JPS62270898A - Metal hydride container - Google Patents

Metal hydride container

Info

Publication number
JPS62270898A
JPS62270898A JP61112703A JP11270386A JPS62270898A JP S62270898 A JPS62270898 A JP S62270898A JP 61112703 A JP61112703 A JP 61112703A JP 11270386 A JP11270386 A JP 11270386A JP S62270898 A JPS62270898 A JP S62270898A
Authority
JP
Japan
Prior art keywords
metal hydride
heat transfer
container
cut
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61112703A
Other languages
Japanese (ja)
Other versions
JPH0436083B2 (en
Inventor
Kenji Nasako
名迫 賢二
Masayuki Kurooka
正之 黒岡
Naojiro Honda
本田 直二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61112703A priority Critical patent/JPS62270898A/en
Publication of JPS62270898A publication Critical patent/JPS62270898A/en
Publication of JPH0436083B2 publication Critical patent/JPH0436083B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

PURPOSE:To make filling at the time of charging an alloy to the whole body of a filling container performable so smoothly, by installing a cut-up part in a heat transfer fin. CONSTITUTION:A sectoral cut-up part 11 is formed in an aluminum heat transfer fin 6. Height (a) of this cut-up part 11 is accorded with a laminated pitch of the heat transfer fin 6, whereby setting of a fin pitch is made so easy. With this constitution, filling at the time of charging an alloy to the whole body of a filling container is made so smoothable and, what is more, the fin pitch becomes constant so accurately. Furthermore, since mutual fins are made contact with each other, efficiency of heat transfer is improved.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (イ)産業上の利用分野 本発明は、金属水素化物の水素化、脱水素化反応を利用
して熱あるいは水素の貯蔵、取り出しを行なう金属水素
化物容器に関する。
[Detailed description of the invention] 3. Detailed description of the invention (a) Industrial application field The present invention stores and extracts heat or hydrogen by utilizing hydrogenation and dehydrogenation reactions of metal hydrides. Relating to metal hydride containers.

(ロ)従来の技術 金属水素化物は水素との反応により、熱エネルギー、化
学エネルギー、機械エネルギーの3種のエネルギー形態
を相互に変換することが可能であり、エネルギー変換材
料として非常に注目されている。
(b) Conventional technology Metal hydrides are capable of mutually converting three types of energy, thermal energy, chemical energy, and mechanical energy, through reaction with hydrogen, and are attracting much attention as energy conversion materials. There is.

この機能を利用して、エネルギーとして最も低質とされ
る熱エネルギーの有効利用が可能であり、。
By using this function, it is possible to effectively utilize thermal energy, which is considered to be the lowest quality energy.

水素計蔵、蓄熱、ヒートポンプ、ケミカルエンジン。Hydrogen storage, thermal storage, heat pumps, chemical engines.

ケミカルコンプレッサ等種々の応用システムが提案され
ている。しかし、一般に金属水素化物は水素吸放出を繰
り返すことにより、微粉化現象を生じ、そのため金属水
素化物充填層内の熱伝導度は極めて小さくなる。従って
、金属水素化物の反応熱を有効に利用するためには、発
生した反応熱を迅速に熱媒に伝える優れた容器構造が必
要となる。
Various application systems such as chemical compressors have been proposed. However, metal hydrides generally undergo a pulverization phenomenon by repeating hydrogen absorption and release, and as a result, the thermal conductivity within the metal hydride packed bed becomes extremely low. Therefore, in order to effectively utilize the reaction heat of the metal hydride, an excellent container structure is required to quickly transfer the generated reaction heat to the heat medium.

(ハ)発明が解決しようとする問題点 そこで出聞人は、全屈水素化物層内の伝熱を促進し、反
応熱を効率良く熱媒に伝える容器構造として、内部に金
属水素化物を充愼した耐圧容器を気密に貫通する熱媒管
を設け、この熱媒管にアルミ製放射フィンを取付けた容
器構造(特願昭59−197775号明細書参照)およ
びアルミtj5積層フィン ゛を取付けた容器構造(特
願昭60−10775号明細書参照)を先に提案した。
(c) Problems to be solved by the invention Therefore, the presenter proposed a container structure filled with a metal hydride to promote heat transfer within the total hydride layer and efficiently transmit the reaction heat to the heating medium. A heat medium pipe was installed that airtightly penetrated the pressure-resistant container, and a container structure in which aluminum radiation fins were attached to this heat medium pipe (see Japanese Patent Application No. 197775/1983) and aluminum TJ5 laminated fins were attached. The container structure (see Japanese Patent Application No. 10775/1986) was first proposed.

しかし、前者は熱媒管の軸方向に沿って伝熱フィンが放
射状に取付けられているため、半径方向に断面積を広げ
ると、伝熱フィン間の寸法も広がり、金属水素化物が伝
熱フィンから遠く離れて熱伝達効率が低下する問題点が
あった。一方、後者は金属水素化物の充填が回連になる
と共に、積層フィンピッチ間隔を一定にする上で製造上
の困難さが伴う問題点があった。
However, in the former case, the heat transfer fins are installed radially along the axial direction of the heat transfer tube, so when the cross-sectional area is expanded in the radial direction, the dimension between the heat transfer fins also increases, and the metal hydride is attached to the heat transfer fins. There was a problem that the heat transfer efficiency decreased when the distance was far away. On the other hand, the latter has problems in that the metal hydride must be filled repeatedly and manufacturing is difficult in making the stacked fin pitch constant.

(ニ)問題点を解決するための手段 本発明は、先に提案した金属水素化物容器の構造を改良
し、積層フィンのピッチ間隔を一定にして金属水素化物
の充填が容易な金属水素化物容器を提供することを目的
とし、このため本発明は。
(d) Means for solving the problems The present invention improves the structure of the metal hydride container proposed previously, and makes it possible to easily fill the metal hydride with a constant pitch interval of the laminated fins. It is therefore an object of the present invention to provide the following.

良熱伝導材質で形成された積層構造をなす伝熱フィンに
一定高さの切り起こし部を設けて金属水素化物粉体を流
し込むことができる穴を形成するようにしたことを特徴
としている。
The heat transfer fin has a laminated structure made of a material with good thermal conductivity, and is characterized by having a cut-and-raised part of a certain height to form a hole into which metal hydride powder can be poured.

(ホ)作用 積層構造の伝熱フィンの1個所もしくは複数個所に切り
起こし部を設けるようにしたので、フィン平面と垂直方
向への金属水素化物の流れが円滑となり、容器内への金
属水素化物の充填が容易になる。また、切り起こし部の
高さ寸法を積層フィンピッチに合致させて形成するよう
にしたので。
(e) Function: Since the heat transfer fins of the laminated structure are provided with cut and raised parts at one or more places, the metal hydride flows smoothly in the direction perpendicular to the fin plane, and the metal hydride flows into the container. filling becomes easier. In addition, the height of the cut and raised portion is made to match the laminated fin pitch.

積層フィンを圧入工程により製造する場合には、前に挿
入したフィンに接触する迄挿入すればフィンピッチを精
度良(一定にすることができる。このとき、互のフィン
は一個所もしくは複数個所で切り起こし部により接触す
ることになるため、確実に固定され伝熱効率も改善され
る。
When manufacturing laminated fins by a press-fitting process, the fin pitch can be kept accurate (constant) by inserting the fins until they touch the previously inserted fins. Since the cut and raised portion makes contact, it is securely fixed and heat transfer efficiency is improved.

(へ)実施例 以下、本発明の実施例を図面を参照して説明する。第1
図は本発明の一実施例による金属水素化物容器の側断面
図を示したもので、1は耐圧容器である。この耐圧容器
1は、ステンレス鋼で形成された容器本体部2と蓋部3
よりなり、フランジ接合により内部を気密、耐圧的に保
持している。その耐圧容器1の内壁は断熱材4で被覆さ
れて内部に金属水素化物5と共に伝熱フィン6が封入さ
れている。上記断熱材4の表面は金属水素化物5の粉末
が内部に入り込まないように薄い皮膜でコーティングさ
れている。また、伝熱フィン6は容器本体部2の底部お
よび蓋部3を気密に貫通する熱媒管7の表面上に垂直に
一定のピッチで圧入嵌合により固定されている。更に、
耐圧容器1の蓋部3には、断熱材4から蓋部3を気密に
貫通して、先端部に水素は通すが金属水素化物粉末は通
さないフィルタ8を有する水素出入導管9と、全屈水素
化物投入孔lOとが設けられている。
(F) Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure shows a side sectional view of a metal hydride container according to an embodiment of the present invention, where 1 is a pressure container. This pressure-resistant container 1 includes a container body 2 and a lid 3 made of stainless steel.
The interior is kept airtight and pressure-resistant by flange joints. The inner wall of the pressure vessel 1 is covered with a heat insulating material 4, and heat transfer fins 6 are sealed therein together with a metal hydride 5. The surface of the heat insulating material 4 is coated with a thin film to prevent the powder of metal hydride 5 from entering inside. Further, the heat transfer fins 6 are fixed vertically onto the surface of the heat medium pipe 7 that airtightly penetrates the bottom of the container body 2 and the lid 3 by press-fitting at a constant pitch. Furthermore,
The lid part 3 of the pressure vessel 1 has a hydrogen inlet/outlet pipe 9 which airtightly passes through the lid part 3 from a heat insulating material 4 and has a filter 8 at its tip that allows hydrogen to pass through but not metal hydride powder. A hydride inlet hole lO is provided.

第2図は伝熱フィン6が積層して取付けられた熱媒管7
の説明図で、(a)はその部分斜視図、(b)はその正
面図、(C)は部分側面図である。これらの図において
、伝熱フィン6はアルミニウム製の円板より成り、−ケ
所に扇状の切り起こし部11が形成されている。この切
り起こし部11の高さaは伝熱フィン6の積層ピッチに
合致している。これにより、フィンピッチの設定が容易
になる。即ち。
Figure 2 shows a heat medium pipe 7 to which heat transfer fins 6 are attached in a stacked manner.
, in which (a) is a partial perspective view, (b) is a front view, and (C) is a partial side view. In these figures, the heat transfer fin 6 is made of an aluminum disc, and a fan-shaped cut-and-raised portion 11 is formed at the - portion. The height a of this cut and raised portion 11 matches the stacking pitch of the heat transfer fins 6. This makes it easy to set the fin pitch. That is.

積層フィンを圧入工程により製作する場合は、前に挿入
した伝熱フィン6に切り起こし部11の先端部が接触す
る迄挿入すれば良く、これにより、フィンピッチは精度
良く一定に保たれる。この場合、切り起こし部11の位
置が隣接する伝熱フィン6で全て同じであると互に重な
りが生じて所定ピッチを一定に保てなくなるので1図示
の如く切り起こし部11の位置を隣接する伝熱フィン6
で角度的にずらすことにより上記フィンピッチを一定に
保つことができる。
When the laminated fin is manufactured by a press-fitting process, it is sufficient to insert the heat transfer fin 6 until the tip of the cut and raised portion 11 comes into contact with the previously inserted heat transfer fin 6, thereby keeping the fin pitch constant with high precision. In this case, if the positions of the cut and raised parts 11 are the same for all adjacent heat transfer fins 6, they will overlap each other and the predetermined pitch cannot be kept constant. Heat transfer fin 6
By angularly shifting the fin pitch, the fin pitch can be kept constant.

以上の構成で、水素放出反応を行なわせる場合は、熱媒
管7に高温熱媒を流す。すると、熱は熱媒管7から伝熱
フィン6を経て金属水素化物5に効率良く伝導される。
With the above configuration, when a hydrogen release reaction is to be performed, a high temperature heat medium is flowed through the heat medium pipe 7. Then, heat is efficiently conducted from the heat medium pipe 7 to the metal hydride 5 via the heat transfer fins 6.

この熱により金属水素化物5は水素を放出する。その水
素はフィルタ8から水素出入導管9を経て系外に排出さ
れ貯蔵もしくは利用される。
This heat causes the metal hydride 5 to release hydrogen. The hydrogen is discharged from the filter 8 to the outside of the system via the hydrogen inlet/output conduit 9 and stored or utilized.

一方、水素吸収反応を行なわせる場合は、水素出入導管
9からフィルタ8を経て耐圧容器l内部に水素を供給す
る。この水素が伝熱フィン6と結合して熱を発生する。
On the other hand, when a hydrogen absorption reaction is performed, hydrogen is supplied from the hydrogen inlet/output pipe 9 through the filter 8 into the pressure vessel l. This hydrogen combines with the heat transfer fins 6 to generate heat.

この熱は伝熱フィン6から熱媒管7を介して熱媒管7を
流れる低温熱媒に回収され、系外に取り出され利用され
る。
This heat is recovered from the heat transfer fins 6 via the heat medium pipe 7 into the low temperature heat medium flowing through the heat medium pipe 7, and is taken out of the system and used.

このような水素吸放出反応を繰り返すうち、金属水素化
物5の反応特性が低下してきた場合は、金属水素化物投
入孔10を開いて内部の金属水素化物5を耐圧容器1の
外部に取り出す。これは金属水素化物投入孔10を逆さ
にするだけで良く、金属水素化物5は断熱材4と伝熱フ
ィン6の間隙や伝熱フィン6に形成された切り起こし部
11を通して自然と金属水素化物投入孔10より流出す
る。
While repeating such a hydrogen absorption/release reaction, if the reaction characteristics of the metal hydride 5 deteriorate, the metal hydride inlet hole 10 is opened and the metal hydride 5 inside is taken out to the outside of the pressure vessel 1. This can be done by simply turning the metal hydride injection hole 10 upside down, and the metal hydride 5 will naturally pass through the gap between the heat insulating material 4 and the heat transfer fins 6 and the cut and raised portions 11 formed in the heat transfer fins 6. It flows out from the input hole 10.

一方、新しい金属水素化物5を耐圧容器1内部に充填す
る場合は、上記と逆に金属水素化物投入孔10を上向き
にして活性化された金属水素化物5を金属水素化物投入
孔10から投入し、耐圧容器1に振動を加える。これに
より、金属水素化物5は断熱材4と伝熱フィン6の間隙
や伝熱フィン6に形成された切り起こし部11を通して
耐圧容器1内部に流入し、伝熱フィン6間に均一に充填
保持字れる。
On the other hand, when filling a new metal hydride 5 into the pressure-resistant container 1, the activated metal hydride 5 is charged from the metal hydride injection hole 10 with the metal hydride injection hole 10 facing upward, contrary to the above. , vibration is applied to the pressure vessel 1. As a result, the metal hydride 5 flows into the pressure vessel 1 through the gap between the heat insulating material 4 and the heat transfer fins 6 and the cut and raised portions 11 formed on the heat transfer fins 6, and is evenly filled and held between the heat transfer fins 6. I can write.

このようにして金属水素化物5を耐圧容器1内部に充填
したのちは金属水素化物投入孔IOを閉じることにより
、再び金属水素化物容器としての機能が得られ、金属水
素化物5の交換も簡単に行なうことができる。 尚、上
記実施例は1本の熱媒管7に円板状の伝熱フィン6を積
層固定した例について示したが、熱媒管7は1本に限る
ことなく、また、伝熱フィン6も任意の形状が取り得る
ことは言う迄もない、更に切り起こし部11の形状およ
び数や形成位置も、例えば第3図(a)の斜視図および
(b)の正面図に示すように任意に設計することができ
After filling the metal hydride 5 into the pressure container 1 in this way, by closing the metal hydride injection hole IO, the function as a metal hydride container can be obtained again, and the metal hydride 5 can be easily replaced. can be done. In addition, although the above embodiment has shown an example in which the disk-shaped heat transfer fins 6 are laminated and fixed to one heat transfer pipe 7, the number of heat transfer pipes 7 is not limited to one, and the number of heat transfer fins 6 may be fixed to one heat transfer pipe 7. Needless to say, the cut-and-raised portions 11 can have any arbitrary shape, and the shape, number, and formation position of the cut-and-raised portions 11 may also be arbitrary, as shown in the perspective view of FIG. 3(a) and the front view of FIG. 3(b), for example. can be designed.

要は、熱媒管7の軸方向へ金属水素化物5を移動させる
に必要な穴が存在し切り起こし部11の高さがフィンピ
ッチに合致するものであればどのようなものであっても
よい。
In short, any material can be used as long as there are holes necessary to move the metal hydride 5 in the axial direction of the heat transfer pipe 7 and the height of the cut and raised portion 11 matches the fin pitch. good.

(ト)発明の詳細 な説明したように本発明によれば、内部に金属水素化物
をを充填し、この金属水素化物の反応熱を熱媒に伝える
熱交換器において、良熱伝導性の材質で、積層構造をな
す伝熱フィン内の一個所もしくは複数個所に切り起こし
部を設けるようにしたので、フィン平面と垂直方向への
合金の流れが円滑となり、充填容器全体への合金投入時
の充填が非常に円滑に行なえるようになる。また、その
切り起こし部の高さを積層フィンピッチに合致させて作
っているので、積層フィンを圧入工程により製造する場
合には、前に挿入したフィンに接触する迄挿入すれば、
フィンピッチは精度良く一定となり、更に、互いのフィ
ンは一個所もしくは複数個所で接触しているために確実
に固定され、伝熱効率も大巾に改善される。
(g) As described in detail, according to the present invention, a heat exchanger filled with a metal hydride and transmitting the reaction heat of the metal hydride to a heat medium is made of a material with good thermal conductivity. Therefore, by providing cut-and-raised parts at one or more locations within the heat transfer fins, which have a laminated structure, the flow of the alloy in the direction perpendicular to the plane of the fins is smooth, and when the alloy is poured into the entire filling container. Filling can be done very smoothly. In addition, the height of the cut-and-raised portion is made to match the pitch of the laminated fins, so when manufacturing laminated fins by a press-fitting process, simply insert the fins until they contact the previously inserted fins.
The fin pitch is kept constant with high precision, and since the fins are in contact with each other at one or more locations, they are securely fixed, and the heat transfer efficiency is greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す金属水素化物容器の側
断面図、第2図は伝熱フィン付熱媒管の説明図で、(a
)は、その部分斜視図、(b)はその正面図、(C)は
その部分側断面図、第3図は伝熱フィン付熱媒管の他の
例を示す説明図で、(a)はその斜視図、(b)はその
正面図である。 1・・・耐圧容器、2・・・容器本体部、3・・・蓋部
、4・・・断熱材、5・・・金属水素化物、6・・・伝
熱フィン、7・・・熱媒管、8・・・フィルタ、9・・
・水素出入導管、10・・・金属水素fヒ物投入孔、1
1・・・切り起こし部。 ノー−〜、 代理人 弁理士  紋 1) 泌  ′)・、    
 / −一、ノ 第1図 第 2 図 (a) (t))         (C) 第3図 (a)             (b)手続補正書(
自発) 昭和61年6月27日
FIG. 1 is a side sectional view of a metal hydride container showing an embodiment of the present invention, and FIG. 2 is an explanatory diagram of a heat medium tube with heat transfer fins.
) is a partial perspective view thereof, (b) is a front view thereof, (C) is a partial side sectional view thereof, and FIG. 3 is an explanatory diagram showing another example of a heat medium tube with heat transfer fins. is its perspective view, and (b) is its front view. DESCRIPTION OF SYMBOLS 1... Pressure-resistant container, 2... Container body part, 3... Lid part, 4... Heat insulating material, 5... Metal hydride, 6... Heat transfer fin, 7... Heat Medium pipe, 8...Filter, 9...
・Hydrogen inlet/output pipe, 10...Metal hydrogen f arsenic inlet hole, 1
1...Cut-up part. No-~, agent patent attorney crest 1) secret ′)・,
/ -1. Figure 1 Figure 2 (a) (t)) (C) Figure 3 (a) (b) Procedural amendment (
(Voluntary) June 27, 1986

Claims (1)

【特許請求の範囲】[Claims] 容器本体部と蓋部とからなりフランジ接合により内部を
密封する耐圧容器と、この耐圧容器の蓋部に取付けられ
た水素出入導管と、同じくその蓋部に設けられた金属水
素化物投入孔と、前記耐圧容器の内壁に貼付された断熱
材と、この断熱材で覆われる容器内部に収納される金属
水素化物と、その容器内部の前記熱媒管表面上にその管
軸方向と垂直に固設された複数枚の伝熱フィンとを備え
ると共に、その伝熱フィンには切り起こし高さ寸法がフ
ィンピッチに合致する切り起こし部が形成されてなるこ
とを特徴とする金属水素化物容器。
A pressure-resistant container consisting of a container body and a lid, the inside of which is sealed by flange connection, a hydrogen inlet/output conduit attached to the lid of the pressure-resistant container, and a metal hydride inlet hole also provided in the lid; A heat insulating material affixed to the inner wall of the pressure-resistant container, a metal hydride housed inside the container covered with the heat insulating material, and a metal hydride fixed perpendicularly to the tube axis direction on the surface of the heat medium tube inside the container. What is claimed is: 1. A metal hydride container comprising: a plurality of heat transfer fins, the heat transfer fins having a cut-and-raised portion having a cut-and-raised height that matches the fin pitch.
JP61112703A 1986-05-19 1986-05-19 Metal hydride container Granted JPS62270898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61112703A JPS62270898A (en) 1986-05-19 1986-05-19 Metal hydride container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61112703A JPS62270898A (en) 1986-05-19 1986-05-19 Metal hydride container

Publications (2)

Publication Number Publication Date
JPS62270898A true JPS62270898A (en) 1987-11-25
JPH0436083B2 JPH0436083B2 (en) 1992-06-15

Family

ID=14593384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61112703A Granted JPS62270898A (en) 1986-05-19 1986-05-19 Metal hydride container

Country Status (1)

Country Link
JP (1) JPS62270898A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478077B1 (en) * 2001-05-15 2002-11-12 Sandia National Laboratories Self supporting heat transfer element
JP2008189538A (en) * 2007-02-08 2008-08-21 Nissan Motor Co Ltd Hydrogen generation system, operation method of hydrogen generation system and hydrogen fuel vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6478077B1 (en) * 2001-05-15 2002-11-12 Sandia National Laboratories Self supporting heat transfer element
JP2008189538A (en) * 2007-02-08 2008-08-21 Nissan Motor Co Ltd Hydrogen generation system, operation method of hydrogen generation system and hydrogen fuel vehicle

Also Published As

Publication number Publication date
JPH0436083B2 (en) 1992-06-15

Similar Documents

Publication Publication Date Title
US7225860B2 (en) Compact heat battery
US4402915A (en) Metal hydride reactor
KR20120104182A (en) Tank for storing and withdrawing hydrogen and/or heat
US20160327209A1 (en) Hydrogen storage tank comprising metal hydrides with heat exchanges
JPS62196500A (en) Heat exchanging body using hydrogen absorbing alloy
CN111066092A (en) Nuclear reactor core
US11761713B2 (en) Heat conduction fin and solid state hydrogen storage device having same
TWI764487B (en) Block style heat exchanger for heat pipe reactor
US5323843A (en) Lih thermal energy storage device
US4158686A (en) Method of making a solar energy collector
JPS62270898A (en) Metal hydride container
EP0061191B1 (en) Metal hydride reactor
JP6704811B2 (en) Fusion reactor blanket subunit, manufacturing method thereof, and fusion reactor blanket
US20220049906A1 (en) Heat pipes including composite wicking structures, and associated methods of manufacture
JPS5925956B2 (en) metal hydride container
JPS6249100A (en) Metal hydride container
Haraburda Three-phase flow? Consider helical-coil heat exchangers
JPS62246697A (en) Metal hydride container
JP2002295798A (en) Hydrogen transport vessel
JPS5925955B2 (en) Metal hydride heat storage device
JPS6229826Y2 (en)
JPS61244995A (en) Metal hydride container
JPS609591Y2 (en) multistage heat exchanger
JPS6026899A (en) Metallic hydride vessel with fin-plate
JPH01114679A (en) Heat exchanger

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees