシルメチル−3・4−エポキシシクロヘキ
サンカルボキシレート840g(3モル)およびト
リエチルアミン1gを使用し170℃、5時間反応
させ放冷してエポキシ当量323の固形樹脂を得た
以外は実施例1と同様に試験してトリアジン環樹
脂の生成されていることが確認された。次いでこ
の樹脂323g(1エポキシ当量)とメチルテトラ
ヒドロフタル酸無水物150g(0.9酸無水物当量)
およびベンジルジメチルアミン0.3gとを実施例
1と同様別容器に秤取し同様に処理して二次硬化
物を得た。次にこのものゝ物性を測定すべく供試
片を作製して所定の試験に供した。その結果は別
表の通り良好であつた。 実施例 5 実施例4においてイソシアヌル酸129g(1モ
ル)とエポキシ当量140の3・4−エポキシシク
ロヘキシルメチル−3・4−エポキシシクロヘキ
サンカルボキシレート1680g(6モル)およびト
リエチルアミン2gを使用した以外は実施例4と
同様にしてエポキシ当量201の半固形樹脂を得た
後これを実施例2と同様の試験に供したところ、
全く同様の結果が現われ、トリアジン環樹脂の生
成されていることが確認された。次いでこの樹脂
201g(1エポキシ当量)とメチルテトラヒドロ
フタル酸無水物150g(0.9酸無水物当量)および
ベンジルジメチルアミン0.2gとを実施例2と同
様別容器に秤取し、同様に処理して二次硬化物を
得た。次にこのものから所要の試験片を作製して
所定の試験に供した。その結果は別表の通り良好
であつた。 実施例 6 実施例5においてイソシアヌル酸129g(1モ
ル)とエポキシ当量140の3・4−エポキシシク
ロヘキシルメチル−3・4−エポキシシクロヘキ
サンカルボキシレート2520g(9モル)とを使用
(トリエチルアミン欠除)した以外は実施例5と
同様にしてエポキシ当量176の半固形樹脂を得た
後これを同様の試験に供したところ、全く同じ結
果が現われトリアジン環樹脂の生成されているこ
とが確認された。次いでこの樹脂176g(1エポ
キシ当量)とメチルテトラヒドロフタル酸無水物
150g(0.9酸無水物当量)およびベンジルジメチ
ルアミン0.17gとを実施例5と同様別容器に秤取
し、同様に処理して二次硬化物を得た。次にこの
ものから所要の試験片を作製して所定の試験に供
した。その結果は別表の通り良好であつた。 実施例 7 イソシアヌル酸129g(1モル)とエポキシ当
量155の1・6−ヘキサンジオールジグリシジル
エーテル930g(3モル)およびトリエチルアミ
ン1gを実施例1と同様容器に秤取し150℃、3
時間撹拌しつつ反応させ放冷してエポキシ当量
355の液状の樹脂成成物を得た。得られたこの生
成物を実施例1と同様に赤外線吸収スペクトルの
分析に供したところ、実施例1同様の結果が現わ
れ、トリアジン環樹脂の生成していることが確認
された。次いでこの樹脂の353g(1エポキシ当
量)とメチルテトラヒドロフタル酸無水物150g
(0.9酸無水物当量)およびベンジルジメチルアミ
ン0.35gとを実施例1と同様別容器に秤取し、同
様に処理して二次硬化物を得た。次にこのものか
ら所要の試験片を作製して所定の試験に供した。
その結果は別表の通り良好であつた。 実施例 8 実施例7においてイソシアヌル酸129g(1モ
ル)とエポキシ当量155の1・6−ヘキサンジオ
ールジグリシジルエーテル1860g(6モル)およ
びトリエチルアミン1.8gを使用し同様に処理し
てエポキシ当量221の液状の樹脂生成物を得た。
この生成物を実施例7と同様の試験に供したとこ
ろ、全く同様の結果が表われトリアジン環樹脂の
生成していることが確認された。次いでこの樹脂
221g(1エポキシ当量)とメチルテトラヒドロ
フタル酸無水物150g(0.9酸無水物当量)および
ベンジルジメチルアミン0.2gとを実施例7と同
様に処理して二次硬化物を得、このものから所要
の試験片を作製して所定の試験に供した。その結
果は別表の通り良好であつた。 実施例 9 イソシアヌル酸129g(1モル)とエポキシ当
量155の1・6−ヘキサンジオールジグリシジル
エーテル2790g(9モル)とを使用(トリエチル
アミン欠除)し、160℃、5時間反応せしめてエ
ポキシ当量195の液状の樹脂生成物を得た。この
生成物を実施例8と同様の試験に供したところ、
同様の結果が現われトリアジン環樹脂の生成され
ていることが確認された。次いでこの樹脂195g
(1エポキシ当量)とメチルテトラヒドロフタル
酸無水物150g(0.9酸無水物当量)およびベンジ
ルジメチルアミン0.2gとを実施例8と同様に処
理して二次硬化物を得、このものから所要の試験
片を作製して所定の試験に供した。その結果は別
表の通り良好であつた。 以下実施例1〜3に対して比較例1を、実施例
4〜6に対応して比較例2を、実施例7〜9に対
応して比較例3をそれぞれ次の通り実施して生成
硬化物の物性を測定し別表に掲示した。 比較例 1 ビスフエノールAジグリシジルエーテル185g
(1エポキシ当量)とメチルテトラヒドロフタル
酸無水物150g(0.9酸無水物当量)およびベンジ
ルジメチルアミン0.5gを実施例1と同様の容器
に秤取し、同様の条件下に処理して得られた硬化
物を赤外線吸収スペクトル分析に供してトリアジ
ン環樹脂の生成を確認した。次いでこのものを実
施例1と同様に処理して得た二次硬化物から所要
の供試片を作製し、所定の物性試験に供した。そ
の結果を別表に示す。 比較例 2 比較例1において3・4−エポキシシクロヘキ
サンカルボキシレート140g(1エポキシ当量)
とメチルテトラヒドロフタル酸無水物150g(0.9
酸無水物当量)およびベンジルジメチルアミン
2.1gを使用した以外は比較例1と同様に処理し
て二次硬化物を得、これから作製した供試片につ
いてその物性を測定し別表の結果を得た。 比較例 3 比較例1において、1・6−ヘキサンジオール
ジグリシジルエーテル150g(1エポキシ当量)
とメチルテトラヒドロフタル酸無水物150(0.9酸
無水物当量)およびベンジルジメチルアミン1.7
gを使用した以外は比較例1と同様に処理して二
次硬化物を得、これから作製した供試片について
物性を測定し別表の結果を得た。
The present invention relates to a method for producing a triazine ring-containing epoxy resin. The purpose of this product is to create a new triazine ring-containing product that has particularly excellent heat resistance, good mechanical and electrical properties, is compatible with epoxy resins and curing agents (see below), and becomes a cured product after compatibility. An object of the present invention is to generally provide a method for producing epoxy resin. As is well known, cured epoxy resins have excellent dimensional stability, chemical resistance, and electrical insulation properties, so they are used in applications that take advantage of these properties, but this product has poor heat resistance. Therefore, it is considered unsuitable for use in cured products that require heat resistance, and there has been a particular demand for ways to improve it. In order to improve the above points, the present inventors conducted various studies and found that the reason for the poor heat resistance of cured epoxy resins is that the known compounds having a triazine ring have a high melting point and are poorly soluble in solvents. It was experimentally found that this method could not be put into practical use because it was virtually difficult to introduce a triazine ring into an epoxy resin. Therefore, as a result of further research, the present inventors found that
When isocyanuric acid having a triazine ring and an epoxy compound having at least two epoxy groups in one molecule are mixed and heated to react in the presence or absence of a catalyst, the resulting triazine ring-containing epoxy resin Like general epoxy resins, it is well compatible with curing agents such as aliphatic polyamines, aromatic polyamines, cyanoethylated polyamines, polyamides, polybasic carboxylic acids or their acid anhydrides, and BF tricomplex compounds, and this material can be heated or The curing reaction proceeds and hardens at room temperature. The present invention was completed by discovering that the obtained cured product can be imparted with the desired heat resistance without impairing the inherent properties of the epoxy resin (dimensional stability, chemical resistance, electrical insulation, etc.). That is, this invention consists of mixing 1 mole of isocyanuric acid and 3 to 12 moles of an epoxy compound having at least two epoxy groups in one molecule and reacting the mixture in the presence or absence of a catalyst. Epoxy compounds used here include known aromatic epoxy resins, alicyclic epoxy resins, aliphatic epoxy resins, etc. Particularly preferable aromatic epoxy resins include bisphenol A and epichlorohydrin. There is bisphenol A diglycidyl ether (AER330, 331: trade name, manufactured by Asahi Kasei Industries, Ltd.), which is a reactant of There is 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (Celoxide 2021: trade name, manufactured by Daicel), and particularly preferred aliphatic epoxy resins include aliphatic polyhydric alcohols and their There are alkylene oxide adducts as well as their grindyl ethers. A representative example thereof is 1,6-hexanediol diglycidyl ether (Epolite 1600, trade name, manufactured by Kyoeisha Yushi Kagaku Kogyo Co., Ltd.). The above substances are examples of aromatic, alicyclic, and aliphatic epoxy resins, and are not limited to these. In order to react the isocyanuric acid and the epoxy compound, 3 to 12 moles, preferably 3 to 9 moles, of the epoxy compound are mixed with 1 mole of isocyanuric acid in a conventional manner, and the mixture is heated at 90 to 250°C.
Preferably, the heating is carried out at 110 to 170°C for 3 to 5 hours. In this case, in order to further accelerate the reaction, a tertiary amine such as trimethylamine, triethylamine, tributylamine, benzyldimethylamine, etc. may be used as a catalyst. diethylmethylamine, or quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium chloride, tetrabutylammonium chloride,
One or two of tetrapropylammonium chloride, tetraethylammonium bromide, tetramethylammonium iodide, etc. may be arbitrarily selected. In the reaction between isocyanuric acid and an epoxy compound, the latter is applied in a range of 3 to 12 moles, preferably 3 to 9 moles, per 1 mole of the former, so that the amount of the latter applied is 3 moles or less per 1 mole of the former. If this is the case, it will gel during the reaction and the desired triazine ring-containing epoxy resin will not be obtained, and if the applied amount is 12 moles or more, gelation during the reaction can be avoided, but the heat resistance of the resulting resin will deteriorate. This is because the properties cannot be said to be good at all, and desired physical properties cannot be imparted. In addition, in the above reaction, the reaction temperature and time were 110 to 170°C and 3 to 5 hours, respectively.
This is because it has been experimentally confirmed that good results can be obtained in effectively advancing the reaction. The present invention will be explained in more detail below using Examples (including comparative examples). Example 1 129 g (1 mol) of isocyanuric acid and bisphenol A diglycidyl ether with an epoxy equivalent of 185
Weigh out 1110 g (3 moles) and 1 g of triethylamine into a 3-necked flask (2) equipped with a stirrer,
The reaction mixture was stirred at 110°C for 3 hours and then allowed to cool. The obtained product was a solid resin with an epoxy equivalent weight of 413. Next, we checked the infrared absorption spectrum of this material using an infrared spectrophotometer (manufactured by Hitachi , Ltd.) to confirm the formation of triazine ring - containing epoxy resin (hereinafter referred to as triazine ring resin). The absorption based on isocyanuric acid that appears is reduced and the new height is 1690 cm.
Since absorption based on the triazine ring appeared near -1 , it was confirmed that a triazine ring resin was produced. Therefore, this triazine ring resin 413g (1
Weigh out the epoxy equivalent (epoxy equivalent) into a separate container similar to the above, and add 150 g of methyltetrahydrophthalic anhydride.
(0.9 acid anhydride equivalent) and benzyldimethylamine
After adding 0.5g and stirring evenly, heat at 110℃, 3
Precure the product by heating for a period of time, then
The temperature was raised to 150° C., heated for 5 hours, and then allowed to cool to secondary cure the product. In order to measure the physical properties (see attached table) of the obtained cured product, predetermined test pieces were prepared and subjected to a predetermined test, and the satisfactory results shown in the attached table were obtained. Example 2 129 g (1 mol) of isocyanuric acid and bisphenol A diglycidyl ether with an epoxy equivalent of 185
2220g (6 moles) and 2g of triethylamine were weighed into the same container as in Example 1, and reacted under the same conditions to form a semi-solid resin with an epoxy equivalent of 261.
I got something. Next, this material was subjected to infrared absorption spectrum analysis in the same manner as in Example 1, and as in the previous example, the absorption based on isocyanuric acid that appeared at 2800 cm -1 and 1400 cm -1 decreased, and a new peak at 1690 cm
Absorption based on the triazine ring appeared near -1 , confirming the formation of a triazine ring resin. Next, 261 g (1 epoxy equivalent) of this produced resin was weighed into a separate container in the same manner as in Example 1, and 150 g (0.9 acid anhydride equivalent) of methyltetrahydrophthalic anhydride and 0.2 g of benzyldimethylamine were added thereto. In addition, the product was treated under the same conditions as in Example 1 to pre-cure the product, and then it was subjected to secondary curing. Next, test pieces necessary for measuring physical properties were prepared from this cured product,
When subjected to a prescribed test, good results were obtained as shown in the attached table. Example 3 In Example 1, 129 g (1 mol) of isocyanuric acid, 3330 g (9 mol) of bisphenol A diglycidyl ether with an epoxy equivalent of 185, and 3 g of triethylamine were reacted at 110°C for 5 hours, and the mixture was allowed to cool to reduce the epoxy equivalent. After obtaining a semi-solid resin of 230, this material was subjected to infrared absorption spectrum analysis in the same manner as in Example 1, and it was found that 2800 cm -1 and 1400 cm
The absorption based on isocyanuric acid appearing at the -1 position decreased and a new absorption based on the triazine ring appeared around 1690 cm -1 , confirming the formation of a triazine ring resin. Next, 230 g (epoxy equivalent) of this resin and methyltetrahydrophthalic anhydride
150 g (0.9 acid anhydride equivalent) and 0.2 g of benzyldimethylamine were weighed into a separate container in the same manner as in Example 1, and treated in the same manner to pre-cure the product, which was then subjected to secondary curing. Next, in order to measure the physical properties of this material, a specimen was prepared and subjected to a prescribed test. The results were good as shown in the attached table. Example 4 In Example 1, 129 g (1 mol) of isocyanuric acid, 840 g (3 mol) of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate with an epoxy equivalent of 140, and 1 g of triethylamine were used, and the mixture was heated at 170°C, 5 mols. A test was carried out in the same manner as in Example 1, except that a solid resin having an epoxy equivalent of 323 was obtained by reacting for a time and allowed to cool, and it was confirmed that a triazine ring resin was produced. Next, 323 g of this resin (1 epoxy equivalent) and 150 g of methyltetrahydrophthalic anhydride (0.9 acid anhydride equivalent)
and 0.3 g of benzyldimethylamine were weighed into a separate container as in Example 1 and treated in the same manner to obtain a secondary cured product. Next, in order to measure the physical properties of this material, a specimen was prepared and subjected to a prescribed test. The results were good as shown in the attached table. Example 5 Example 4 except that 129 g (1 mol) of isocyanuric acid, 1680 g (6 mol) of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate with an epoxy equivalent of 140 and 2 g of triethylamine were used. After obtaining a semi-solid resin with an epoxy equivalent of 201 in the same manner as in Example 4, this was subjected to the same test as in Example 2.
Exactly the same results were obtained, and it was confirmed that a triazine ring resin was produced. Then this resin
201 g (1 epoxy equivalent), 150 g of methyltetrahydrophthalic anhydride (0.9 acid anhydride equivalent), and 0.2 g of benzyldimethylamine were weighed into a separate container as in Example 2, and treated in the same manner to obtain a secondary cured product. I got it. Next, required test pieces were prepared from this material and subjected to prescribed tests. The results were good as shown in the attached table. Example 6 Example 5 except that 129 g (1 mol) of isocyanuric acid and 2520 g (9 mol) of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate with an epoxy equivalent of 140 were used (triethylamine was omitted). A semi-solid resin having an epoxy equivalent of 176 was obtained in the same manner as in Example 5, and when this was subjected to the same test, exactly the same results appeared, confirming that a triazine ring resin was produced. Next, 176 g (1 epoxy equivalent) of this resin and methyltetrahydrophthalic anhydride
150 g (0.9 acid anhydride equivalent) and 0.17 g of benzyldimethylamine were weighed into a separate container as in Example 5, and treated in the same manner to obtain a secondary cured product. Next, required test pieces were prepared from this material and subjected to prescribed tests. The results were good as shown in the attached table. Example 7 129 g (1 mol) of isocyanuric acid, 930 g (3 mol) of 1,6-hexanediol diglycidyl ether with an epoxy equivalent of 155, and 1 g of triethylamine were weighed into the same container as in Example 1, and heated at 150°C for 3 mols.
React for hours with stirring and cool to obtain epoxy equivalent.
355 liquid resin composition was obtained. When this obtained product was subjected to infrared absorption spectrum analysis in the same manner as in Example 1, the same results as in Example 1 appeared, confirming that triazine ring resin was produced. Then 353 g (1 epoxy equivalent) of this resin and 150 g of methyltetrahydrophthalic anhydride
(0.9 acid anhydride equivalent) and 0.35 g of benzyldimethylamine were weighed into a separate container as in Example 1 and treated in the same manner to obtain a secondary cured product. Next, required test pieces were prepared from this material and subjected to prescribed tests.
The results were good as shown in the attached table. Example 8 129 g (1 mol) of isocyanuric acid, 1860 g (6 mol) of 1,6-hexanediol diglycidyl ether with an epoxy equivalent of 155 and 1.8 g of triethylamine were used in Example 7, and the same treatment was performed to obtain a liquid with an epoxy equivalent of 221. A resin product was obtained.
When this product was subjected to the same test as in Example 7, exactly the same results were obtained, confirming that a triazine ring resin was produced. Then this resin
221 g (1 epoxy equivalent), 150 g of methyltetrahydrophthalic anhydride (0.9 acid anhydride equivalent), and 0.2 g of benzyldimethylamine were treated in the same manner as in Example 7 to obtain a secondary cured product. A test piece was prepared and subjected to a prescribed test. The results were good as shown in the attached table. Example 9 129 g (1 mol) of isocyanuric acid and 2790 g (9 mol) of 1,6-hexanediol diglycidyl ether having an epoxy equivalent of 155 (minus triethylamine) were reacted at 160°C for 5 hours to give an epoxy equivalent of 195. A liquid resin product was obtained. When this product was subjected to the same test as in Example 8,
Similar results were obtained, and it was confirmed that triazine ring resin was produced. Next, 195g of this resin
(1 epoxy equivalent), 150 g of methyltetrahydrophthalic anhydride (0.9 acid anhydride equivalent), and 0.2 g of benzyldimethylamine were treated in the same manner as in Example 8 to obtain a secondary cured product. Pieces were prepared and subjected to prescribed tests. The results were good as shown in the attached table. Below, Comparative Example 1 was carried out for Examples 1 to 3, Comparative Example 2 was carried out for Examples 4 to 6, and Comparative Example 3 was carried out for Examples 7 to 9 as follows. The physical properties of the objects were measured and posted in a separate table. Comparative example 1 Bisphenol A diglycidyl ether 185g
(1 epoxy equivalent), 150 g of methyltetrahydrophthalic anhydride (0.9 acid anhydride equivalent), and 0.5 g of benzyldimethylamine were weighed into the same container as in Example 1, and treated under the same conditions. The cured product was subjected to infrared absorption spectrum analysis to confirm the formation of triazine ring resin. Next, this product was treated in the same manner as in Example 1, and required test pieces were prepared from the obtained secondary cured product and subjected to predetermined physical property tests. The results are shown in the attached table. Comparative Example 2 In Comparative Example 1, 140 g of 3,4-epoxycyclohexane carboxylate (1 epoxy equivalent)
and 150 g of methyltetrahydrophthalic anhydride (0.9
acid anhydride equivalent) and benzyldimethylamine
A secondary cured product was obtained by processing in the same manner as in Comparative Example 1, except that 2.1 g was used, and the physical properties of test pieces prepared from this were measured, and the results are shown in the attached table. Comparative Example 3 In Comparative Example 1, 1,6-hexanediol diglycidyl ether 150 g (1 epoxy equivalent)
and methyltetrahydrophthalic anhydride 150 (0.9 acid anhydride equivalent) and benzyldimethylamine 1.7
A secondary cured product was obtained by processing in the same manner as in Comparative Example 1, except that g was used, and the physical properties of the test pieces prepared from this were measured and the results are shown in the attached table.

【表】【table】

【表】 上表から明らかなように、本発明によるトリア
ジン環樹脂は、対応する従来品(比較例参照)に
比べ、いずれもすぐれた耐熱性と機械特性を有
し、しかも電気絶縁特性は特に高温下においてす
ぐれていることが判る。 以上説明したように本発明は、イソシアヌル酸
1モルと一分子中に少なくとも2個のエポキシ基
を有するエポキシ化合物3〜12モルを混合し触媒
の存在または非存在下に加熱反応せしめるもので
あるから、得られた硬化物(トリアジン環樹脂)
は、すぐれた耐熱性と機械特性を有するばかりで
なく、電気絶縁特性において特に高温下ですぐれ
たものとなる。しかもこの硬化物はエポキシ樹脂
や前記硬化剤等とよく相溶し、かつ相溶後再硬化
するので、塗料、接着剤および電気絶縁材料等と
しての利用価値が高く、特に電気部品、電子材料
等の製作基材として注型、含浸および被覆用その
他熱的変化に影響され難い製品の製作等その用途
は広範で、これが実用上に及ぼす効果は顕著であ
る。
[Table] As is clear from the above table, the triazine ring resin according to the present invention has superior heat resistance and mechanical properties compared to the corresponding conventional products (see comparative example), and has particularly good electrical insulation properties. It can be seen that it is excellent at high temperatures. As explained above, in the present invention, 1 mole of isocyanuric acid and 3 to 12 moles of an epoxy compound having at least two epoxy groups in one molecule are mixed and heated to react in the presence or absence of a catalyst. , obtained cured product (triazine ring resin)
not only has excellent heat resistance and mechanical properties, but also has excellent electrical insulation properties, especially at high temperatures. Furthermore, this cured product is highly compatible with epoxy resins and the above-mentioned curing agents, and is recured after being compatible with each other, so it has high utility value as paints, adhesives, electrical insulation materials, etc., and is especially useful in electrical parts, electronic materials, etc. Its uses are wide-ranging, such as casting, impregnating, coating, and manufacturing of products that are not easily affected by thermal changes, and its practical effects are remarkable.

Claims (1)

【特許請求の範囲】[Claims] 1 イソシアヌル酸1モルと一分子中に少なくと
も2個のエポキシ基を有するエポキシ化合物3〜
12モルとを混合し触媒の存在または非存在下に反
応せしめることを特徴とするトリアジン環含有エ
ポキシ樹脂の製造法。
1 Epoxy compound having 1 mole of isocyanuric acid and at least two epoxy groups in one molecule 3~
1. A method for producing a triazine ring-containing epoxy resin, which comprises mixing 12 moles of epoxy resin and reacting it in the presence or absence of a catalyst.
JP21327283A 1983-11-15 1983-11-15 Production of triazine ring-containing epoxy resin Granted JPS60106823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21327283A JPS60106823A (en) 1983-11-15 1983-11-15 Production of triazine ring-containing epoxy resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21327283A JPS60106823A (en) 1983-11-15 1983-11-15 Production of triazine ring-containing epoxy resin

Publications (2)

Publication Number Publication Date
JPS60106823A JPS60106823A (en) 1985-06-12
JPS6227094B2 true JPS6227094B2 (en) 1987-06-12

Family

ID=16636354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21327283A Granted JPS60106823A (en) 1983-11-15 1983-11-15 Production of triazine ring-containing epoxy resin

Country Status (1)

Country Link
JP (1) JPS60106823A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423255U (en) * 1987-07-31 1989-02-07

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133104B2 (en) * 2008-03-25 2013-01-30 エア・ウォーター株式会社 Epoxy (meth) acrylate resin, photocurable / thermosetting resin composition containing the same, and cured product thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676397A (en) * 1970-10-12 1972-07-11 Dow Chemical Co Oxazolidinone-containing epoxy resins and process for their preparation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3676397A (en) * 1970-10-12 1972-07-11 Dow Chemical Co Oxazolidinone-containing epoxy resins and process for their preparation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423255U (en) * 1987-07-31 1989-02-07

Also Published As

Publication number Publication date
JPS60106823A (en) 1985-06-12

Similar Documents

Publication Publication Date Title
DE69935623T2 (en) Curable resin composition
JPS6261053B2 (en)
US3954712A (en) Hot-curable mixtures based on epoxide resin
US3519604A (en) Composition comprising an epoxy resin,a polycarboxylic acid anhydride and an aminopyridine
US6492437B1 (en) Solvent-based process for manufacturing latent curing catalysts
JPH01193317A (en) Thermosetting liquid composition
US3312664A (en) Epoxylated aminomethyldiphenyloxides
JPH0160164B2 (en)
JPS60142973A (en) Triglycidyl compound of aminophenol
US3530093A (en) Compositions comprising an epoxy resin,dicyandiamide and an aminopyridine
JPS6227094B2 (en)
US3620983A (en) {11 -methylglycidyl-isocyanurates
EP0145358B1 (en) Latent curing agents for epoxy resins
US3792018A (en) Preparation of clear epoxy resins containing high molecular weight triepoxide flexibilizers
US3592823A (en) N,n'-diglycidyl compounds
JPS59126428A (en) Curing agent for epoxy resin
US4954196A (en) Process for curing epoxy resin anhydride blends at moderately elevated temperatures
JPS59164335A (en) Curable resin composition for sealing or casting
US3554968A (en) Storage-stable hot-curable compositions of polyepoxides and acyl substituted urea derivatives
US4661562A (en) Thermoset polymers from polyepoxides and polycarboxylic acids containing catalytic amounts of alkali and alkaline earth metal cationic complexes
US4158090A (en) Epoxy resin compositions (case B) containing cumene-maleic anhydride residue
JPS61148228A (en) One pack-type epoxy resin composition
JPH02191624A (en) One-pack type epoxy resin composition for sealing condenser
CA1180490A (en) Curable epoxy resins
JPS637569B2 (en)