JPS6227067B2 - - Google Patents

Info

Publication number
JPS6227067B2
JPS6227067B2 JP58119893A JP11989383A JPS6227067B2 JP S6227067 B2 JPS6227067 B2 JP S6227067B2 JP 58119893 A JP58119893 A JP 58119893A JP 11989383 A JP11989383 A JP 11989383A JP S6227067 B2 JPS6227067 B2 JP S6227067B2
Authority
JP
Japan
Prior art keywords
diazomethane
temperature
methylene chloride
derivative
diazomethane derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58119893A
Other languages
Japanese (ja)
Other versions
JPS6011449A (en
Inventor
Yukitomo Kono
Yoshihiko Hirayama
Tamio Sakai
Yoshihisa Shiraishi
Shigeya Saijo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Priority to JP58119893A priority Critical patent/JPS6011449A/en
Publication of JPS6011449A publication Critical patent/JPS6011449A/en
Publication of JPS6227067B2 publication Critical patent/JPS6227067B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式() (式中R1およびR2は同じであつても異なつていて
もよい置換または非置換の芳香族残基である)で
表わされるジアゾメタン誘導体の保存方法に関す
る。 一般式()で示されるジアゾメタン誘導体
は、有機化合物のカルボキシル基部位の保護基と
して有用であることが知られている。 ジアゾメタン誘導体は非常に分解しやすいこと
が知られている。例えば、ジフエニルジアゾメタ
ンの場合、室温2日間放置するとケタジンに分解
し、純度は元の75%にも下るので、この化合物は
取出後、直ちに次の反応に用いるべきであるとし
ている。(Organic Synthesis Collective
Volume、p532) このように非常に分解しやすいジアゾメタン誘
導体としては、特に工業的製品として扱う場合、
生産から使用されるまでの必要最小限の期間、設
備的にもコスト的にもできるだけ簡単かつ兼価に
安定性を維持できる方法を確立しておく必要があ
る。しかしながら従来これらに関するデータはな
い。 本発明人等はジアゾメタン誘導体の保存方法に
関して鋭意検討した結果以下の知見を得た。 純品のジフエニルジアゾメタンの場合は、結晶
状態でも特定温度以上では分解速度が大となり、
溶融状態になると極めて早くなることを見出し
た。また、一般に過酸化物のような不安定物質は
非反応性溶媒中では希薄である程安定であるが、
ジフエニルジアゾメタンは特定溶媒において特定
範囲の温度では逆に濃厚である程安定であり、さ
らに飽和ないし過飽和状態で結晶が析出し、スラ
リー状態となる分解速度が顕著に小さくなること
を見出した。これらの発見を基礎にして、溶媒、
溶液の濃度および保存温度について詳細に検討
し、本発明を完成するに至つた。 即ち、本発明は一般式() (式中R1およびR2は同じであつても異なつていて
もよい置換または非置換の芳香族残基である)で
表わされるジアゾメタン誘導体を塩化メチレン溶
液として保存するに当り、該ジアゾメタン誘導体
の濃度が25〜90wt%の範囲において−25〜15℃
の温度に保持したときに、ジアゾメタン誘導体が
少くとも一部は結晶として存在させたことを特徴
とするジアゾメタン誘導体の保存方法である。 本発明に使用される一般式()のジアゾメタ
ン誘導体としては具体的には例えば、ジフエニル
ジアゾメタン、p−メチルジフエニルジアゾメタ
ン、p−クロルジフエニルジアゾメタン、p−ニ
トロジフエニルジアゾメタン、p・p′−ジクロル
ジフエニルジアゾメタンなどがあげられる。これ
らのジアゾメタン誘導体はどのような方法でつく
られたものでもよいが、できるだけ高純度、高収
量で得られる方法によるものが望ましい。 本発明に使用する溶媒としては塩化メチレンに
限定される。塩化メチレンはジアゾメタン誘導体
に対して温度差による溶解度差が大であり、高温
になるとよく溶解し、低温になると著しく小とな
る。このことが特定温度範囲における高濃度溶液
ないし結晶含有高濃度スラリー液の推持を容易に
するものであり、従つて本発明の保存方法を有利
にする。また低沸点(39.8℃)なので保存終了
後、塩化メチレン分離に際し、回収容量でかつジ
アゾメタン誘導体に対する熱履歴を最短に留めて
分解を防止するに好都合であり、さらに引火性の
ないことがこれらの操業を安全、有利に導くもの
である。 本発明の方法においてジアゾメタン誘導体を塩
化メチレンを溶液として保存するに当り、該ジア
ゾメタン誘導体の濃度が25〜90wt%の範囲にお
いて、−25〜15℃の温度、好ましくは濃度40wt%
以上で−20〜10℃の温度で保存する。完全溶液状
態では同温度の場合は濃度が低下する程、分解速
度が早くなり、濃度40wt%以下ではその低下が
顕著となつて濃度25wt%以下では実質的な安定
保存とは云えない。濃度が一定の場合10℃を超え
ると分解速度が早くなり、15℃を超えると顕著に
なる。ジアゾメタン誘導体が飽和ないし過飽和の
状態で一部でも結晶が存在するようになると完全
溶液に比較して顕著に安定性が向上し、結晶含量
が増すに従い、かつ温度が低下する程安定とな
る。 本発明の保存方法を実施するにはジアゾメタン
誘導体の結晶に塩化メチレンの所要量を添加混合
して所要温度に保持するか、または塩化メチレン
中でジアゾメタン誘導体を合成し、不純物を除い
た反応液を所定条件に保存するなどの方法があ
る。 本発明の保存方法の対象とするジアゾメタン誘
導体は既述のとおりどのような方法で製造された
ものでもよいが、高純度品であることが望まし
い。製造方法としては数多くの公知方法があるが
本発明人らの発明による電解二酸化マンガンを用
いる方法が好ましい。(特願昭56−157631、特願
昭58−56339)中でも、ジアゾメタン誘導体の少
くなくとも一部は結晶として存在させた塩化メチ
レン溶液保存の場合には後者の方法が適する。 特願昭58−56339号発明の方法は一般式() (式中R1およびR2は前記一般式()に同じであ
る)で表わされるヒドラゾン誘導体を塩化メチレ
ン中で電解二酸化マンガンを用いて酸化して一般
式()で表わされるジアゾメタン誘導体を製造
する方法であり、最も好ましいのは塩化メチレン
中で()式に示されるヒドラゾン誘導体の含量
を40〜70wt%とした後酸化することである。 ここに使用される電解二酸化マンガンは電解法
によつて製造された活性のあるγ型のものであ
り、ヒドラゾン誘導体1モルに対して有効酸素量
換算で2〜4モル、適切には2.5〜3.5モルの範囲
で使用される。 この範囲以下では反応が完結されないし、この
範囲以上では更に反応が進み主にベンゾフエノン
誘導体の副生成が著しくいずれの場合も収率、純
度において不良となつて好ましくない。 溶媒としては塩化メチレンに限定されている
が、その理由は塩化メチレンが原料ヒドラゾン誘
導体および生成したジアゾメタン誘導体に対して
非反応性であり、かつこれらをよく溶解させ、高
濃度で反応させることができること、またその比
重が大きいので二酸化マンガンの分散性がよいこ
と、低毒性であり通常の工業的使用条件では非引
火性であること、その沸点が39.8℃なので、反応
温度がこの沸点以上には上昇せずジアゾメタン誘
導体の熱による分解や、反応の暴走が防げるこ
と、溶媒回収の際、回収が容易であること等にお
いて他の溶媒、例えばヘキサン、ヘプタン、石油
エーテル等に比して格段に優れる。 溶媒濃度はヒドラゾン誘導体−塩化メチレンの
2成分系でヒドラゾン誘導体濃度を40〜70wt%
の範囲とする。40wt%以下で反応させた場合に
は、反応後の濃縮工程に時間がかかりすぎ、ジア
ゾメタン誘導体の分解が進み純度および収率が低
下し、70wt%以上では原体の濃縮は容易である
が、酸化剤の濾塊に付着するジアゾメタン誘導体
が多くなり、その洗浄に手間を要する。 反応は式()のヒドラゾン誘導体を塩化メチ
レンにその含量が40〜70wt%になるように分散
し、次いで電解二酸化マンガンを添加し、0〜30
℃の温度で進行させる。電解二酸化マンガンは一
度に加えてもよいが、反応熱による昇温を考慮し
30℃を超えない範囲に添加時の温度を設定しなけ
ればならない。好ましくは0〜30℃の温度範囲に
保持可能な速度で電解二酸化マンガンを逐次添加
することである。反応は0〜30℃で進行するが0
℃以下では反応速度が遅く、30℃以上、特に35℃
以上では生成物のジアゾメタン誘導体の分解が著
しい。好ましくは5〜25℃の温度範囲である。特
願昭58−56339号発明はかかる構成から成つてい
るために特に工業的規模でジアゾメタン誘導体を
製造する場合、反応工程を安全に行い、後処理工
程においても分解を抑え、ジアゾメタン誘導体を
高純度に高収率で得ることができ、かつ溶媒が塩
化メチレンであるので、反応終了後、特定温度に
保持するだけでジアゾメタン誘導体にとつても最
も安定な保存状態を得ることになり、該発明の製
造方法と組み合わせることによつて本発明のジア
ゾメタン誘導体の保存方法は最も効率の高い、経
済的にもすぐれた方法とすることができる。 以下、実施例により本発明保存方法の効果を明
らかにするが本発明は本例に限るものではない。
実施例中「部」は重量部を示す。 参考例 結晶1・1′−ジフエニルジアゾメタン(純度
95.5%)をそれぞれ50g宛、−25℃、0℃、およ
び10℃の恒温室で5日間保存した。保存後、純度
を測定し、分解率を求めたところ、それぞれ0.2
%以下で安定であつた。また、0℃で保存中のも
のは40日経過しても分解率1.1%で極めて安定に
保存できた。 これに対して、25℃で保存したものは5日で
23.5%と急激に分解していた。 実施例 塩化メチレン43部にベンゾフエノンヒドラゾン
58部を分散させ、これに有効酸素91.0%の電解二
酸化マンガン58部を、系内温度を20〜25℃に保ち
ながら、2時間を要して逐次加え、加え終つてか
ら2時間撹拌した。次いで反応液を濾過し、濾塊
を少量の塩化メチレンで洗つて、母液と合わして
分析し、濃度40.0wt%の1・1′−ジフエニルジア
ゾメタン溶液を得た。この溶液の一部にさらに塩
化メチレンを加え、1・1′−ジフエニルジアゾメ
タンの20wt%および30wt%溶液を調製した。 また、別に40.0wt%溶液を減圧下20℃以下で塩
化メチレンを回収し、濃度50wt%、70wt%およ
び90wt%の1・1′−ジフエニルジアゾメタン溶液
を調製した。 これらの溶液をそれぞれ−25℃、−15℃、0
℃、10℃および25℃の各保存室に5日間保存し、
各溶の結晶の析出状態および分解率を求め、表1
に示した。表中−、△、×は溶液の状態を表し、−
は溶液で結晶なし、△は結晶の浮遊状態、×はス
ラリー状態を示す。
The present invention is based on the general formula () The present invention relates to a method for preserving a diazomethane derivative represented by the formula (wherein R 1 and R 2 are substituted or unsubstituted aromatic residues which may be the same or different). It is known that the diazomethane derivative represented by the general formula () is useful as a protecting group for the carboxyl group of an organic compound. It is known that diazomethane derivatives are extremely easy to decompose. For example, in the case of diphenyldiazomethane, if it is left at room temperature for two days, it will decompose into ketazine, and the purity will drop to 75% of its original value, so this compound should be used in the next reaction immediately after being taken out. (Organic Synthesis Collective
Volume, p532) As a diazomethane derivative that is extremely easy to decompose, especially when handled as an industrial product,
It is necessary to establish a method that can maintain stability as simply and cost-effectively as possible in terms of equipment and cost for the minimum necessary period from production to use. However, there is currently no data regarding these. The inventors of the present invention have made the following findings as a result of extensive studies regarding the preservation method of diazomethane derivatives. In the case of pure diphenyldiazomethane, even in its crystalline state, the decomposition rate increases above a certain temperature.
It has been found that the process becomes extremely rapid once it reaches a molten state. Additionally, unstable substances such as peroxides are generally more stable in non-reactive solvents as they are diluted.
It has been found that the more concentrated diphenyldiazomethane is in a specific solvent and at a temperature within a specific range, the more stable it is, and furthermore, in a saturated or supersaturated state, crystals precipitate and the rate of decomposition into a slurry state is significantly reduced. Based on these discoveries, solvents,
The present invention was completed after a detailed study on the concentration and storage temperature of the solution. That is, the present invention is based on the general formula () (In the formula, R 1 and R 2 are substituted or unsubstituted aromatic residues which may be the same or different.) When storing the diazomethane derivative as a methylene chloride solution, the diazomethane derivative -25 to 15℃ in the range of concentration 25 to 90wt%
A method for preserving a diazomethane derivative, characterized in that at least a portion of the diazomethane derivative exists as a crystal when the diazomethane derivative is maintained at a temperature of . Specific examples of the diazomethane derivatives of the general formula () used in the present invention include diphenyldiazomethane, p-methyldiphenyldiazomethane, p-chlorodiphenyldiazomethane, p-nitrodiphenyldiazomethane, p.p' - Dichlordiphenyldiazomethane and the like. These diazomethane derivatives may be produced by any method, but it is preferable to use a method that allows them to be obtained with as high purity and yield as possible. The solvent used in the present invention is limited to methylene chloride. Methylene chloride has a large solubility difference with respect to diazomethane derivatives due to temperature differences; it dissolves well at high temperatures, and becomes significantly smaller at low temperatures. This facilitates the maintenance of a highly concentrated solution or a highly concentrated slurry containing crystals within a specific temperature range, and therefore makes the preservation method of the present invention advantageous. In addition, its low boiling point (39.8°C) makes it convenient to prevent decomposition by minimizing the thermal history of the diazomethane derivative at the recovery capacity when separating methylene chloride after storage, and its non-flammability makes it suitable for these operations. This will lead to safety and advantage. In the method of the present invention, when storing the diazomethane derivative as a solution in methylene chloride, the concentration of the diazomethane derivative is in the range of 25 to 90 wt% at a temperature of -25 to 15°C, preferably at a concentration of 40 wt%.
Store at a temperature of -20 to 10℃. In a complete solution state, at the same temperature, the lower the concentration, the faster the rate of decomposition, and at a concentration of 40 wt% or less, the decrease becomes remarkable, and at a concentration of 25 wt% or less, it cannot be said that storage is substantially stable. When the concentration is constant, the rate of decomposition increases when the temperature exceeds 10°C, and becomes noticeable when the temperature exceeds 15°C. When the diazomethane derivative is saturated or supersaturated and some crystals are present, the stability is significantly improved compared to a complete solution, and as the crystal content increases and the temperature decreases, the stability becomes more stable. To carry out the preservation method of the present invention, the required amount of methylene chloride is added to and mixed with the crystals of the diazomethane derivative and maintained at the required temperature, or the diazomethane derivative is synthesized in methylene chloride and the reaction solution from which impurities are removed is mixed. There are methods such as saving it under predetermined conditions. The diazomethane derivative to be subjected to the preservation method of the present invention may be produced by any method as described above, but it is preferably a highly purified product. Although there are many known manufacturing methods, the method using electrolytic manganese dioxide invented by the present inventors is preferred. (Japanese Patent Application No. 56-157631, Japanese Patent Application No. 58-56339) Among these, the latter method is suitable for storage in a methylene chloride solution in which at least a portion of the diazomethane derivative exists as crystals. The method of the invention in Japanese Patent Application No. 58-56339 is based on the general formula () (wherein R 1 and R 2 are the same as in the general formula ()) is oxidized using electrolytic manganese dioxide in methylene chloride to produce a diazomethane derivative represented by the general formula (). The most preferred method is to adjust the content of the hydrazone derivative represented by the formula () to 40 to 70 wt% in methylene chloride, and then oxidize it. The electrolytic manganese dioxide used here is an active γ type produced by an electrolytic method, and has an effective oxygen amount of 2 to 4 moles, preferably 2.5 to 3.5 moles, per mole of the hydrazone derivative. Used in molar range. Below this range, the reaction will not be completed, and above this range, the reaction will proceed further and produce significant by-products, mainly benzophenone derivatives, which are undesirable since the yield and purity will be poor in either case. The solvent is limited to methylene chloride, because methylene chloride is non-reactive with the raw material hydrazone derivative and the produced diazomethane derivative, and can dissolve them well and react at high concentrations. Also, due to its large specific gravity, manganese dioxide has good dispersibility, has low toxicity and is non-flammable under normal industrial conditions, and has a boiling point of 39.8℃, so the reaction temperature can rise above this boiling point. It is much superior to other solvents such as hexane, heptane, petroleum ether, etc. in that it can prevent thermal decomposition of the diazomethane derivative and runaway reaction, and that it can be easily recovered when recovering the solvent. The solvent concentration is a two-component system of hydrazone derivative and methylene chloride, with a hydrazone derivative concentration of 40 to 70 wt%.
The range shall be . When the reaction is carried out at 40 wt% or less, the concentration step after the reaction takes too much time, and the diazomethane derivative decomposes, resulting in a decrease in purity and yield; at 70 wt% or more, it is easy to concentrate the raw material, but A large amount of diazomethane derivative adheres to the filter cake of the oxidizing agent, and it takes time and effort to clean it. In the reaction, the hydrazone derivative of formula () is dispersed in methylene chloride so that its content is 40 to 70 wt%, and then electrolytic manganese dioxide is added to
Proceed at a temperature of °C. Electrolytic manganese dioxide may be added all at once, but take into consideration the temperature rise due to reaction heat.
The temperature at the time of addition must be set within a range that does not exceed 30°C. Preferably, electrolytic manganese dioxide is added sequentially at a rate that can maintain the temperature in the 0 to 30°C range. The reaction proceeds at 0-30℃, but 0
The reaction rate is slow below ℃, and above 30℃, especially 35℃.
Above this, the diazomethane derivative product is significantly decomposed. Preferably the temperature range is 5 to 25°C. The invention of Japanese Patent Application No. 58-56339 has such a structure, so that especially when producing diazomethane derivatives on an industrial scale, the reaction process can be carried out safely, decomposition can be suppressed in the post-treatment process, and the diazomethane derivatives can be produced with high purity. can be obtained in high yield, and since the solvent is methylene chloride, the most stable storage condition can be obtained for diazomethane derivatives simply by keeping them at a specific temperature after the reaction is completed. By combining it with the production method, the method for preserving diazomethane derivatives of the present invention can be made into the most efficient and economically superior method. Hereinafter, the effects of the preservation method of the present invention will be clarified through examples, but the present invention is not limited to these examples.
In the examples, "parts" indicate parts by weight. Reference example Crystal 1,1'-diphenyldiazomethane (purity
95.5%) was stored in thermostatic chambers at -25°C, 0°C, and 10°C for 5 days. After storage, the purity was measured and the decomposition rate was determined to be 0.2.
It was stable at less than %. Furthermore, the product stored at 0°C was extremely stable with a decomposition rate of 1.1% even after 40 days. On the other hand, those stored at 25℃ can be stored in 5 days.
It decomposed rapidly at 23.5%. Example 43 parts of methylene chloride and benzophenone hydrazone
To this, 58 parts of electrolytic manganese dioxide containing 91.0% effective oxygen were added successively over a period of 2 hours while maintaining the system temperature at 20 to 25°C, and after the addition was completed, the mixture was stirred for 2 hours. The reaction solution was then filtered, and the filter cake was washed with a small amount of methylene chloride, combined with the mother liquor, and analyzed to obtain a 1,1'-diphenyldiazomethane solution with a concentration of 40.0 wt%. Methylene chloride was further added to a portion of this solution to prepare 20 wt% and 30 wt% solutions of 1,1'-diphenyldiazomethane. Separately, methylene chloride was recovered from the 40.0 wt% solution under reduced pressure at 20°C or lower to prepare 1,1'-diphenyldiazomethane solutions having concentrations of 50 wt%, 70 wt%, and 90 wt%. These solutions were incubated at −25°C, −15°C, and 0°C, respectively.
℃, 10℃ and 25℃ storage rooms for 5 days,
The precipitation state and decomposition rate of crystals for each solution were determined, and Table 1
It was shown to. In the table, −, △, and × represent the state of the solution, and −
indicates a solution with no crystals, △ indicates a floating state of crystals, and × indicates a slurry state.

【表】 また本例において0℃保冷中のものをさらに、
それぞれ40日まで延長した時の分解率を求めて表
2に示した。
[Table] In addition, in this example, those that are kept cold at 0°C are
The decomposition rates when extended up to 40 days were determined and shown in Table 2.

【表】 本例表1および表2の結果から、1・1′−ジフ
エニルジアゾメタンの塩化メチレン溶液はジアゾ
メタンの結晶が存在する間は非常に安定に保存で
きることがわかる。ただし結晶が存在しても保存
温度が10℃を越えると急に分解が進行し、25℃で
は実質的な保存とは云えない。
[Table] From the results in Tables 1 and 2 of this example, it can be seen that a methylene chloride solution of 1,1'-diphenyldiazomethane can be stored very stably as long as diazomethane crystals exist. However, even if crystals are present, if the storage temperature exceeds 10°C, decomposition will proceed rapidly, and at 25°C it cannot be said to be effectively preserved.

Claims (1)

【特許請求の範囲】 1 一般式() (式中R1およびR2は同じであつても異なつていて
もよい置換または非置換の芳香族残基である) で表わされるジアゾメタン誘導体を塩化メチレン
溶液として保存するに当り、該ジアゾメタン誘導
体の濃度が25〜90wt%の範囲において−25〜15
℃の温度に保持したときに、ジアゾメタン誘導体
が少なくとも一部は結晶として存在させたことを
特徴とするジアゾメタン誘導体の保存方法。
[Claims] 1 General formula () (In the formula, R 1 and R 2 are substituted or unsubstituted aromatic residues which may be the same or different.) When storing the diazomethane derivative represented by the formula as a methylene chloride solution, the diazomethane derivative −25 to 15 at a concentration of 25 to 90 wt%
A method for preserving a diazomethane derivative, characterized in that at least a portion of the diazomethane derivative exists as a crystal when maintained at a temperature of °C.
JP58119893A 1983-06-30 1983-06-30 Storage of diazomethane derivative Granted JPS6011449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58119893A JPS6011449A (en) 1983-06-30 1983-06-30 Storage of diazomethane derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58119893A JPS6011449A (en) 1983-06-30 1983-06-30 Storage of diazomethane derivative

Publications (2)

Publication Number Publication Date
JPS6011449A JPS6011449A (en) 1985-01-21
JPS6227067B2 true JPS6227067B2 (en) 1987-06-12

Family

ID=14772829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58119893A Granted JPS6011449A (en) 1983-06-30 1983-06-30 Storage of diazomethane derivative

Country Status (1)

Country Link
JP (1) JPS6011449A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63270653A (en) * 1987-04-30 1988-11-08 Kohjin Co Ltd Method for storing n,n-dialkylaminopropyl-(meth) acrylamide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J.C.S. PERIN I=1975 *
ORGANIC SYNTHESES,COLLECTIVE=1967 *
REAGENTS FOR ORGANIC SYNTHESIS=1967 *

Also Published As

Publication number Publication date
JPS6011449A (en) 1985-01-21

Similar Documents

Publication Publication Date Title
JPH0684332B2 (en) Method for optical resolution of a-isopropyl-p-chlorophenylacetic acid
JPS5939719A (en) Manufacture of high purity lithium carbonate
JPS6227067B2 (en)
JP4880332B2 (en) Method for producing crystalline L-carnosine zinc complex
EP0177248B1 (en) Process for preparing diazomethane derivative
US4906778A (en) Process for the production of aminoguanidine bicarbonate
KR830001465B1 (en) Isoleucine Purification Method
CA1088556A (en) Continuous oxidation of tetrachlorocatechol to o- chloranil
US4012426A (en) Purification of 1-nitroanthraquinone
JPH09512790A (en) One-step process for producing 4,6-dinitroresorcinol from resorcinol
US3780077A (en) Process for preparing lead (iv)-acetate
JPH0313222B2 (en)
US4758662A (en) Purification of caffeine
US4546203A (en) Facile synthesis of β-hydroxy-β-methylglutaric acid
JP2989698B2 (en) Allantoin purification method
US4762945A (en) Process for the preparation of aspirin peroxide
US2028246A (en) Method of preparing benzoyl persulphide
JPS6011450A (en) Production of diazomethane derivative
US2949468A (en) Process of extracting pyridine carboxylic acids as bisulfates
US4341902A (en) Process for the production of 5-nitro-acet-2,4-xylidine
JPH05194313A (en) Production of 2,6-dihydroxybenzoic acid
US3159673A (en) Separation of 2, 3, 6-trichlorobenzoic acid from a mixture of trichlorobenzoic acids
JPS6267067A (en) Production of 1,1'-peroxydicyclopentylamine
JPH0676354B2 (en) Method for purifying cysteine hydrochloride monohydrate
SU406821A1 (en) METHOD OF OBTAINING TETRACENE