JPS62270805A - Servo valve - Google Patents

Servo valve

Info

Publication number
JPS62270805A
JPS62270805A JP11047986A JP11047986A JPS62270805A JP S62270805 A JPS62270805 A JP S62270805A JP 11047986 A JP11047986 A JP 11047986A JP 11047986 A JP11047986 A JP 11047986A JP S62270805 A JPS62270805 A JP S62270805A
Authority
JP
Japan
Prior art keywords
control
signal
valve
flow control
pressurized fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11047986A
Other languages
Japanese (ja)
Inventor
Yoshinori Imamura
吉徳 今村
Yuji Sakaguchi
坂口 裕二
Tatsuo Terahama
寺浜 龍雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP11047986A priority Critical patent/JPS62270805A/en
Publication of JPS62270805A publication Critical patent/JPS62270805A/en
Pending legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)

Abstract

PURPOSE:To supply pressure fluid stably without pulsation by superposing 1-3kHz electric signal on a control signal applied to a solenoid type flow control valve, and maintaining the control signal and the electromagnetic force generated on a magnet in linear relationship. CONSTITUTION:A servo valve is equipped at least with a pair of solenoid type flow control valves 10a, 10b and a control means A to put these control valves 10a, 10b in counter actions. The control means A compares actually supplied pressure p sensed by a pressure sensor 19 with a set pressure value in response to the setting signal e, and feedback control is made so that these are equal substantially. In this constitution, an oscillator circuit B is provided to superpose 1-3kHz electric signals on control signals applied to the control valves 10a, 10b according to the setting signal e. This allows maintaining of the control signal in linear relation with the electromagnetic force generated in electric magnets of the control valves 10a, 10b.

Description

【発明の詳細な説明】 3、発明の詳細な説明 (産業上の利用分野) 本発明は、流体機器を目的通りに動かすために回路内で
使用されるサーボ・バルブ、とくには、操作圧力源より
導かれた加圧流体の導入及び排出流量を調整することに
より所望圧力とした加圧流体を、安定して供給できるサ
ーボ・バルブに関するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a servo valve used in a circuit to move fluid equipment as intended, and particularly to a servo valve used in a circuit for operating fluid equipment as intended. The present invention relates to a servo valve that can stably supply pressurized fluid at a desired pressure by adjusting the flow rate of the introduced and discharged pressurized fluid.

(従来の技術) 供給すべき加圧流体の供給圧力を制御信号に応じて調整
自在としたサーボ・バルブとしては、第4図(a )に
要部のみを線図的に示す電磁式流量制御弁を、2個1組
として同図(b)の作動説明図に示すように、加圧流体
の流通路に配設し各流量制御弁10a 、 10bを制
御信号に応じて作動させ、加圧流体の供給圧を調整自在
としたものがある。
(Prior art) As a servo valve that can freely adjust the supply pressure of pressurized fluid to be supplied according to a control signal, there is an electromagnetic flow control system whose main parts are diagrammatically shown in FIG. 4(a). A set of two valves is arranged in the pressurized fluid flow path as shown in the operation explanatory diagram of FIG. There is one that allows the fluid supply pressure to be adjusted freely.

ここで、これら電磁式流量tIIIl[l弁は、制御信
号に関連して電磁石11に生起される電磁力により、絞
り調整板13を弁座部材14の方向に引き付け、球状の
弁体12を流通する加圧流体の有するエネルギーに抗し
て変位させてその流量を調整するものであり、第4図(
b)に示した装置では、図示しない操作圧力源からから
導入口15を介して導入される加圧流体の導入量を、一
方の流量制御弁1’Oaによって調整し、導入され排出
口16から排出される加圧流体の排出量を他方の流量i
、II Ill弁10bによりそれぞれ調整するもので
ある。
Here, these electromagnetic flow rate tIIIl [l valves attract the throttle adjustment plate 13 in the direction of the valve seat member 14 by the electromagnetic force generated in the electromagnet 11 in relation to the control signal, and cause the spherical valve body 12 to flow. The flow rate is adjusted by displacing the pressurized fluid against the energy it has, as shown in Figure 4 (
In the device shown in b), the amount of pressurized fluid introduced from an operating pressure source (not shown) through the inlet 15 is adjusted by one flow control valve 1'Oa, and the amount of pressurized fluid introduced from the outlet 16 is adjusted by one flow control valve 1'Oa. The discharge amount of the pressurized fluid to be discharged is the other flow rate i
, II and Ill are respectively adjusted by valves 10b.

それゆえ、各電磁式流量制御弁を、図示しない制御手段
により互いに逆作動、言い換えれば一方の制御弁が開か
れる時には、他方の制御弁が閉じられるよう作動させる
ことにより、これら制御弁間の流路に連通させた供給口
17を介して他の機器に供給される加圧流体の供給圧を
自由に調整することができる。なお符号18は、供給す
べき加圧流体の供給圧を検知する圧力センサを収容する
収容孔である。
Therefore, the electromagnetic flow control valves are operated in opposite directions to each other by a control means (not shown), in other words, when one control valve is opened, the other control valve is closed, so that the flow between these control valves is controlled. The supply pressure of the pressurized fluid supplied to other equipment via the supply port 17 communicated with the passage can be freely adjusted. Note that reference numeral 18 is an accommodation hole that accommodates a pressure sensor that detects the supply pressure of the pressurized fluid to be supplied.

(発明が解決しようとする問題点) しかしながら、一般に、電磁式流量制御弁の電磁石に加
えられる入力信号と、生起される電磁力とは、ヒストリ
シスの関係があり、たとえば、加圧流体の排出側制御弁
の電磁石に加えられる電気信号を11その電磁石に生起
される電磁力を「Ou(とじ、その関係を図示すると第
5図(a )のようになる。また同様に、加圧流体導入
側制御弁の電磁石に加えられる電気信号と、電磁力との
関係を第5図(b)に示す。
(Problem to be Solved by the Invention) However, in general, there is a hysteresis relationship between the input signal applied to the electromagnet of the electromagnetic flow control valve and the electromagnetic force generated. The electric signal applied to the electromagnet of the control valve is expressed as 11, and the electromagnetic force generated in the electromagnet is expressed as ``Ou''.The relationship is illustrated in Figure 5 (a). The relationship between the electric signal applied to the electromagnet of the control valve and the electromagnetic force is shown in FIG. 5(b).

このため、これら図から明らかなように、各制御弁の電
磁石に加えられる電気信号1に対し、供給016から供
給される加圧流体の圧力pが一定の入力信号に対し、第
5図(C)に示すように、ある幅をもって変動すると言
う問題があった。
Therefore, as is clear from these figures, for the electric signal 1 applied to the electromagnet of each control valve, the pressure p of the pressurized fluid supplied from the supply 016 is constant, as shown in Fig. 5 (C ), there was a problem in that it fluctuated within a certain range.

この問題は、設定圧力と供給圧力との偏差がなくなるよ
う、フィードバック制御を行なっても、通常は解決され
るものではない。
This problem is usually not solved even if feedback control is performed to eliminate the deviation between the set pressure and the supply pressure.

本発明は、このような問題に鑑みてなされたものであり
、加圧流体の供給圧力に変動を生ずることなく、安定し
た状態で加圧流体を供給することのできるサーボ・バル
ブを提供することを目的とする。
The present invention has been made in view of such problems, and an object of the present invention is to provide a servo valve that can supply pressurized fluid in a stable state without causing fluctuations in the supply pressure of pressurized fluid. With the goal.

(問題点を解決するための手段) この目的を達成するため本発明サーボ・バルブは、とく
に、流量制御弁を制御する制御信号に、1〜3KHzの
電気信号を重畳させる発振回路を設けてなる。
(Means for solving the problem) In order to achieve this object, the servo valve of the present invention is provided with an oscillation circuit that superimposes an electric signal of 1 to 3 KHz on the control signal that controls the flow control valve. .

(作 用) それゆえ、それぞれの電磁式流量制御弁に加えられる制
御信号には、1〜3KIhの周波数成分が重畳すること
になる。このため各制御弁の電磁石への入力信号は、微
小な時間間隔で見た場合に、基準となるべき値のまわり
で増減を繰返すが、このことにより入力信号と電磁石に
生起される電磁力とのヒステリシスをなくすことができ
るので、供給圧力Pは、基準となるべき入力信号と線形
関係になる。つまり、制御信号に対し、各制御弁の弁開
度を線形関係に維持しつつ調整できることになり、供給
圧力を安定して供給することができる。
(Function) Therefore, a frequency component of 1 to 3 KIh is superimposed on the control signal applied to each electromagnetic flow control valve. For this reason, the input signal to the electromagnet of each control valve repeatedly increases and decreases around the reference value when viewed at minute time intervals, but this causes the input signal and the electromagnetic force generated in the electromagnet to Since the hysteresis of can be eliminated, the supply pressure P has a linear relationship with the input signal that is to be the reference. In other words, the valve opening degree of each control valve can be adjusted while maintaining a linear relationship with respect to the control signal, and supply pressure can be stably supplied.

(実施例) 以下図面を参照して□本発明サーボ・バルブについて詳
述する。
(Example) The servo valve of the present invention will be described in detail below with reference to the drawings.

第1図(a )は、本発明サーボ・バルブの一部を示す
斜視図であり、第4図に示した部分と同様の部分は、同
一の符号で示す。
FIG. 1(a) is a perspective view showing a part of the servo valve of the present invention, and parts similar to those shown in FIG. 4 are designated by the same reference numerals.

符号15は、加圧流体の導入口を、11はその供給口を
、そして19は収容孔内に収容した圧力センサである。
Reference numeral 15 denotes a pressurized fluid introduction port, 11 a supply port thereof, and 19 a pressure sensor housed in a housing hole.

また20a 、 20bは、電磁式流量制御弁の弁体1
4をそれぞれ収容する収容孔であり、21はバルブ・ハ
ウジング10に一体に固着され、電磁式流量制御弁の絞
り調整板13側の開口部を閉止する蓋部材を、22は圧
力センサに関係したリード線を、23はそれぞれの電磁
式流m ii制御弁の電磁石11に電気信号を加えるた
めのリード線を示す。なお、本実施例では、圧力センサ
19を、バルブ・ハウジング10に一体的に設けたが、
これに限定されるものでなく、またその型式も限定され
るものでない。
Further, 20a and 20b are the valve bodies 1 of the electromagnetic flow control valve.
4, 21 is a lid member that is integrally fixed to the valve housing 10 and closes the opening on the throttle adjustment plate 13 side of the electromagnetic flow control valve, and 22 is a lid member that is related to a pressure sensor. 23 indicates a lead wire for applying an electric signal to the electromagnet 11 of each electromagnetic flow control valve. In addition, in this embodiment, the pressure sensor 19 is provided integrally with the valve housing 10, but
The present invention is not limited to this, and the type thereof is not limited either.

リード線23は、供給口17から供給されるべき加圧流
体の圧力の大きざに関連して加えられる設定信号eに応
じて、各制御弁の弁開度を調整し互いに逆作動させる制
御手段Aに接続されている。また制御手段Aは、圧力セ
ンサ19により検知した実際の供給圧力pと、設定信号
eに対応する設定圧力とを比較し、その供給圧力が設定
圧力と実質的に等しくなるよう、フィードバック制御す
る。
The lead wire 23 is a control means that adjusts the valve opening degrees of each control valve and operates them in opposite directions according to a setting signal e applied in relation to the magnitude of the pressure of the pressurized fluid to be supplied from the supply port 17. Connected to A. Further, the control means A compares the actual supply pressure p detected by the pressure sensor 19 with a set pressure corresponding to the setting signal e, and performs feedback control so that the supply pressure becomes substantially equal to the set pressure.

そして本発明サーボ・バルブでは、その設定信号eに応
じてそれぞれの電磁式流量制御弁に加えられる制御信号
に1〜3 K Ilzの電気信号を重畳させる発振回路
Bを設ける。なお発振回路としては、通常に市販されて
いる装置を用いることができ、また制御手段に一体に構
成することができる。
The servo valve of the present invention is provided with an oscillation circuit B that superimposes an electric signal of 1 to 3 K Ilz on the control signal applied to each electromagnetic flow control valve in accordance with the setting signal e. Note that as the oscillation circuit, a commonly available device on the market can be used, and it can also be configured integrally with the control means.

本発明サーボ・バルブの好適な実施例では、たとえば第
1図(b)に、ブロック線図で示したように、設定信号
eに関連して制御手段Aが、各制御弁10a 、 10
bに加えられる信号に1〜3 K llzの周波数の電
気信号を重畳させる構成としたものである。なお図中の
符号VOは、それぞれの電磁式流j制御弁に加えられる
初期信号を表わし、制御弁10a 、 10bの初期設
定状態を規定する。
In a preferred embodiment of the servo-valve according to the invention, as shown in the block diagram, for example in FIG.
The configuration is such that an electrical signal with a frequency of 1 to 3 Kllz is superimposed on the signal applied to the signal b. Note that the symbol VO in the figure represents an initial signal applied to each electromagnetic flow j control valve, and defines the initial setting state of the control valves 10a and 10b.

ざらに、第2図に示した他の実施例では、第1図(b)
に示した実施例と異なり、設定信号eに1〜3KHzの
電気信号を重畳させ、この電気信号が重畳した設定信号
を制御手段Aに入力させる構成としたものである。
Roughly speaking, in the other embodiment shown in FIG. 2, FIG. 1(b)
Unlike the embodiment shown in 1, this embodiment has a configuration in which an electrical signal of 1 to 3 KHz is superimposed on the setting signal e, and the setting signal on which this electrical signal is superimposed is inputted to the control means A.

また、第3図に示した別の実施例では、圧力センサ19
から制御手段Aにフィードバックされるフィードバック
信号に1〜3 K llzの電気信号を重畳させる構成
としたものである。
In another embodiment shown in FIG.
The configuration is such that an electric signal of 1 to 3 Kllz is superimposed on the feedback signal fed back from the control means A to the control means A.

このように構成することにより、いずれの実施例におい
ても、それぞれの電磁式流量制御弁に加えられるそれら
弁に対する制御信号に1〜3 K H2の周波数の電気
信号を重畳させることができ、制御信号に応じて一意に
電磁力を設定することができ、入力信号と電磁力との間
のヒステリシスの問題を解決することができる。
With this configuration, in any of the embodiments, an electric signal with a frequency of 1 to 3 KH2 can be superimposed on the control signal applied to each electromagnetic flow control valve, and the control signal The electromagnetic force can be uniquely set according to the input signal, and the problem of hysteresis between the input signal and the electromagnetic force can be solved.

ちなみに、加圧流体の導入圧力POが59X10’Pa
、供給すべき圧力Pが4,9X 10’ 〜49X 1
0’Pa、設定信号1〜5Vのサーボ・バルブに対し本
発明を適用したところ、重畳すべき電気′信号を、その
振幅が設定信号の最大設定値の1/40〜3の範囲にあ
り、またデユーティ比が5〜30%の範囲にあるよう選
択した時に、顕著な効果があり、供給すべき加圧流体の
圧力変動を従来装置に比べて10%以内に抑止すること
ができる。
By the way, the introduction pressure PO of pressurized fluid is 59X10'Pa.
, the pressure P to be supplied is 4.9X 10' to 49X 1
When the present invention is applied to a servo valve with a setting signal of 0'Pa and a setting signal of 1 to 5V, the electric signal to be superimposed has an amplitude in the range of 1/40 to 3 of the maximum setting value of the setting signal. Further, when the duty ratio is selected to be in the range of 5 to 30%, a remarkable effect is obtained, and pressure fluctuations in the pressurized fluid to be supplied can be suppressed to within 10% compared to conventional devices.

なお、本発明はこれら実施例に限定されるものでなく、
電磁式流量制御弁を2対以上有するサーボ・バルブにも
適用することができ、また各電磁式流量制御弁の電磁石
に、直接1〜3 K Ilzの電気信号を加えても良く
、種々の変更が可能である。
Note that the present invention is not limited to these examples,
It can also be applied to servo valves that have two or more pairs of electromagnetic flow control valves, and an electrical signal of 1 to 3 K Ilz may be applied directly to the electromagnet of each electromagnetic flow control valve, and various modifications can be made. is possible.

(発明の効果) 以上詳述したように、本発明サーボ・バルブによれば、
電磁式流量制御弁を少なくとも1対有するサーボ・バル
ブの、各流m制御弁に加えられる制御信号に1〜3KH
2の電気信号を重畳させることにより、制御信号と各流
m制御弁の電磁石に生起される電磁力とが線形関係にあ
るようすることができ、加圧流体を、その供給圧力に脈
動を生じることなく、安定して供給することができる。
(Effects of the Invention) As detailed above, according to the servo valve of the present invention,
A servo valve having at least one pair of electromagnetic flow control valves has a control signal of 1 to 3 KH applied to each flow control valve.
By superimposing the electrical signals in step 2, it is possible to have a linear relationship between the control signal and the electromagnetic force generated in the electromagnet of each flow m control valve, causing pulsations in the supply pressure of the pressurized fluid. It is possible to provide a stable supply without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a >は、本発明サーボ・バルブの一部を示す
外観斜視図、 第1図(b)は、本発明サーボ・バルブの一実施例の制
御回路を示すブロック線図、 第2図及び第3図は、本発明サーボ・バルブの他の実施
例の制御回路を示すブロック線図、第4図(a )及び
(b)は、本発明サーボ・バルブに好適な電磁式流量制
御弁及びその弁を用いたサーボ・バルブのそれぞれの要
部を示す線図、第5図(a )及び(b)は、第4図(
a )に示す電磁式流量刺りり弁の電磁石に加えられる
電気信号と生起される電磁力との関係を示す説明図であ
り、 第5図(C)は、第4図(b )に示すサーボ・バルブ
に加えられる電気信号と、供給圧力との関係を示す説明
図である。 10a 、 10b・・・電磁式流量制御弁11・・・
電磁石     12・・・弁体13・・・絞り調整板
   14・・・弁座部材15・・・導入0    1
6・・・排出口11・・・供給口     18・・・
収容孔19・・・圧力センサ   20a 、 20b
・・・収容孔21・・・蓋部材      22.23
・・・リード線A・・・制御手段    B・・・発振
回路第2図 第3図 第4図 (b)
FIG. 1(a) is an external perspective view showing a part of the servo valve of the present invention; FIG. 1(b) is a block diagram showing a control circuit of an embodiment of the servo valve of the present invention; 3 are block diagrams showing control circuits of other embodiments of the servo valve of the present invention, and FIGS. 4(a) and 4(b) are electromagnetic flow control circuits suitable for the servo valve of the present invention. Diagrams showing the main parts of a valve and a servo valve using the valve, FIGS. 5(a) and 5(b), are similar to FIG.
FIG. 5(C) is an explanatory diagram showing the relationship between the electric signal applied to the electromagnet of the electromagnetic flow control valve shown in FIG. 4(b) and the electromagnetic force generated; FIG. - It is an explanatory diagram showing the relationship between the electric signal applied to the valve and the supply pressure. 10a, 10b...electromagnetic flow control valve 11...
Electromagnet 12...Valve body 13...Aperture adjustment plate 14...Valve seat member 15...Introduction 0 1
6...Discharge port 11...Supply port 18...
Accommodation hole 19...pressure sensor 20a, 20b
... Accommodation hole 21 ... Lid member 22.23
... Lead wire A ... Control means B ... Oscillation circuit Figure 2 Figure 3 Figure 4 (b)

Claims (1)

【特許請求の範囲】[Claims] 1.少なくとも1対の電磁式流量制御弁と、これら電磁
式流量制御弁を互いに逆作動させる制御手段とを具え、
一方の電磁式流量制御弁が加圧流体の導入量を調整し、
他方の電磁式流量制御弁が導入した加圧流体の排出量を
調整し、供給すべき加圧流体の供給圧力を制御信号に応
じて調整自在としたサーボ・バルブにおいて、 その制御信号に1〜3KHzの電気信号を重畳させる発
振回路を設け、加圧流体を安定して供給することを特徴
とするサーボ・バルブ。
1. comprising at least one pair of electromagnetic flow control valves and control means for operating the electromagnetic flow control valves in opposite directions,
One electromagnetic flow control valve adjusts the amount of pressurized fluid introduced,
In a servo valve that adjusts the discharge amount of the pressurized fluid introduced by the other electromagnetic flow control valve and freely adjusts the supply pressure of the pressurized fluid to be supplied according to the control signal, A servo valve that is equipped with an oscillation circuit that superimposes a 3KHz electrical signal and stably supplies pressurized fluid.
JP11047986A 1986-05-16 1986-05-16 Servo valve Pending JPS62270805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11047986A JPS62270805A (en) 1986-05-16 1986-05-16 Servo valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11047986A JPS62270805A (en) 1986-05-16 1986-05-16 Servo valve

Publications (1)

Publication Number Publication Date
JPS62270805A true JPS62270805A (en) 1987-11-25

Family

ID=14536756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11047986A Pending JPS62270805A (en) 1986-05-16 1986-05-16 Servo valve

Country Status (1)

Country Link
JP (1) JPS62270805A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084404A (en) * 1983-06-02 1985-05-13 Seiichi Ito Servo valve

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6084404A (en) * 1983-06-02 1985-05-13 Seiichi Ito Servo valve

Similar Documents

Publication Publication Date Title
JP3801570B2 (en) Flow control device
CN100454200C (en) Relative pressure control system and relative flow control system
US4580598A (en) Servo valve
JPH03199790A (en) Pressure adjusting device
US3709253A (en) Valve control with dither
JPS62270805A (en) Servo valve
EP0294072B1 (en) Control device for regulating flow of pressurized gas between two pressurized gas devices
CA2435225C (en) Method and apparatus for multiple-input-multiple-output of a valve/actuator plant
US20170125148A1 (en) Method and apparatus for controlling a solenoid valve
JPH0586157B2 (en)
WO1981000064A1 (en) Pneumatic diaphragm valve pulsator
JP2005128816A (en) Fluid regulator
EP1081570A1 (en) Fluid flow regulator and control method
JPH0624667Y2 (en) Gas combustion output proportional control device
JPH0426897Y2 (en)
JP3074709B2 (en) Flow control valve
JPH0750617Y2 (en) Solenoid control valve
JPS6275223A (en) Air pressure setter
JP2841958B2 (en) Fuzzy controller and hot water mixing controller
JPH04205202A (en) Field device
JPH0419316Y2 (en)
JP2827571B2 (en) Hot water mixing control device
JP3064477B2 (en) Hot water mixing control device
JP2962043B2 (en) Hot water mixing control device
JPS60104878A (en) Flow control device of gas