JPS62270902A - Power cable failure detecting sensor - Google Patents

Power cable failure detecting sensor

Info

Publication number
JPS62270902A
JPS62270902A JP61115673A JP11567386A JPS62270902A JP S62270902 A JPS62270902 A JP S62270902A JP 61115673 A JP61115673 A JP 61115673A JP 11567386 A JP11567386 A JP 11567386A JP S62270902 A JPS62270902 A JP S62270902A
Authority
JP
Japan
Prior art keywords
optical fiber
power cable
fiber part
clad optical
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61115673A
Other languages
Japanese (ja)
Inventor
Teruaki Tsutsui
筒井 輝明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP61115673A priority Critical patent/JPS62270902A/en
Publication of JPS62270902A publication Critical patent/JPS62270902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect an abnormality which has been generated in a power cable, with high sensitivity, with a high accuracy, and also, at low cost, by providing an optical fiber in which a thin wall clad optical fiber part and a thick wall clad optical fiber part having a specific thickness have been formed alternately, on the power cable. CONSTITUTION:An optical fiber in which a thin wall clad optical fiber part 8 whose clad thickness is about 1/10-1/20 of a core diameter and a thick wall clad optical fiber part 11 whose clad thickness is about 1/1-1/8 of the core diameter and which is usually used for communication have been formed alternately is provided on a power cable. The thin wall clad optical fiber part 8 and the thick wall clad optical fiber part 11 are formed by a welding connection of these optical fibers and a chemical treatment of the clad. When an external damage or a dielectric breakdown is generated in the power cable, a lateral pressure works on the thin wall clad optical fiber part 8 and a local bend occurs, and a microbend loss is generated. By this microbend loss, a level of backscattering light drops, by which a power cable accident and an accident point can be detected.

Description

【発明の詳細な説明】 3、発明の詳細な説明 [産業上の利用分野] 本発明は電力ケーブルの外傷、絶縁破壊等の事故を検知
するセンナとして光ファイバを用いた雷す1ケーブル車
故ゆ類セン+じ田1オるものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The present invention is a lightning cable vehicle accident system using an optical fiber as a sensor for detecting accidents such as trauma and insulation breakdown of power cables. Yuru Sen + Jita 1 Oru.

〔従来の技術] 洞道或いは管路等に布設される電力ケーブルは外傷や絶
縁体の劣化によって性能低下が起こり、遂には絶縁破壊
に至り、運転条件によっては大きな損傷を受ける地絡事
故が生じることになる。しかし、これらの事故では絶縁
破壊が生じ電気所の運転用制御10機器に異変が生じた
後に、初めて事故の発生を知るのが現状であり、事故点
は定としては系統を停止した状態で行なうマレ−ループ
法やパルスレーダ法が用いられている。しかし、これら
の標定法では位置標定精度が悪いことや、その設置に時
間がかかる等の問題があり、人為的巡視に依存する割合
が大ぎい。
[Prior art] Power cables installed in tunnels or conduits deteriorate in performance due to external damage or deterioration of the insulation, eventually leading to insulation breakdown, and depending on operating conditions, ground faults can occur that can cause major damage. It turns out. However, in these accidents, the current situation is that the occurrence of the accident is only known after insulation breakdown occurs and an abnormality occurs in the 10 operational control devices at the electrical station, and the accident point is usually carried out with the system stopped. Murray loop method and pulse radar method are used. However, these orientation methods have problems such as poor positioning accuracy and time-consuming installation, and are highly dependent on human patrols.

このような問題を解決する方策として、最近、第6図に
示すように、導体1を絶縁体2及び介在層3で被覆した
電力ケーブルの最外被覆層ないし保護層(図示せず)に
光ファイバ4を設置し、ケーブルに外傷が生じた時に起
こる光ファイバ4の破損・破断を0TDR(Optic
al  TimeDomain  Reflccto@
etry)を利用して、第7図に示すような後方散乱光
レベル変化から求めようとすることが考えられている。
As a measure to solve such problems, recently, as shown in FIG. The fiber 4 is installed to prevent damage or breakage of the optical fiber 4 that occurs when the cable is damaged.
al TimeDomain Reflccto@
It has been considered that the backscattered light level can be determined from changes in the level of backscattered light as shown in FIG.

この方式では光ファイバ4に異常がない場合には軌跡5
を画くが、光ファイバ4に破断・損傷が生じた場合には
光フアイバ破損点からの反射光が現われ、破線で示す軌
跡6となることから、破損点の標定を行なっている。
In this method, if there is no abnormality in the optical fiber 4, the trajectory 5
However, when the optical fiber 4 is broken or damaged, reflected light from the optical fiber breakage point appears and forms a trajectory 6 shown by a broken line, so that the breakage point can be located.

[発明が解決しようとする問題点] ところが、この方式では、光ファイバ4に破断するほど
の損傷が生じない場合には判定が困難であり、例えば電
力ケーブルに加わる負荷が非常に小さい条n下での絶縁
破壊に対しては、その影響が第1図の光ファイバ4にま
で及ばず、異常を検知できない。
[Problems to be Solved by the Invention] However, with this method, it is difficult to determine if the optical fiber 4 has not been damaged to the extent that it will break. As for the dielectric breakdown at , the influence does not extend to the optical fiber 4 shown in FIG. 1, and no abnormality can be detected.

更に、第6図のごとく光ファイバ4をケーブルに設置す
る場合には、ケーブルの熱的機械力から光ファイバ4を
守るための保MFFtが必要となるが、この保護層のた
めに光ファイバ4には事故等による変化が伝わりにくく
、誤標定をする確・率が高いと言える。
Furthermore, when installing the optical fiber 4 in a cable as shown in FIG. 6, a protective MFFt is required to protect the optical fiber 4 from the thermal and mechanical forces of the cable. It can be said that it is difficult to convey changes due to accidents, etc., and the probability of misorientation is high.

本発明の1−]的は前記した従来技術の欠点を解消し、
電力ケーブルに発生した異常を高感度、高精度かつ安価
に検出することができる新規な電力ケーブル事故検知セ
ンサを提供することにある。
The object of the present invention is to eliminate the drawbacks of the prior art described above,
An object of the present invention is to provide a novel power cable accident detection sensor that can detect abnormalities occurring in power cables with high sensitivity, high precision, and at low cost.

r問題点を解決するための手段] 本発明は、クラッドの厚みをコア径の約1/10〜1/
20とした薄肉クラッド光ファイバ部とクラッドの厚み
がコア径の約1/1〜1/8で通常通信用として使用さ
れる厚肉クラッド光ファイバ部とが交互に形成さ机た光
ファイバを電力ケーブルに設けてなるものである。薄肉
クラッド光ファイバ部と厚肉クラッド光ファイバ部とは
これら光ファイバの融着接続あるいはクラッドの化学的
処理などにより形成される。光ファイバは電力ケーブル
の防食層やケーブル外周に設【ノられる。
Means for Solving Problems] The present invention has a cladding thickness of approximately 1/10 to 1/1/1 of the core diameter.
A thin clad optical fiber section with a thickness of 20 mm and a thick clad optical fiber section with a cladding thickness of about 1/1 to 1/8 of the core diameter, which is usually used for communication, are formed alternately. It is attached to the cable. The thin clad optical fiber section and the thick clad optical fiber section are formed by fusion splicing these optical fibers or chemically treating the cladding. Optical fibers are installed in the anti-corrosion layer of power cables or around the cable periphery.

[作 用] 電力ケーブルに外傷や絶縁破壊が生じると、薄肉クラッ
ド光ファイバ部に側圧が作用で局部的な屈曲が起こり、
マイクロベンド損が発生する。このマイクロベンド損に
より後方散乱光のレベルが低下することから電力ケーブ
ル事故及び事故点を検出できる。また光フアイバ全長が
薄肉クラッド光ファイバではなり、薄肉クラッド光ファ
イバと厚肉光ノiJイバとが交互に形成された光フアイ
バ構造となっているので、外部雑音によるSN比の低下
も避けられる。
[Function] When trauma or dielectric breakdown occurs in a power cable, lateral pressure acts on the thin clad optical fiber, causing local bending.
Microbend loss occurs. Since the level of backscattered light decreases due to this microbend loss, power cable faults and fault points can be detected. Further, since the entire length of the optical fiber is a thin clad optical fiber, and the optical fiber structure is such that thin clad optical fibers and thick optical IJ fibers are alternately formed, a reduction in the SN ratio due to external noise can be avoided.

[実施例] 以下に、本発明の実施例を図面を参照しながら詳細に説
明する。
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図に本発明の電力ケーブル事故検知センリの主要素
子となる光ファイバ7の構造を示す。同図において、8
はクラッド9の厚みがコア10の径の1/10〜1/2
0である薄肉クラッド層を有する薄肉クラッド光ファイ
バ部であり、11はクラッド12の厚みがコア径13の
1/1〜1/8程度の通常通信用光ファイバとして使用
される厚肉クラッド光ファイバ部である。薄肉クラッド
光ファイバ部8と厚肉クラッド光ファイバ部11とは交
互にR着接続によって線状に一体化されている。
FIG. 1 shows the structure of an optical fiber 7 which is the main element of the power cable accident detection sensor of the present invention. In the same figure, 8
The thickness of the cladding 9 is 1/10 to 1/2 of the diameter of the core 10.
0 is a thin clad optical fiber portion having a thin cladding layer, and 11 is a thick clad optical fiber used as a normal communication optical fiber in which the thickness of the cladding 12 is about 1/1 to 1/8 of the core diameter 13. Department. The thin clad optical fiber section 8 and the thick clad optical fiber section 11 are linearly integrated by alternating R connections.

このようにして構成された光ファイバ7は第2図に示ず
如く電力ケーブルの遮蔽層′14及び防食層15に保護
被覆で補強されて配設されている。なお、1は導体、2
は絶縁体である。更に第2図の電力ケーブルはその端末
部で光ファイバ7が引き出されており、引き出された光
ファイバ7は0TDRSi!1ffi(図示せず)に接
続されている。
The optical fiber 7 constructed in this manner is reinforced with a protective coating and placed on the shielding layer '14 and anticorrosion layer 15 of the power cable, as shown in FIG. In addition, 1 is a conductor, 2
is an insulator. Further, the power cable shown in FIG. 2 has an optical fiber 7 pulled out at its terminal end, and the pulled out optical fiber 7 is 0TDRSi! 1ffi (not shown).

OT D R装置の光源から、光ファイバ7に入射され
たパルス光は光ファイバ7を伝播するが、光フアイバ7
内で生じるレイリー散乱により反射光成分である後方散
乱光が光源側に戻ってくる。この後方散乱光強度及び後
方散乱光と入射パルス光との遅延時間の測定により、第
3図の実線で示す軌跡16がデータとして17られる。
The pulsed light incident on the optical fiber 7 from the light source of the OT D R device propagates through the optical fiber 7.
Backscattered light, which is a reflected light component, returns to the light source side due to Rayleigh scattering that occurs inside the light source. By measuring the backscattered light intensity and the delay time between the backscattered light and the incident pulsed light, a locus 16 shown by the solid line in FIG. 3 is obtained as data 17.

本実施例では第1図の薄肉クラッド光ファイバ部8と厚
肉クラッド光ファイバ部11を融着接続によって一体化
しているため、電力ケーブル事故が生じない場合でも第
3図のごとく簿・厚クラッド光ファイバ部8.11の接
続部で段差が生じる。第3図で17は薄肉クラッド光フ
ァイバ部8による後方散乱光のレベル低下部分、18は
厚内クラッド光ファイバ部11による後方散乱光のレベ
ル低下部分である。従って、薄肉クラッド光ファイバ部
8の位置が明確に標定できる構成となっている。
In this embodiment, the thin clad optical fiber part 8 and the thick clad optical fiber part 11 shown in FIG. A step occurs at the connection portion of the optical fiber section 8.11. In FIG. 3, 17 is a portion where the level of backscattered light is reduced by the thin clad optical fiber portion 8, and 18 is a portion where the level of backscattered light is reduced by the thick cladding optical fiber portion 11. Therefore, the configuration is such that the position of the thin clad optical fiber section 8 can be clearly located.

このような構成の本実施例の電力ケーブル事故検知セン
ナでは、電力ケーブルに外傷や絶縁破壊事故等が生じる
と薄肉クラッド光ファイバ部8に側圧或いは局所的な屈
曲が生じ、いわゆる高感度な?イクロベンド損が発生し
、後方散乱光レベル分布は第3図の破線で示す軌跡19
のようになり、事故点20の近傍位置の後方散乱光レベ
ルが低下し、事故及び事故点を容易に判定できる。なお
、マイク[1ベンド損は周知の現像であるが、通常構造
の光ファイバでは補強層等により被覆されるため低感度
なものと言える。これに対して本実施例では薄肉クラッ
ド光ファイバ部8を設けることによって高次モードの漏
洩を積極的に促して極めて高感度なものとしている。更
に、光ファイバ7の全長を薄肉クラッド光ファイバにす
ると、外部雑音の影響を受は易<SN比の低下につなが
るが、薄肉クラッド光ファイバ部8を光ファイバ7に対
し、局部的ないし不連続的な多点設買方式としているの
で、この問題は回避される。
In the power cable accident detection sensor of the present embodiment having such a configuration, when a trauma or an insulation breakdown accident occurs in the power cable, lateral pressure or local bending occurs in the thin clad optical fiber section 8, resulting in a so-called high sensitivity sensor. Microbend loss occurs, and the backscattered light level distribution is trace 19 shown by the broken line in Figure 3.
As a result, the backscattered light level in the vicinity of the accident point 20 is reduced, and the accident and the accident point can be easily determined. Incidentally, microphone [1] bend loss is a well-known development, but it can be said that optical fibers with a normal structure have low sensitivity because they are covered with a reinforcing layer or the like. On the other hand, in this embodiment, by providing a thin clad optical fiber portion 8, leakage of higher-order modes is actively promoted, resulting in extremely high sensitivity. Furthermore, if the entire length of the optical fiber 7 is made of thin-clad optical fiber, it is easily affected by external noise, which leads to a decrease in the S/N ratio. This problem can be avoided by adopting a multi-point purchasing method.

なお、薄肉クラッド光ファイバ部を有する線状一体化さ
れた光ファイバの構成として、上記実施例の81着接続
でなく、第4図に示すようにクラッド部を局部的に化学
処理等によって溶解させて作成してもよい。この実施例
による後方散乱光レベルの分布は第5図の実線21(通
常時)と破線22(事故時)となる。
In addition, as for the structure of the linear integrated optical fiber having a thin clad optical fiber part, instead of the 81-connection method in the above embodiment, the cladding part is locally melted by chemical treatment, etc., as shown in Fig. 4. You can also create it by The distribution of the backscattered light level according to this embodiment is shown by a solid line 21 (normal time) and a broken line 22 (at an accident time) in FIG.

[発明の効果] 以上要するに本発明によれば次のような優れた効果を元
厚する。
[Effects of the Invention] In summary, the present invention provides the following excellent effects.

(1)  事故検知センサとしての光フアイバ中に薄肉
クラッド光ファイバ部を設け、薄肉クラッド光ファイバ
部の高感度な変化を利用しているので、電力ケーブルの
地絡事故等の高エネルギによる損傷のみならず、微地格
、外傷等の微小な事故損傷も検知可能である。
(1) A thin clad optical fiber section is installed in the optical fiber used as an accident detection sensor, and highly sensitive changes in the thin clad optical fiber section are utilized, so damage only occurs due to high energy such as power cable ground faults. However, it is also possible to detect minute accidental damages such as microscopic damage and external injuries.

(2)  事故検知を行なうセンサとして、光フアイバ
以外の素子或いは治具を全く必要とせず、また特定波長
で測定する必要もない。このため、測定系の簡素化が図
れ、取扱いも容易であると共にコストを低減できる。
(2) As a sensor for detecting accidents, no elements or jigs other than optical fibers are required, and there is no need to measure at a specific wavelength. Therefore, the measurement system can be simplified, handling is easy, and costs can be reduced.

(3)  事故検知センサ部を電力ケーブルと一体化し
て構成できるため、事故発生前より電力ケーブルの状態
を常v1監視し、事故の有無、事故点の標定を短時間で
行なうことができる。
(3) Since the accident detection sensor unit can be configured to be integrated with the power cable, the status of the power cable can be constantly monitored v1 even before an accident occurs, and the presence or absence of an accident and the location of the accident point can be determined in a short time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電力ケーブル事故検知センサに用
いられる光ファイバの一実施例を示づ縦断面図、第2図
は同光ファイバを電力ケーブルに装着した状態の横断面
図、第3図は同型カケープルにより事故標定を実施した
場合の後方散乱光のレベル変化を示す特性図、第4図は
本発明の他の実施例に係る光ファイバの縦断面図、第5
図は同光ファイバを用いた電力ケーブル事故標定を実施
した場合の後方散乱光のレベルで変化を示す特性図、第
6図は従来の事故検知センサを装着した電力ケーブルの
横断面図、第7図は同型カケープルにより事故標定を実
施した場合の後方散乱光のレベル変化を示す特性図であ
る。 図中、1は導体、2は絶縁体、3はfr在居、4は光フ
ァイバ、7は光ファイバ、8は薄肉クラッド光ファイバ
部、9.12はクラッド、10゜13はコア、11は厚
内クラッド光ファイバ部、14は遮蔽層、15は防食層
である。 代理人弁理士 RI311  利 幸 ゼ悩艇心架Δ(さ呈
FIG. 1 is a vertical cross-sectional view showing an embodiment of an optical fiber used in a power cable accident detection sensor according to the present invention, FIG. 2 is a cross-sectional view of the same optical fiber attached to a power cable, and FIG. The figure is a characteristic diagram showing the change in the level of backscattered light when accident location is carried out using the same type cable; FIG. 4 is a vertical cross-sectional view of an optical fiber according to another embodiment of the present invention;
The figure is a characteristic diagram showing changes in the level of backscattered light when power cable accident location is performed using the same optical fiber, Figure 6 is a cross-sectional view of a power cable equipped with a conventional accident detection sensor, and Figure 7 is a cross-sectional view of a power cable equipped with a conventional accident detection sensor. The figure is a characteristic diagram showing changes in the level of backscattered light when accident location is performed using the same type of cable. In the figure, 1 is a conductor, 2 is an insulator, 3 is a fr layer, 4 is an optical fiber, 7 is an optical fiber, 8 is a thin clad optical fiber section, 9.12 is a cladding, 10° 13 is a core, and 11 is a In the thick clad optical fiber section, 14 is a shielding layer, and 15 is an anticorrosion layer. Agent Patent Attorney RI311

Claims (2)

【特許請求の範囲】[Claims] (1)クラッドの厚みをコア径の約1/10〜1/20
とした薄肉クラッド光ファイバ部とクラッドの厚みをコ
ア径の約1/1〜1/8とした厚肉クラッド光ファイバ
部とが交互に形成された光ファイバが電力ケーブルに設
けられていることを特徴とする電力ケーブル事故検知セ
ンサ。
(1) The thickness of the cladding is approximately 1/10 to 1/20 of the core diameter.
A power cable is provided with an optical fiber in which thin-walled optical fiber sections with a cladding thickness of about 1/1 to 1/8 of the core diameter are alternately formed and thick-walled optical fiber sections with a cladding thickness of about 1/1 to 1/8 of the core diameter. Characteristic power cable accident detection sensor.
(2)上記光ファイバが上記電力ケーブルの防食層内及
びケーブル外周に設けられていることを特徴とする特許
請求の範囲第1項記載の電力ケーブル事故検知センサ。
(2) The power cable accident detection sensor according to claim 1, wherein the optical fiber is provided within the anti-corrosion layer of the power cable and on the outer periphery of the cable.
JP61115673A 1986-05-20 1986-05-20 Power cable failure detecting sensor Pending JPS62270902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61115673A JPS62270902A (en) 1986-05-20 1986-05-20 Power cable failure detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61115673A JPS62270902A (en) 1986-05-20 1986-05-20 Power cable failure detecting sensor

Publications (1)

Publication Number Publication Date
JPS62270902A true JPS62270902A (en) 1987-11-25

Family

ID=14668457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61115673A Pending JPS62270902A (en) 1986-05-20 1986-05-20 Power cable failure detecting sensor

Country Status (1)

Country Link
JP (1) JPS62270902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159925A (en) * 1988-12-13 1990-06-20 Sumitomo Electric Ind Ltd Lightening point locating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02159925A (en) * 1988-12-13 1990-06-20 Sumitomo Electric Ind Ltd Lightening point locating system

Similar Documents

Publication Publication Date Title
KR20010101239A (en) Apparatus and method for monitoring a structure using a counter-propagating signal method for locating events
JPH0787051B2 (en) Power cable and its temperature distribution measurement method
JPS62270902A (en) Power cable failure detecting sensor
JPS6043606B2 (en) electric cable
KR101694414B1 (en) method for locating arc-flash events harnessing light attenuation characteristics of plastic optical fibers and sensor using the same method
JPS5895243A (en) Detection of oil leakage point for of cable line
JPH02269980A (en) Abnormality detecting device for power cable or its connection part
JP2009531826A (en) Power cable that can be searched for faults
JP3224762B2 (en) Fiber optic cable
JP2642841B2 (en) Optical fiber composite power cable
JPH02181668A (en) Abnormality detecting device for gas insulation electric equipment
JPH0340280B2 (en)
JPH0435798Y2 (en)
CN110726493A (en) Fiber bragg grating temperature sensing and monitoring device for electric connection point of train
JPH0340279B2 (en)
JPH0535388B2 (en)
JPH04236111A (en) Device for monitoring accretion of snow on aerial power line
JPH03236115A (en) Method and device of humidity detection for power cable line
JPS6038202Y2 (en) Temperature sensor using optical fiber
JPH0470527A (en) Laying structure of detecting optical fiber in detecting system of accident point of power cable line
JPS6255546A (en) Optical transmission line for detecting flood and optical cable
JPH04242193A (en) Sodium leak detector system
KR100470083B1 (en) Complex optical fiber sensor
JPH04168324A (en) Water level distribution detector
JPS63311148A (en) Power cable line having moisture absorption detecting function