JPS62270416A - Method for continuously synthesizing aqueous solution of aluminum sulfate from aluminum hydroxide sludge and device thereof - Google Patents

Method for continuously synthesizing aqueous solution of aluminum sulfate from aluminum hydroxide sludge and device thereof

Info

Publication number
JPS62270416A
JPS62270416A JP61110473A JP11047386A JPS62270416A JP S62270416 A JPS62270416 A JP S62270416A JP 61110473 A JP61110473 A JP 61110473A JP 11047386 A JP11047386 A JP 11047386A JP S62270416 A JPS62270416 A JP S62270416A
Authority
JP
Japan
Prior art keywords
tank
sulfuric acid
reaction
aluminum
aluminum sulfate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61110473A
Other languages
Japanese (ja)
Other versions
JPH0336768B2 (en
Inventor
Hideo Yoshizaki
吉崎 秀雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YKK Corp
Original Assignee
YKK Corp
Yoshida Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YKK Corp, Yoshida Kogyo KK filed Critical YKK Corp
Priority to JP61110473A priority Critical patent/JPS62270416A/en
Priority to CA000551675A priority patent/CA1328980C/en
Priority to GB8726775A priority patent/GB2212486B/en
Priority to AU81232/87A priority patent/AU595662B2/en
Priority to DE19873738888 priority patent/DE3738888A1/en
Priority to BR8706255A priority patent/BR8706255A/en
Priority to FR878716119A priority patent/FR2623489B1/en
Publication of JPS62270416A publication Critical patent/JPS62270416A/en
Publication of JPH0336768B2 publication Critical patent/JPH0336768B2/ja
Priority to HK102094A priority patent/HK102094A/en
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/68Aluminium compounds containing sulfur
    • C01F7/74Sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Paper (AREA)

Abstract

PURPOSE:To synthesize an aqueous solution aluminum sulfate continuously, by effectively using aluminum sludge, waste sulfuric acid and an aqueous solution of sulfuric acid containing aluminum sulfate which are produced in surface treatment process of aluminum and whose treatment is facing difficulty. CONSTITUTION:An aluminum sludge 1 which is produced in treatment process of anodized aluminum of aluminum product and comprises 8-12% Al(OH)3, 83-87% water and 3-6% impurity, waste sulfuric acid 5 which is produced in coating film removal process in aluminum surface treatment and comprises 75-90% free H2SO4 and 0.5-2% Al2(SO4)3 and an aqueous solution 4 of sulfuric acid containing aluminum sulfate which is produced in sulfuric acid recovery process of aluminum surface treatment process and comprises 3-6% H2SO4 and 7-9% Al2(SO4)3 are fed to plural reaction tanks R1-R5 and reacted at 80 deg.C - the boiling point of the reaction solution. In the operation, the aqueous solution 4 of sulfuric acid is partially fed to one of the second reaction tank R2 - the final reaction tank R5, the reaction solution in the final reaction tank R5 is adjusted to pH 1.6-2.5 and an aqueous solution of aluminum sulfate is continuously taken out.

Description

【発明の詳細な説明】 1発明の詳細な説明 産業上の利用分野 本発明は、アルミニウム関係企業のアルマイト処理工程
の排水中から分離し【くる水酸化アルミニウムを主成分
とするアルミニウムスラッジから硫酸アルミニウム水溶
液を連続的に合成する方法及びそのための装置に関する
Detailed Description of the Invention 1. Detailed Description of the Invention Industrial Field of Application The present invention relates to the production of aluminum sulfate from aluminum sludge containing aluminum hydroxide as a main component, which is separated from wastewater from the alumite treatment process of aluminum-related companies. The present invention relates to a method for continuously synthesizing an aqueous solution and an apparatus therefor.

従来の技術 アルマイト処理工程においては、その前処理として、ア
ルミニウム素地表面についたキズ等を落としてアルミニ
ウム表面を滑らかにするためにカセイソーダ液でアルミ
ニウムをエツチングすることが行なわれ、また不良アル
ミニウム製品を再加工(再着色)するに際し、カセイソ
ーダ液でアルミニウム材の酸化皮膜を除去することが行
なわれる。さらに、硫酸液中でアルミニウムの陽極酸化
処理及び電解着色処理が行なわれるが、これらの処理時
にMイオンが前記液中に溶出し、このイオンが隣接する
水洗槽内へ持ち出される。この水洗水は廃水処理工程へ
送られ、中和処理される時に水酸化アルミニウムの白色
沈澱物が生じる。
Conventional technology In the alumite treatment process, as a pretreatment, the aluminum is etched with caustic soda solution in order to remove scratches on the aluminum base surface and smooth the aluminum surface, and also to recycle defective aluminum products. During processing (recoloring), the oxide film on the aluminum material is removed using a caustic soda solution. Further, aluminum is subjected to anodic oxidation treatment and electrolytic coloring treatment in the sulfuric acid solution, and during these treatments, M ions are eluted into the solution and carried out into the adjacent washing tank. This washing water is sent to a wastewater treatment process and is neutralized to form a white precipitate of aluminum hydroxide.

これらの廃液(スラリー)は、通常アクリルアミド系等
の高分子凝集剤を添加して固形度の高いフロックを作り
脱水してアルミニウムスラッジ(以下、単にスラッジと
称する)とし、次の処理(廃棄あるいは回収)に付され
る。このスラッジは、通常、水分83〜87 X 、 
AA(OH)38〜12%、不純物(5iOz 、有機
物等)6〜3%の組成からなる。
These waste liquids (slurries) are usually added with a polymer flocculant such as acrylamide to form highly solid flocs, dehydrated to form aluminum sludge (hereinafter simply referred to as sludge), and then processed for the next process (disposal or recovery). ). This sludge usually has a moisture content of 83 to 87
The composition consists of 38-12% of AA(OH) and 6-3% of impurities (5 iOz, organic substances, etc.).

また、アルミニウム表面処理工程においては、アルミニ
ウム表面の塗膜及び治具表面に付着した塗膜を剥離する
工程において硫酸水溶液が用いられるが、このような塗
膜除去工程からは老化廃液である廃硫酸が生じる。この
廃硫酸の組成は、通常、Free H2SO475〜9
0 X 、 At2(SOa)32〜0.5%である。
In addition, in the aluminum surface treatment process, an aqueous sulfuric acid solution is used in the process of peeling off the paint film on the aluminum surface and the paint film adhering to the surface of the jig. occurs. The composition of this waste sulfuric acid is usually Free H2SO475-9
0x, At2(SOa) 32-0.5%.

上記のようなアルミニウム表面処理工程から生ずるスラ
ッジ及び廃硫酸は、公害防止及び省資源の見地から、一
般に硫酸アルミニウム水溶液の合成に利用されている。
Sludge and waste sulfuric acid generated from the above-mentioned aluminum surface treatment process are generally used to synthesize an aqueous aluminum sulfate solution from the viewpoint of pollution prevention and resource conservation.

しかしながら、硫酸アルミニウムの合成反応は反応速度
が速く、反応速度のコントロールが困難であり、また、
最終製品の硫酸アルミニウムのpHが用途に応じて規定
されることから合成液の最終pHをこれに合致させる必
要があり、このpH調整が困難であることから、硫酸ア
ルミニウム水溶液を連続合成法で製造することは困難と
考えられていた。
However, the reaction rate of aluminum sulfate synthesis is fast, making it difficult to control the reaction rate.
Since the pH of the final product, aluminum sulfate, is determined according to the intended use, the final pH of the synthesis solution must match this, and since this pH adjustment is difficult, aluminum sulfate aqueous solutions are manufactured using a continuous synthesis method. It was considered difficult to do so.

そこで、従来のスラッジを用いた硫酸アルミニウム水溶
液の合成は、専らいわゆるバッチ方式により行なわれて
おり、一般に1合成器に一定量の廃硫酸を張り込み、こ
れに一定量のスラッジを供給しながら加熱することによ
り行なわれていた。
Therefore, the conventional synthesis of aluminum sulfate aqueous solution using sludge is carried out exclusively by the so-called batch method, in which a certain amount of waste sulfuric acid is generally charged into one synthesizer, and a certain amount of sludge is supplied to it while heating it. It was done by this.

発明が解決しようとする問題点 前記従来法では、合成当初は高濃度廃硫酸の1−ha 
804が主成分であるので、耐腐蝕性の優れた材質から
成る合成器が必要であり、例えばグラスライニング等の
合成器が使用されている。しかし、この材質は高価で修
理、点検等維持管理が難しい反面こわれ易いという問題
があると共に、バッチ方式のため合成器が大きく、駆動
電力が大きいと共に、設備が大規模で設置面積も広いた
め、設備費が高くなり、合成器の増設等能力アップが簡
単にできない。さらに、バッチ方式のため、運転操作が
繁雑で作業性が悪く、またジャケット方式による加熱の
ためスケーリングにより熱効率が下がり、ランニングコ
ストも高くなるという問題がある。
Problems to be Solved by the Invention In the conventional method, 1-ha of high-concentration waste sulfuric acid is used at the beginning of synthesis.
Since 804 is the main component, a synthesizer made of a material with excellent corrosion resistance is required, and for example, a synthesizer with a glass lining is used. However, this material is expensive and difficult to maintain, including repairs and inspections, but it also breaks easily, and because it is a batch method, the synthesizer is large and requires a lot of driving power, and the equipment is large and requires a large installation area. Equipment costs are high, and capacity cannot be easily increased by adding more synthesizers. Furthermore, since it is a batch method, operation is complicated and workability is poor, and heating by a jacket method reduces thermal efficiency due to scaling and increases running costs.

一方、アルミニウム表面処理工程における廃物としては
、前記したスラッジや廃硫酸の他に電解液の硫酸回収工
程で生じる硫酸アルミニウム(以下、硫パンと略称する
)を含有する希薄硫酸水溶液も問題である。このような
硫パン含有硫酸水溶液は、従来はそれ稚虫じなかったた
め廃水処理で充分対処できていたが、近年、イオン交換
樹脂分離法、拡散透析膜分離法等電解液処理法の発達に
より、電解液処理が盛んに行なわれ、硫パン含有硫酸水
溶液も大量に発生している。例えば、イオン交換樹脂分
離法では、陽極酸化処理、交流着色処理等の電解槽内の
硫酸含有電解液の一部をイオン交換処理し、回収された
硫酸は電解槽に戻されるが、一部の硫酸及び硫パンを含
有する処理水が生じる。また拡散透析膜分離法でも同様
に電解槽内の電解液の一部を拡散透析膜で処理して回収
された硫酸は電解槽に戻されるが、一部の硫酸及び硫パ
ンを含有する処理水が生じる。これらの硫パンを含有す
る希薄硫酸水溶液は、通常)12S0.3〜6%、At
g(80a)s 7〜9%の組成を有し、近年のアルミ
ニウム表面処理品質の向上に対応して、電解液処理設備
の設置割合の増大に伴ない大量に発生しており、その処
理に困窮しているのが現状である。前記したバッチ方式
の硫酸アルミニウム水溶液合成法に利用することも考え
られ、また本出願人も一部利用しているが、上記硫パン
含有硫酸水溶液は希薄なため、大量に利用することは反
応速度が遅くなり、またバッチ方式のため工業化に適さ
ないという問題がある。
On the other hand, in addition to the above-mentioned sludge and waste sulfuric acid, a dilute aqueous sulfuric acid solution containing aluminum sulfate (hereinafter abbreviated as sulfuric acid bread) generated in the sulfuric acid recovery process of the electrolytic solution is also a problem as a waste product in the aluminum surface treatment process. In the past, such sulfuric acid aqueous solutions containing sulfuric acid breads could be adequately treated by wastewater treatment because they were not insects, but in recent years, with the development of electrolyte treatment methods such as ion exchange resin separation method and diffusion dialysis membrane separation method, Electrolyte treatment is actively carried out, and a large amount of sulfuric acid aqueous solution containing sulfuric acid is also generated. For example, in the ion-exchange resin separation method, a portion of the sulfuric acid-containing electrolyte in the electrolytic cell is subjected to ion-exchange treatment such as anodizing or alternating current coloring, and the recovered sulfuric acid is returned to the electrolytic cell. A treated water containing sulfuric acid and sulfuric acid is produced. Similarly, in the diffusion dialysis membrane separation method, a part of the electrolyte in the electrolytic cell is treated with a diffusion dialysis membrane and the recovered sulfuric acid is returned to the electrolytic cell, but the treated water contains some sulfuric acid and sulfuric acid. occurs. The dilute aqueous sulfuric acid solution containing these sulfuric acid breads usually contains 0.3 to 6% of 12S, At
g(80a)s has a composition of 7 to 9%, and is generated in large quantities due to the increasing installation of electrolyte treatment equipment in response to the recent improvement in the quality of aluminum surface treatment. The current situation is that we are in poverty. It is possible to use it in the above-mentioned batch-type aluminum sulfate aqueous solution synthesis method, and the present applicant has also used it in part, but since the sulfuric acid aqueous solution containing sulfuric acid bread is dilute, it is difficult to use it in large quantities due to the reaction rate. There are problems in that it is slow and is not suitable for industrialization because it is a batch method.

従って、本発明の目的は、前記したような問題点を解消
し、アルミニウム表面処理工程で生成しその処理に困窮
しているスラッジ、廃硫酸及び硫パン含有硫酸水溶液を
有効に利用することにより、硫酸アルミニウム水溶液を
連続的に合成できる方法及びそれに用いる装置を提供す
ることにある。
Therefore, the purpose of the present invention is to solve the above-mentioned problems, and to effectively utilize sludge, waste sulfuric acid, and sulfuric acid aqueous solution containing sulfuric acid bread, which are generated in the aluminum surface treatment process and are difficult to dispose of. The object of the present invention is to provide a method for continuously synthesizing an aluminum sulfate aqueous solution and an apparatus used therefor.

本発明の他の目的は、生産性、作業性、安全性等に優れ
、比較的安価な設備費でしかも高収率で硫酸アルミニウ
ム水溶液を連続的に合成できる方法及びそのための装置
を提供することにある。
Another object of the present invention is to provide a method and apparatus for continuously synthesizing an aqueous aluminum sulfate solution with excellent productivity, workability, safety, etc., and with relatively low equipment costs and high yield. It is in.

本発明のさらに他の目的は、エネルギー効率よくしかも
低いランニングコストで硫酸アルミニウム水溶液を連続
的に合成できる方法及びそのための装置を提供すること
にある。
Still another object of the present invention is to provide a method and apparatus for continuously synthesizing an aqueous aluminum sulfate solution with energy efficiency and low running costs.

問題点を解決するための手段 本発明によれば、前記目的を達成するため、アルミニウ
ム表面処理工程で生成する水酸化アルミニウムを主成分
とするアルミニウムスラッジと、前記表面処理工程にお
ける塗膜除去工程で生じる廃硫酸と、前記表面処理工程
における硫酸回収工程で生成する硫酸アルミニウムを含
有する硫酸水溶液とを複数の第1槽〜第n槽から成る反
応槽へ供給し、これらケ第1槽から第n槽(最終槽)ま
で順次流しながら温度80℃〜反応液の沸点の条件で反
応させると共に、前記硫酸アルミニウムを含有する硫酸
水溶液の一部を第2槽から最終槽までの少なくともいず
れかの槽に供給し、最終槽の反応液のpHな1.6〜2
.5に調整することを特徴とするアルミニウム表面処理
工程で生成する副産物から硫酸アルミニウム水溶液を連
続的に製造する方法が提供される。
Means for Solving the Problems According to the present invention, in order to achieve the above object, an aluminum sludge containing aluminum hydroxide as a main component produced in an aluminum surface treatment step and a paint film removal step in the surface treatment step are used. The generated waste sulfuric acid and the aqueous sulfuric acid solution containing aluminum sulfate produced in the sulfuric acid recovery step in the surface treatment step are supplied to a plurality of reaction tanks consisting of the first tank to the nth tank. The reaction is carried out at a temperature of 80° C. to the boiling point of the reaction solution while flowing sequentially to the tank (final tank), and a part of the sulfuric acid aqueous solution containing aluminum sulfate is poured into at least one of the tanks from the second tank to the final tank. The pH of the reaction solution in the final tank is 1.6-2.
.. Provided is a method for continuously producing an aqueous aluminum sulfate solution from a by-product produced in an aluminum surface treatment step, characterized in that the aluminum sulfate aqueous solution is adjusted to a pH of 5.

上記方法においては反応液のpH調整が一つの重要な因
子となるが、本発明によれば、このpH調整が適正に行
なえるように設計された硫酸アルミニウム水溶液の連続
製造装置が提供され、この装置は、アルミニウム表面処
理工程で生成する水酸化アルミニウムを主成分とするア
ルミニウムスラッジと、前記表面処理工程における塗膜
除去工程で生じる廃硫酸と、前記表面処理工程における
硫酸回収工程で生成する硫酸アルミニウムを含有する硫
酸水溶液をそれぞれ連続反応させるための第1槽〜第n
槽から成る反応槽と、 前記硫酸アルミニウムを含有する硫酸水溶液を前記第1
槽に供給するための第1供給管と、前記硫酸アルミニウ
ムを含有する硫酸水溶液を第2槽以降の少なくともいず
れかの槽に供給するための第n供給管(n=2以上)と
、前記第1槽もしくは第2槽内に配設した第1pH指示
調節記録計と、 該第1 pH指示調節記録計と連動して前記第1供給管
内の流量を調節する第1コントロールバルブと、 前記第2槽以降の少なくともいずれかの槽内に配設した
第n pH指示調節記録計(n=2以上)と、 該第n pH指示調節記録計と連動して前記第n供給管
内の流量を調節する第nコントロールバルブ(n=2以
上) とを備えたことを特徴とするものである。
In the above method, adjusting the pH of the reaction solution is an important factor, and according to the present invention, an apparatus for continuously producing an aqueous aluminum sulfate solution is provided, which is designed to appropriately adjust the pH. The equipment is capable of handling aluminum sludge mainly composed of aluminum hydroxide produced in the aluminum surface treatment process, waste sulfuric acid produced in the coating film removal process in the surface treatment process, and aluminum sulfate produced in the sulfuric acid recovery process in the surface treatment process. 1st tank to nth tank for continuously reacting sulfuric acid aqueous solutions containing
a reaction tank consisting of a tank, and a sulfuric acid aqueous solution containing the aluminum sulfate in the first reactor.
a first supply pipe for supplying to the tank; an n-th supply pipe (n = 2 or more) for supplying the sulfuric acid aqueous solution containing aluminum sulfate to at least one of the tanks after the second tank; a first pH indication adjustment recorder disposed in the first tank or the second tank; a first control valve that adjusts the flow rate in the first supply pipe in conjunction with the first pH indication adjustment recorder; and the second pH indication adjustment recorder. An n-th pH indicating adjustment recorder (n = 2 or more) disposed in at least one of the tanks after the tank, and adjusting the flow rate in the n-th supply pipe in conjunction with the n-th pH indicating adjusting recorder. An n-th control valve (n=2 or more).

さらに、前記方法においては反応液の温度制御も重要な
因子となり、このため、本発明によれば、 前記した第1槽〜第n槽から成る反応槽と、該反応槽か
ら得られる反応液の沸点に近い最終硫酸アルミニウム水
溶液と、前記硫酸アルミニウムを含有する硫酸水溶液と
を熱交換するための第1熱交換器と、 前記第1槽内に配設した第1スチーム管と、該第1槽内
に配設した第1温度指示調節記録計と、 該第1温度指示調節記録計と連動して前記第1スチーム
管内の蒸気流量を調節する第1温度コントロールバルブ
と、 前記第2槽〜第n槽の少な(ともI槽内に配設した第n
スチーム管(n=2以上)及び第n温度指示記録計(n
=2以上)と、 該第n温度指示記録計と連動して前記第nスチーム管内
の蒸気流量を手動又は自動にて調節する第n温度コント
ロールバルブ(n=2以上)とを備えたことを特徴とす
るアルミニウム表面処理工程で生成する副産物から硫酸
アルミニウム水溶液を連続的に製造するための反応温度
制御用装置が提供される。
Furthermore, temperature control of the reaction solution is also an important factor in the method, and therefore, according to the present invention, the reaction tank consisting of the first tank to the nth tank and the temperature control of the reaction solution obtained from the reaction tank are provided. a first heat exchanger for exchanging heat between the final aluminum sulfate aqueous solution close to the boiling point and the sulfuric acid aqueous solution containing the aluminum sulfate; a first steam pipe disposed in the first tank; and the first tank. a first temperature control valve that adjusts the flow rate of steam in the first steam pipe in conjunction with the first temperature control recorder; and a first temperature control valve disposed in the first steam pipe. When the number of n tanks is small (also known as the nth tank installed in the I tank)
Steam pipe (n = 2 or more) and nth temperature indicator recorder (n
= 2 or more); and an nth temperature control valve (n = 2 or more) that manually or automatically adjusts the steam flow rate in the nth steam pipe in conjunction with the nth temperature indicator recorder. Provided is a reaction temperature control device for continuously producing an aqueous aluminum sulfate solution from a byproduct produced in a characteristic aluminum surface treatment process.

発明の作用 反応終了後に得られる硫酸アルミニウム合成液は濾過、
濃縮して最終製品の硫酸アルミニウムとなるが、最終製
品の性状は硫酸アルミニウム合成液の最終pHに左右さ
れ、その用途に応じて一定の範囲に規制される。本発明
では反応液のpH調整に前記した硫パンを含有する希薄
硫酸水溶液を利用するものである。
Effect of the invention The aluminum sulfate synthesis solution obtained after the reaction is filtered,
It is concentrated to become the final product, aluminum sulfate, but the properties of the final product depend on the final pH of the aluminum sulfate synthesis solution, and are regulated within a certain range depending on its use. In the present invention, the dilute aqueous sulfuric acid solution containing sulfuric acid described above is used to adjust the pH of the reaction solution.

ところで、硫酸アルミニウムの合成反応は下式(1)で
、計算上の反応式は下式(2)で表わされる。
By the way, the synthetic reaction of aluminum sulfate is expressed by the following formula (1), and the calculated reaction formula is expressed by the following formula (2).

2At(OH) 3+ 3H2804→AL2(SOa
)3+6H20(1)AAsOs + 3H2804→
、kLa (SOa) a + 3H20(2)上記反
応における反応速度定数及びpHの影響について、下記
第1表に示す組成のスラッジ、廃硫酸及び硫パンを含有
する希薄硫酸水溶液を用いて検討した。
2At(OH) 3+ 3H2804→AL2(SOa
)3+6H20(1)AAsOs+3H2804→
, kLa (SOa) a + 3H20 (2) The influence of the reaction rate constant and pH on the above reaction was investigated using a dilute sulfuric acid aqueous solution containing sludge, waste sulfuric acid, and sulfuric bread having the composition shown in Table 1 below.

第  1  表 上記三物質の反応は、実験によ−り均一2次反応とみな
せるため、バッチテストにより速度定数を求めた。実験
結果より90〜100℃における速度定数は0.12〜
0.671 t/Id−aos ・mat ・secで
あった。上記三者の混合割合を変えて種々の実験を試み
た結果、前記速度定数の適正範囲は少なくとも0.01
 t/A1.203− mol −sec以上あればよ
いことが判明した。なお、工業的製造を考慮すると、l
 、Ot / A7z03− mol −seeまでで
あればよい。
Table 1 Since the reaction of the three substances mentioned above can be regarded as a homogeneous second-order reaction by experiment, the rate constant was determined by a batch test. According to the experimental results, the rate constant at 90-100℃ is 0.12~
It was 0.671 t/Id-aos・mat・sec. As a result of trying various experiments by changing the mixing ratio of the above three components, it was found that the appropriate range of the rate constant is at least 0.01.
It was found that t/A of 1.203-mol-sec or more is sufficient. Furthermore, considering industrial manufacturing, l
, Ot/A7z03-mol-see.

また、pH値が高い、すなわちFree HgSO4の
量が少ないと反応速度が遅くなり、工業的製造には適さ
ない。従って、合成液の最終pH値が規制されることを
考慮すると、反応槽の第1槽の反応液のp)1値を下げ
て反応速度を上げ、その後の各槽の反応液のpH値を順
次上昇させながら、終局的に所定の合成液の最終pH値
になるように制御することが、連続反応の場合には最適
である。
Furthermore, if the pH value is high, that is, if the amount of Free HgSO4 is small, the reaction rate will be slow, making it unsuitable for industrial production. Therefore, considering that the final pH value of the synthetic solution is regulated, the p)1 value of the reaction solution in the first tank of the reaction tank should be lowered to increase the reaction rate, and the pH value of the reaction solution in each subsequent tank should be increased. In the case of continuous reactions, it is optimal to control the pH value to reach a predetermined final pH value of the synthesis solution while increasing the pH value sequentially.

本発明者の実験の結果、スラッジ、廃硫酸、硫パンを含
む希薄硫酸水溶液を、処理量に応じた一定容量、一定温
度(80℃〜反応液の沸点、好ましくは90℃〜沸点)
の多段(3〜6段)反応槽に、一定重量比率で連続供給
することにより、最終反応槽より反応完結したpH値(
1,6〜2.5好ましくは1.8〜2.o)の硫酸アル
ミニウム合成液が連続的に得られることを見い出した。
As a result of the inventor's experiments, a dilute sulfuric acid aqueous solution containing sludge, waste sulfuric acid, and sulfuric acid bread was mixed at a constant volume and temperature (80°C to the boiling point of the reaction liquid, preferably 90°C to the boiling point) according to the amount of treatment.
By continuously supplying at a constant weight ratio to a multi-stage (3 to 6 stages) reaction tank, the pH value (
1.6-2.5 preferably 1.8-2. It has been found that the aluminum sulfate synthesis solution o) can be obtained continuously.

なお、各種の反応液のpHな一定に保持するように硫パ
ンな含む希薄硫酸水溶液を供給するが、反応速度を上げ
て高収率で硫酸アルミニウム水溶液を得るためには、第
1槽の反応槽のpHは帆1〜1.0に制御することが望
ましい。
A dilute aqueous sulfuric acid solution containing sulfuric acid is supplied to keep the pH of each reaction solution constant, but in order to increase the reaction rate and obtain an aqueous aluminum sulfate solution with a high yield, it is necessary to It is desirable to control the pH of the tank to 1 to 1.0.

実施例 以下、添附図面に示す実施例を説明しつつ、本発明につ
いて詳細に説明する。
EXAMPLES Hereinafter, the present invention will be described in detail while explaining examples shown in the accompanying drawings.

第1図は、本発明の多段槽式並流反応による硫酸アルミ
ニウム水溶液の連続合成に適する装置の一実施例な示す
フローシートであり、図中、Iは水酸化アルミニウムを
主成分とするスラッジを搬送するためのベルトコンベア
であり、2は混合槽、3は第1槽乃至第n槽よりなる反
応(1q) 槽、4は硫パンを含む希薄硫酸タンク、5は廃硫酸タン
クである。
FIG. 1 is a flow sheet showing an example of an apparatus suitable for continuous synthesis of an aqueous aluminum sulfate solution by a multi-tank co-current reaction according to the present invention. A belt conveyor is used for conveyance, 2 is a mixing tank, 3 is a reaction (1q) tank consisting of the first tank to the nth tank, 4 is a dilute sulfuric acid tank containing sulfur bread, and 5 is a waste sulfuric acid tank.

第1図に示す反応槽は、n = 5の場合を示し、5槽
から成り、第14WRxと第2槽R2どの間は水面が溢
流するように上方に突設された埋伏の隔壁8aにより分
画されており、また第2槽几2と第3槽1t3、第3槽
R3と第4槽R4、第4槽R4と第5槽R5との間は底
面部に連通口を有するように上部から懸垂された隔壁8
bにより分画されており、各種には電動機Mにより回転
駆動される攪拌機9が配設されている。
The reaction tank shown in Fig. 1 shows the case where n = 5, and consists of 5 tanks, and between the 14th WRx and the 2nd tank R2 is an impaction partition 8a that protrudes upward so that the water surface overflows. The second tank 2 and the third tank 1t3, the third tank R3 and the fourth tank R4, and the fourth tank R4 and the fifth tank R5 have communication ports at the bottom. Bulkhead 8 suspended from the top
A stirrer 9 rotated by an electric motor M is installed in each type.

スラッジはベルトコンベアjにより混合槽2に供給され
、一方、希薄硫酸タンク4内の常温の硫パンな含む希薄
硫酸水溶液は、ポンプ10により供給ラインIIを経て
送られ、第1熱交換器6において約100℃の生成した
硫酸アルミニウム合成液と熱交換されて約65〜70℃
に加温され、次いで第2熱交換器7において沸点のスチ
ームと熱交換されて約95〜100℃の高温状態にされ
た後、第1供給管12により混合槽2に、またその一部
は第2供給管13により最終槽の前の第4槽曳に供給さ
れる。混合槽2内のスラッジと硫パン含有硫酸水溶液の
混合物は約70〜80℃の高温状態にあり、攪拌機9に
より攪拌混合された後第1反応槽&に送られる。一方、
廃硫酸タンク5内の廃硫酸はポンプ14により廃硫酸受
槽15に送られ、該受槽15内に配設されたスクリーン
16により浮遊物質を除去した後、ポンプ17により第
1反応槽R1に送られる。
The sludge is supplied to the mixing tank 2 by a belt conveyor j, while the dilute sulfuric acid aqueous solution containing room-temperature sulfuric acid bread in the dilute sulfuric acid tank 4 is sent via the supply line II by the pump 10 to the first heat exchanger 6. Heat exchanged with the generated aluminum sulfate synthetic liquid at about 100℃ to about 65-70℃
It is then heated to a high temperature of about 95 to 100 degrees Celsius by exchanging heat with boiling point steam in the second heat exchanger 7, and then transferred to the mixing tank 2 through the first supply pipe 12, and a part of it is A second supply pipe 13 supplies the fourth tank before the final tank. The mixture of sludge and sulfuric acid aqueous solution containing sulfuric acid bread in the mixing tank 2 is in a high temperature state of about 70 to 80°C, and after being stirred and mixed by the stirrer 9, it is sent to the first reaction tank &. on the other hand,
The waste sulfuric acid in the waste sulfuric acid tank 5 is sent to the waste sulfuric acid receiving tank 15 by the pump 14, and after removing suspended solids by the screen 16 disposed in the receiving tank 15, the waste sulfuric acid is sent to the first reaction tank R1 by the pump 17. .

反応槽3においては、第1槽R1内のスラッジ、廃硫酸
及び硫パン含有硫酸水溶液の混合物からなる反応液は、
攪拌器9による攪拌下に第1槽R1から最終の第5槽も
まで流されながら前記反応式(1)に従って反応し、第
5槽氏から約100℃の硫酸アルミニウム合成液が得ら
れ、これはポンプ18により生成液ライン19から第1
熱交換器6を経【濾過精製設備(図示せず)に送られる
In the reaction tank 3, the reaction liquid consisting of a mixture of sludge, waste sulfuric acid, and sulfuric acid aqueous solution containing sulfuric acid in the first tank R1 is as follows:
While being stirred by the stirrer 9, the reaction is carried out according to the reaction formula (1) while flowing from the first tank R1 to the final fifth tank, and an aluminum sulfate synthetic solution at about 100°C is obtained from the fifth tank. is pumped from the product line 19 by the pump 18 to the first
It is sent to a filtration and purification facility (not shown) through a heat exchanger 6.

次に制御系統九ついて説明する。まず、反応液のpHの
制御について説明すると、第1槽R1及び第2槽R2内
の反応液のpHは約0.8 K設定する。
Next, control system 9 will be explained. First, to explain the control of the pH of the reaction liquid, the pH of the reaction liquid in the first tank R1 and the second tank R2 is set to about 0.8K.

スラッジの供給量が変動して理論供給量よりはるかに少
ない場合には、相対的に廃硫酸の供給量が多くなり、p
Hが設定値即ちpH0,8より酸性側に移行する(例え
ばpH0,2など)ことになるので、pH調節が必要で
ある。このpH調節は第2槽I煽内に配設された第1 
pH指示調節記録針(PRIC几)20により行なわれ
、該第1 pH指示調節記録計のpH値がpH0,8以
下(強酸性側)の場合には、硫パン含有希薄硫酸水溶液
の第1供給管12に配設された上記記録計20と連動す
る第1コントロールバルブ21を閉じ、逆にpH0,8
以上になると第1コントロールバルブ21を開け、硫パ
ンを含む希薄硫酸水溶液の供給量によって初期反応液の
pHな0.8に自動的に調節する。
If the supply amount of sludge fluctuates and is much lower than the theoretical supply amount, the amount of waste sulfuric acid supplied will be relatively large, and the p
Since H will shift from the set value, that is, pH 0.8, to an acidic side (for example, pH 0.2, etc.), pH adjustment is necessary. This pH adjustment is carried out using the first tube installed in the second tank I fan.
When the pH value of the first pH indicator and adjustment recorder is below pH 0.8 (strongly acidic side), the first supply of dilute sulfuric acid aqueous solution containing sulfuric acid The first control valve 21, which is connected to the recorder 20 disposed in the tube 12, is closed, and the pH is set to 0.8.
When the pH of the initial reaction solution reaches 0.8, the first control valve 21 is opened and the pH of the initial reaction solution is automatically adjusted to 0.8 depending on the amount of dilute sulfuric acid aqueous solution containing sulfuric acid bread.

なお、第1 pH指示調節記録計20は第1槽R1内に
配設し、第1槽R1の流出側のpHを検出するようにし
てもよい。反応の進行に伴ない反応液のpHは弱酸性側
に上昇するが、第5槽(最終槽)R6内の硫酸アルミニ
ウム合成液のpHが所定の値(1,6〜2,5好ましく
は1,8〜2.0)以下の強酸性側にある場合には、第
5槽几5内に配設された第2 pH指示調節記録計(P
HICR,) 22の検出器がこれを検知して、硫パン
含有希薄硫酸水溶液の第2供給管13に配設された第2
コントロールバルブ23を閉じ、逆に所定値以上になっ
た場合には第2コントロールバルブ23を自動的に開け
る。なお、6槽に硫パン含有希薄硫酸水溶液の供給管を
接続し、6槽にpH指示調節記録計を配設し、6槽の反
応液のpHなそれぞれ前記と同様の仕様により微調節す
ることも可能である。いずれにしても、反応液のpHは
硫パンを含む希薄硫酸水溶液の供給量の調節により行な
われ、しかも反応液のpH値は0.8以上であり、第1
槽の反応率が約90%であって第2槽のpH値は上記値
以下になることはないので、第1槽の材質はSO831
6JIL、第2槽以降の反応槽の材質はSO8316L
程度のステンレス鋼で充分である。
Note that the first pH indicating adjustment recorder 20 may be disposed within the first tank R1 to detect the pH on the outflow side of the first tank R1. As the reaction progresses, the pH of the reaction solution increases to the weakly acidic side, but the pH of the aluminum sulfate synthesis solution in the fifth tank (final tank) R6 remains at a predetermined value (1.6 to 2.5, preferably 1. , 8 to 2.0) or less, the second pH indicator adjustment recorder (P
The detector of HICR, ) 22 detects this, and the second
The control valve 23 is closed, and if the value exceeds a predetermined value, the second control valve 23 is automatically opened. In addition, a supply pipe for a dilute sulfuric acid aqueous solution containing sulfuric acid bread is connected to the 6 tanks, a pH indicator adjustment recorder is installed in the 6 tanks, and the pH of the reaction solution in the 6 tanks is finely adjusted according to the same specifications as above. is also possible. In any case, the pH of the reaction solution is controlled by adjusting the amount of dilute sulfuric acid aqueous solution containing sulfuric acid, and the pH value of the reaction solution is 0.8 or more.
Since the reaction rate of the tank is about 90% and the pH value of the second tank will never be lower than the above value, the material of the first tank is SO831.
6JIL, the material of the reaction tanks after the second tank is SO8316L.
A grade of stainless steel is sufficient.

次に反応液の温度制御について説明すると、まず混合槽
2内のスラッジと硫パン含有希薄硫酸水溶液の混合物の
温度は、約95〜100℃の硫パン含有希薄硫酸水溶液
の供給により70〜80℃に高められるが、希薄硫酸タ
ンク4内の常温の硫パン含有希薄硫酸水溶液は前記した
ように第1熱交換器6で約65〜70℃に加温した後(
温度指示記録計(TR)24で検出)、第2熱交換器7
で約95〜100℃に高められる。
Next, to explain the temperature control of the reaction liquid, first, the temperature of the mixture of sludge and dilute aqueous sulfuric acid solution containing sulfuric acid in the mixing tank 2 is controlled to 70 to 80°C by supplying the dilute aqueous sulfuric acid solution containing sulfuric acid at about 95 to 100°C. However, the room temperature dilute sulfuric acid aqueous solution containing sulfuric acid in the dilute sulfuric acid tank 4 is heated to about 65 to 70°C in the first heat exchanger 6 as described above.
temperature indicator recorder (TR) 24), second heat exchanger 7
The temperature is raised to about 95-100°C.

この温度は硫パン含有希薄硫酸水溶液の供給ラインの第
2熱交換器7の後に設けた温度指示調節記録計(TRC
) 25により検知し、設定温度以下の場合にはスチー
ム供給管26に設けた上記記録計25と連動するスチー
ムコントロールバルブ27を開け、逆に設定温度以上の
場合にはしぼり、第2熱交換器7に入るスチーム量を調
節することにより自動的に設定温度に制御される。各反
応槽へはスチーム供給管が接続されており、第1槽R〕
内の反応液には第1スチーム管28がフィル状、平板状
等任意の形態で浸漬さく24) れた後排水溝32に導かれ、熱交換できるようにされて
おり、一方、第2〜第4槽忙はスチームが導入できるよ
うに第2スチーム管29、第3スチーム管30、第4ス
チーム管31がそれぞれ接続されている。第1槽R1内
の反応液の温度は、核種にその検出器が配設された第j
温度指示調節記録計(TRC)33及び第1スチーム管
28に配設された上記記録計33と連動する第1温度コ
ントロールバルブ34により調節され、第1槽R1内の
反応液の温度が設定値以上の場合には第1温度コントロ
ールバルブ34をしぼり、設定値以下の場合には開けて
設定温度に自動的に制御される。第3槽R3及び第5槽
R5にはそれぞれ第3及び第5温度指示記録計(TR)
35及び36が配設されており、これらの温度指示記録
計35及び36の検出温度に応じて第2〜第4温度コン
トロールバルブ37〜39を開閉して手動により調節す
るが、反応液の温度調節は、6槽に温度指示調節記録計
を配設し、各スチーム管のそれぞれの温度コントロール
パルブト連動させて自動詞節することも可能である。な
お、6槽へスチームを導入して温度を上げる方式の場合
、反応液が希薄になり後の精製工種で余分なエネルギー
が必要となるため、第1槽の反応液の温度上昇は図示す
るようなスチーム管と反応液との熱交換方式により行な
うことが好ましく′−0 その他、第1図中符号40はポンプ17の電動機の空運
転防止のための廃硫酸受槽15の液面指示調節計(LC
)であり、ポンプ14と連動して廃硫酸受槽15内の廃
硫酸の液面が一定レベル以下になったときに自動的にポ
ンプ14を作動させ、一定レベル以上になったときに作
動を停止させる。符号41は反応槽3の液面を制御する
ための書報器付液面指示調節計(LICA)を示し、反
応液の液面が設定値以下に下がるとコントロールバルブ
42を自動的にしぼり、設定値以上に上がると開ける。
This temperature is determined by a temperature indicating control recorder (TRC) installed after the second heat exchanger 7 in the supply line of the dilute sulfuric acid aqueous solution containing sulfuric acid.
) 25, and if the temperature is below the set temperature, the steam control valve 27 linked to the recorder 25 provided in the steam supply pipe 26 is opened, and if the temperature is above the set temperature, the steam control valve 27 is closed and the second heat exchanger is closed. By adjusting the amount of steam entering 7, the temperature is automatically controlled to the set temperature. A steam supply pipe is connected to each reaction tank, and the first tank R]
The first steam pipe 28 is immersed in any form such as a fill shape or a flat plate shape 24) in the reaction solution inside the reactor, and then led to a drainage groove 32 for heat exchange. A second steam pipe 29, a third steam pipe 30, and a fourth steam pipe 31 are respectively connected to the fourth tank so that steam can be introduced thereto. The temperature of the reaction solution in the first tank R1 is determined by the jth
The temperature of the reaction liquid in the first tank R1 is regulated by a temperature indication control recorder (TRC) 33 and a first temperature control valve 34 which is interlocked with the recorder 33 disposed in the first steam pipe 28, so that the temperature of the reaction liquid in the first tank R1 reaches the set value. In the above case, the first temperature control valve 34 is closed, and when the temperature is below the set value, it is opened and the temperature is automatically controlled to the set temperature. Third and fifth temperature recorders (TR) are installed in the third tank R3 and fifth tank R5, respectively.
35 and 36 are arranged, and the second to fourth temperature control valves 37 to 39 are manually adjusted by opening and closing according to the detected temperatures of these temperature indicator recorders 35 and 36, but the temperature of the reaction liquid Adjustment can also be done intransitively by installing temperature indicating adjustment recorders in the six tanks and interlocking the temperature control valves of each steam pipe. In addition, in the case of the method of raising the temperature by introducing steam into the 6th tank, the reaction liquid becomes diluted and extra energy is required in the subsequent purification process, so the temperature rise of the reaction liquid in the 1st tank will be as shown in the figure. It is preferable to use a heat exchange system between a steam pipe and a reaction liquid. In addition, the reference numeral 40 in FIG. L.C.
), which works in conjunction with the pump 14 to automatically operate the pump 14 when the liquid level of waste sulfuric acid in the waste sulfuric acid receiving tank 15 falls below a certain level, and stops operating when it rises above a certain level. let Reference numeral 41 indicates a liquid level indicator controller (LICA) with a reporting device for controlling the liquid level of the reaction tank 3, and when the liquid level of the reaction liquid falls below a set value, the control valve 42 is automatically throttled. Opens when the temperature rises above the set value.

符号43は硫ノくンを含む希薄硫酸水溶液の供給量を示
す流量積算指示計(FIQ)である。
Reference numeral 43 is a flow rate integration indicator (FIQ) that indicates the supply amount of the dilute sulfuric acid aqueous solution containing sulfur.

前記した第1図に示す装置を用い、以下の条件で硫酸ア
ルミニウム水溶液の連続合成を行なった。
Using the apparatus shown in FIG. 1 described above, continuous synthesis of an aqueous aluminum sulfate solution was carried out under the following conditions.

合成条件 スラッジ:供給量  1429陸匈間 組成 A/=(OH) 3 9−5 wtに不純物  
3.7〃 H2O86−8〃 廃硫酸 :供給量  72・bt7時間組成 Free
−H280490−Owt XAta(80a)30.
6 p 比重 +404(25℃) 硫パン含有硫酸水溶液:供給量31+2t/時間組成 
Free−H2SO,5,3wt%At2(Sot )
 3    F3 、9  ttH20残部 比重  1.134 (12℃) 反応温度;99〜100℃ 第1MpH:約0.8 第5槽pH:約2.0 その結果、約9&%の反応率で硫酸アルミニウム水溶液
が連続的に合成できた。得られた硫酸アルミニウム水溶
液を、使用合成液量300−1濾過温度20℃、濾過方
法−真空方法(助剤なし)、濾過面積95cr11使用
濾紙−東洋濾紙#2、濾過圧力(真空度) 120To
rrの条件で濾過テストを行なったが、濾過性に問題は
なかった。
Synthesis conditions sludge: Supply amount 1429 land mass composition A/=(OH) 3 9-5 impurities in wt
3.7〃 H2O86-8〃 Waste sulfuric acid: Supply amount 72・bt7 hours Composition Free
-H280490-Owt XAta (80a) 30.
6p Specific gravity +404 (25℃) Aqueous sulfuric acid solution containing sulfuric acid bread: Supply amount 31+2t/hour Composition
Free-H2SO, 5.3wt%At2(Sot)
3 F3, 9 ttH20 remainder specific gravity 1.134 (12°C) Reaction temperature: 99-100°C 1st MpH: about 0.8 5th tank pH: about 2.0 As a result, aluminum sulfate aqueous solution with a reaction rate of about 9% could be synthesized continuously. The resulting aluminum sulfate aqueous solution was synthesized using: Synthetic liquid volume: 300-1, Filtration temperature: 20°C, Filtration method: Vacuum method (no auxiliary agent), Filtration area: 95cr11 Filter paper: Toyo Roshi #2, Filtration pressure (degree of vacuum): 120To
A filtration test was conducted under the conditions of rr, but there were no problems with filtration.

第2図は本発明の硫酸アルミニウム水溶液連続合成装置
の他の実施例を示し、第1図に示す装置の変更箇所のみ
を示し、第2図に示されていない設備(例えば、廃硫酸
タンク、熱交換器等)、計装(例えがpH指示調節記録
計等)及び供給ライン(例えば硫パン含有硫酸水溶液供
給ライン等)は第1図に示すものと同じである。
FIG. 2 shows another embodiment of the apparatus for continuously synthesizing an aqueous aluminum sulfate solution of the present invention, showing only the modified parts of the apparatus shown in FIG. 1, and equipment not shown in FIG. (heat exchanger, etc.), instrumentation (for example, a pH indicator and adjustment recorder, etc.), and supply lines (for example, a sulfuric acid aqueous solution supply line containing sulfuric acid bread) are the same as those shown in FIG.

第1図に示す装置では混合槽2が設けられているが、こ
れは、既存の設備をそのまま利用した場合にはベルトコ
ンベアの下に反応槽を設置できないために設けられたも
のであり、混合槽を設げることは必ずしも必要でなく、
第2図に示すように前記原料の三物質を直接、反応槽3
の第1411R1に投入することができる。第2図では
、スラッジはポンプで給送されてスラッジ供給管44に
より供給されるが、第1図に示すようにベルトコンベア
で供給してよいことはもちろんである。第2図に示す反
応槽3では、各槽R1−几5は埋伏の隔壁8a及び上部
から懸垂された隔壁8bKより交互に分画され、反応液
のショートバスが防止されるように工夫されている。
The device shown in Figure 1 is equipped with a mixing tank 2, but this was installed because it would not be possible to install a reaction tank under the belt conveyor if the existing equipment was used as is. It is not necessarily necessary to provide a tank;
As shown in Figure 2, the three raw materials are directly fed into the reaction tank 3.
1411R1. In FIG. 2, the sludge is pumped and supplied through the sludge supply pipe 44, but it goes without saying that it may be supplied by a belt conveyor as shown in FIG. In the reaction tank 3 shown in FIG. 2, each tank R1-5 is divided alternately by the impaction partition wall 8a and the partition wall 8bK suspended from the upper part, so as to prevent a short bath of the reaction liquid. There is.

この反応液のショートバスをさらに有効に防止するため
に、第3図に示すように槽内にじやま板53を設けても
よい。
In order to more effectively prevent this short bath of the reaction solution, a barrier plate 53 may be provided in the tank as shown in FIG.

また、第1槽R1内の反応液の温度制御は、前記第1図
に示す装置と同様に第1温度指示調節記録計33により
第1スチーム管2Bに設けた第1温度コントロールバル
ブ34の調節により自動的に行なわれるが、第2〜第4
槽迅〜R4内の反応液の温度制御も、上記と同様にそれ
ぞれ塔槽に配設された第2〜第4温度指示調節記録計(
TRC)45〜47及び第2〜第4スチーム管29〜3
1に設けた第2〜第4温度コントロールバルブ48〜5
0により自動的に行なわれる。
Further, the temperature of the reaction liquid in the first tank R1 is controlled by a first temperature control valve 34 provided in the first steam pipe 2B using a first temperature indication adjustment recorder 33, similar to the device shown in FIG. This is done automatically, but the second to fourth
The temperature of the reaction liquid in tanks R4 to R4 is also controlled by the second to fourth temperature indicator control recorders (
TRC) 45-47 and 2nd-4th steam pipes 29-3
The second to fourth temperature control valves 48 to 5 provided in 1
0 automatically.

さらに、塔槽の温度制御は、それぞれ各槽内の反応液と
これに浸漬されたコイル状もしくは平板状の第2〜第4
スチーム管との熱交換方式により行なわれる。
Furthermore, the temperature control of the tower tanks is controlled by controlling the reaction liquid in each tank and the coil-shaped or flat plate-shaped coils immersed therein.
This is done by heat exchange with a steam pipe.

第2図に示す装置においては、合成液排出用のポンプ1
8の吐出側から第1槽R1に戻る合成液循環ライン52
が設けられている。これにより、合成液のpHを示す第
2 pH指示調節記録計(PHICR) 22 (第1
図参照)が異常値(適正範囲外)を示した時に手動バル
ブ51を開き、硫酸アルミニウム水溶液を第1槽R1<
戻すことができる。この循環ラインは第1図に示す装置
にも設けてよいことはもちろんである。
In the apparatus shown in Fig. 2, a pump 1 for discharging the synthetic liquid is used.
Synthetic liquid circulation line 52 returning from the discharge side of No. 8 to the first tank R1
is provided. As a result, the second pH indicator control recorder (PHICR) 22 (the first
(see figure) shows an abnormal value (outside the appropriate range), open the manual valve 51 and pour the aluminum sulfate aqueous solution into the first tank R1
It can be returned. Of course, this circulation line may also be provided in the apparatus shown in FIG.

発明の効果 以上の説明からも明らかなように、本発明によれば以下
のような効果、利点が得られる。
Effects of the Invention As is clear from the above description, the present invention provides the following effects and advantages.

a)硫酸アルミニウム水溶液の合成を多段槽式並流反応
による連続反応により行なうため、従来のバッチ弐圧比
べて製造能力が大巾に向上し、従って設備も小さなもの
でよく、設置面積が狭く屋内設置も可能である。
a) Since the aluminum sulfate aqueous solution is synthesized by a continuous reaction using a multi-stage parallel flow reaction, the production capacity is greatly improved compared to the conventional batch pressure system, and therefore the equipment is small, and the installation space is small and it can be used indoors. Installation is also possible.

b)また反応系のpH調節に硫パンを含む希薄硫酸水溶
液を用いるため、pH調節が容易となり、また一槽目の
Free −H2SO4濃度が低く各種の反応液のpH
を0.8〜2.5に保持することにより、反応槽の材質
としてステンレス鋼が使用できる。従って、反応槽の溶
接修理、点検が可能で維持管理が容易で設備費も安価に
なると共に、連続運転により、バルブ、ポンプ、攪拌機
等の切換運転もなく、反応液のpHを連続制御でき、自
動化が容易で作業性、安全性の面でも効果がある。
b) In addition, since a dilute aqueous sulfuric acid solution containing sulfuric acid is used to adjust the pH of the reaction system, pH adjustment is easy, and the Free-H2SO4 concentration in the first tank is low, making it possible to adjust the pH of various reaction solutions.
By keeping the value between 0.8 and 2.5, stainless steel can be used as the material for the reaction tank. Therefore, welding repair and inspection of the reaction tank is possible, maintenance is easy, equipment costs are low, and continuous operation allows continuous control of the pH of the reaction solution without switching operations of valves, pumps, stirrers, etc. It is easy to automate and is effective in terms of workability and safety.

C)さらに、反応速度定数の実験データを基に小規模の
改良で能力アップが可能である。
C) Furthermore, capacity can be increased by small-scale improvements based on experimental data on reaction rate constants.

d)また、本発明の反応温度制御方式によれば、反応槽
とは別個の熱交換方式によるカロ熱のだ戦スケーリング
による熱効率の低下が殆んどなく、また自動的に温度制
御ができる。従って、連続運転の効果と相俟って、エネ
ルギー効率がよくまた駆動消費電力も少なく、ランニン
グコスト(3・l) が低いという利点が得られる。
d) Furthermore, according to the reaction temperature control system of the present invention, there is almost no decrease in thermal efficiency due to thermal scaling of Calorie due to the heat exchange system separate from the reaction tank, and the temperature can be controlled automatically. Therefore, together with the effect of continuous operation, the advantages of high energy efficiency, low driving power consumption, and low running cost (3·l) can be obtained.

本発明の他の利点、効果は前記した説明から明らかであ
ろう。
Other advantages and effects of the present invention will be apparent from the foregoing description.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の硫酸アルミニウム水溶液の連続合成に
適する装置の一実施例を示すフローシート、第2図は他
の実施例を示す部分フローシート、第3図は本発明によ
る反応槽の他の例を示す部分断面図である。 2・・・混合槽、3・・・反応槽、4・・・硫パンを含
む希薄硫酸タンク、5・・・廃硫酸タンク、6・・・第
1熱交換器、7・・・第2熱交換器、8a、8b・・・
隔壁、I2・・・第1供給管、13・・・第2供給管、
2゜・・・第1 pH指示調節記録計、21・・・第1
コントロールバルブ、22・・・第2 pH指示調節記
録計、23・・・第2コントロールバルブ、26・・・
スチーム供給管、28・・・第1スチーム管、33・・
・第1温度指示調節記録計、34・・・第1温度コント
ロールバルブ、53・・・じゃま板。 手続補正書(自発) 昭和6死4月 3日
FIG. 1 is a flow sheet showing one embodiment of an apparatus suitable for continuous synthesis of an aqueous aluminum sulfate solution according to the present invention, FIG. 2 is a partial flow sheet showing another embodiment, and FIG. It is a partial sectional view showing an example. 2... Mixing tank, 3... Reaction tank, 4... Dilute sulfuric acid tank containing sulfur bread, 5... Waste sulfuric acid tank, 6... First heat exchanger, 7... Second Heat exchanger, 8a, 8b...
Partition wall, I2...first supply pipe, 13...second supply pipe,
2゜...1st pH indication adjustment recorder, 21...1st
Control valve, 22...Second pH indicator adjustment recorder, 23...Second control valve, 26...
Steam supply pipe, 28...first steam pipe, 33...
- 1st temperature indication adjustment recorder, 34... 1st temperature control valve, 53... baffle board. Procedural amendment (voluntary) April 3, 1932

Claims (1)

【特許請求の範囲】 1、アルミニウム表面処理工程で生成する水酸化アルミ
ニウムを主成分とするアルミニウムスラッジと、前記表
面処理工程における塗膜除去工程で生じる廃硫酸と、前
記表面処理工程における硫酸回収工程で生成する硫酸ア
ルミニウムを含有する硫酸水溶液とを複数の第1槽〜第
n槽から成る反応槽へ供給し、これらを第1槽から第n
槽(最終槽)まで順次流しながら温度80℃〜反応液の
沸点の条件で反応させると共に、前記硫酸アルミニウム
を含有する硫酸水溶液の一部を第2槽から最終槽までの
少なくともいずれかの槽に供給し、最終槽の反応液のp
Hを1.6〜2.5に調整することを特徴とするアルミ
ニウム表面処理工程で生成する副産物から硫酸アルミニ
ウム水溶液を連続的に製造する方法。 2、最終槽の反応液のpHが適正範囲外となつたときに
最終槽から出る硫酸アルミニウム水溶液の一部を反応槽
に還流させることを特徴とする特許請求の範囲第1項に
記載の方法。 3、最終槽から出る硫酸アルミニウム水溶液の一部を第
1槽に還流させることを特徴とする特許請求の範囲第2
項に記載の方法。 4、第1槽もしくは第2槽内の反応液のpHを0.1〜
1.0に調整することを特徴とする特許請求の範囲第1
項乃至第3項のいずれかに記載の方法。 6、反応液のpHの調整を第1槽に供給される前記硫酸
アルミニウムを含有する硫酸水溶液の供給量の制御によ
り行なうことを特徴とする特許請求の範囲第4項に記載
の方法。 6、反応槽内の反応液の温度制御を、反応液に水蒸気を
供給することにより行なうことを特徴とする特許請求の
範囲第1項乃至第5項のいずれかに記載の方法。 7、反応槽内の反応液の温度制御を、反応液中に浸漬し
たスチーム管と反応液との熱交換により行なうことを特
徴とする特許請求の範囲第1項乃至第5項のいずれかに
記載の方法。 8、第1槽に高温の硫酸アルミニウム含有硫酸水溶液を
供給することを特徴とする特許請求の範囲第1項乃至第
7項のいずれかに記載の方法。 9、アルミニウム表面処理工程で生成する水酸化アルミ
ニウムを主成分とするアルミニウムスラッジと、前記表
面処理工程における塗膜除去工程で生じる廃硫酸と、前
記表面処理工程における硫酸回収工程で生成する硫酸ア
ルミニウムを含有する硫酸水溶液をそれぞれ連続反応さ
せるための第1槽〜第n槽から成る反応槽と、前記硫酸
アルミニウムを含有する硫酸水溶液を前記第1槽に供給
するための第1供給管と、前記硫酸アルミニウムを含有
する硫酸水溶液を第2槽以降の少なくともいずれかの槽
に供給するための第n供給管(n=2以上)と、 前記第1槽もしくは第2槽内に配設した第1pH指示調
節記録計と、 該第1pH指示調節記録計と連動して前記第1供給管内
の流量を調節する第1コントロールバルブと、 前記第2槽以降の少なくともいずれかの槽内に配設した
第npH指示調節記録計(n=2以上)と、 該第npH指示調節記録計と連動して前記第n供給管内
の流量を調節する第nコントロールバルブ(n=2以上
) とを備えたことを特徴とするアルミニウム表面処理工程
で生成する副産物から硫酸アルミニウム水溶液を連続的
に製造するための装置。 10、前記第n供給管が最終槽の前の槽に硫酸アルミニ
ウム含有硫酸水溶液を供給するための供給管であり、前
記第npH指示調節記録計が最終槽に配設されており、
該pH指示調節記録計と連動する第nコントロールバル
ブが上記供給管に配設されていることを特徴とする特許
請求の範囲第9項に記載の装置。 11、前記反応槽が、底面部に連通口を有するように上
部から懸垂された隔壁及び/又は水面が溢流するように
上方に突設された堰状の隔壁により第1槽から第n槽の
各槽に分画されていることを特徴とする特許請求の範囲
第9項又は第10項に記載の装置。 12、第1槽から第n槽の少なくともいずれかの槽内に
反応液のショートバスを防止するためのじゃま板を配設
したことを特徴とする特許請求の範囲第11項に記載の
装置。 13、アルミニウム表面処理工程で生成する水酸化アル
ミニウムを主成分とするアルミニウムスラッジと、前記
表面処理工程における塗膜除去工程で生じる廃硫酸と、
前記表面処理工程における硫酸回収工程で生成する硫酸
アルミニウムを含有する硫酸水溶液をそれぞれ連続反応
させるための第1槽〜第n槽から成る反応槽と、該反応
槽から得られる反応液の沸点に近い最終硫酸アルミニウ
ム水溶液と前記硫酸アルミニウムを含有する硫酸水溶液
とを熱交換するための第1熱交換器と、 前記第1槽内に配設した第1スチーム管と、該第1槽内
に配設した第1温度指示調節記録計と、 該第1温度指示調節記録計と連動して前記第1スチーム
管内の蒸気流量を調節する第1温度コントロールバルブ
と、 前記第2槽〜第n槽の少なくとも1槽内に配設した第n
スチーム管(n=2以上)及び第n温度指示記録計(n
=2以上)と、 該第n温度指示記録計と連動して前記第nスチーム管内
の蒸気流量を手動又は自動にて調節する第n温度コント
ロールバルブ(n=2以上)とを備えたことを特徴とす
るアルミニウム表面処理工程で生成する副産物から硫酸
アルミニウム水溶液を連続的に製造するための反応温度
制御用装置。 14、硫酸アルミニウム含有硫酸水溶液の供給ラインに
おいて前記第1熱交換器の後にさらにスチームと熱交換
するための第2熱交換器を設けたことを特徴とする特許
請求の範囲第13項に記載の装置。 15、前記硫酸アルミニウム含有硫酸水溶液の供給ライ
ンの前記第2熱交換器の後に温度指示調節記録計を設け
、該記録計と連動して第2熱交換器へのスチーム供給量
を調節するスチームコントロールバルブを第2熱交換器
へのスチーム供給管に設けたことを特徴とする特許請求
の範囲第14項に記載の装置。
[Claims] 1. Aluminum sludge mainly composed of aluminum hydroxide produced in the aluminum surface treatment step, waste sulfuric acid produced in the coating film removal step in the surface treatment step, and sulfuric acid recovery step in the surface treatment step A sulfuric acid aqueous solution containing aluminum sulfate produced in is supplied to a plurality of reaction tanks consisting of the first tank to the nth tank, and
The reaction is carried out at a temperature of 80° C. to the boiling point of the reaction solution while flowing sequentially to the tank (final tank), and a part of the sulfuric acid aqueous solution containing aluminum sulfate is poured into at least one of the tanks from the second tank to the final tank. p of the reaction solution in the final tank.
A method for continuously producing an aqueous aluminum sulfate solution from a by-product produced in an aluminum surface treatment step, the method comprising adjusting H to 1.6 to 2.5. 2. The method according to claim 1, characterized in that when the pH of the reaction solution in the final tank falls outside the appropriate range, a part of the aluminum sulfate aqueous solution discharged from the final tank is refluxed to the reaction tank. . 3. Claim 2, characterized in that a part of the aluminum sulfate aqueous solution discharged from the final tank is refluxed to the first tank.
The method described in section. 4. Adjust the pH of the reaction solution in the first tank or second tank to 0.1~
Claim 1 characterized in that the adjustment is made to 1.0.
The method according to any one of Items 3 to 3. 6. The method according to claim 4, wherein the pH of the reaction solution is adjusted by controlling the amount of the sulfuric acid aqueous solution containing aluminum sulfate supplied to the first tank. 6. The method according to any one of claims 1 to 5, wherein the temperature of the reaction liquid in the reaction tank is controlled by supplying water vapor to the reaction liquid. 7. Any one of claims 1 to 5, characterized in that the temperature of the reaction liquid in the reaction tank is controlled by heat exchange between the reaction liquid and a steam tube immersed in the reaction liquid. Method described. 8. The method according to any one of claims 1 to 7, characterized in that a high temperature aqueous sulfuric acid solution containing aluminum sulfate is supplied to the first tank. 9. Aluminum sludge mainly composed of aluminum hydroxide generated in the aluminum surface treatment process, waste sulfuric acid generated in the coating film removal process in the surface treatment process, and aluminum sulfate generated in the sulfuric acid recovery process in the surface treatment process. a reaction tank consisting of a first tank to an nth tank for continuously reacting the sulfuric acid aqueous solution containing the aluminum sulfate; a first supply pipe for supplying the sulfuric acid aqueous solution containing the aluminum sulfate to the first tank; an n-th supply pipe (n = 2 or more) for supplying the sulfuric acid aqueous solution containing aluminum to at least one of the tanks after the second tank; and a first pH indicator disposed in the first tank or the second tank. a control recorder; a first control valve that adjusts the flow rate in the first supply pipe in conjunction with the first pH indicator control recorder; It is characterized by comprising: an indicating adjustment recorder (n = 2 or more); and an nth control valve (n = 2 or more) that adjusts the flow rate in the nth supply pipe in conjunction with the nth pH indicating adjusting recorder. This equipment continuously produces an aqueous aluminum sulfate solution from the by-products generated in the aluminum surface treatment process. 10. The n-th supply pipe is a supply pipe for supplying the aluminum sulfate-containing sulfuric acid aqueous solution to a tank before the final tank, and the n-th pH indicating adjustment recorder is disposed in the final tank,
10. The apparatus according to claim 9, wherein an n-th control valve interlocked with the pH indicating adjustment recorder is disposed in the supply pipe. 11. The reaction tank is separated from the first tank to the nth tank by a partition wall suspended from the top so as to have a communication port at the bottom and/or a weir-like partition wall projecting upward so that the water surface overflows. 11. The apparatus according to claim 9 or 10, wherein the liquid is fractionated into each tank. 12. The apparatus according to claim 11, characterized in that a baffle plate is provided in at least one of the first to nth tanks to prevent a short bath of the reaction solution. 13. Aluminum sludge containing aluminum hydroxide as a main component produced in the aluminum surface treatment process, and waste sulfuric acid produced in the coating film removal process in the surface treatment process;
A reaction tank consisting of a first tank to an nth tank for continuously reacting the sulfuric acid aqueous solution containing aluminum sulfate produced in the sulfuric acid recovery step in the surface treatment step, and a reaction tank close to the boiling point of the reaction liquid obtained from the reaction tank. a first heat exchanger for exchanging heat between the final aluminum sulfate aqueous solution and the sulfuric acid aqueous solution containing aluminum sulfate; a first steam pipe disposed within the first tank; and a first steam pipe disposed within the first tank. a first temperature control valve that adjusts the flow rate of steam in the first steam pipe in conjunction with the first temperature control recorder; and at least one of the second to nth tanks. nth installed in one tank
Steam tube (n = 2 or more) and nth temperature indicator recorder (n
= 2 or more); and an nth temperature control valve (n = 2 or more) that manually or automatically adjusts the steam flow rate in the nth steam pipe in conjunction with the nth temperature indicator recorder. A reaction temperature control device for continuously producing an aqueous aluminum sulfate solution from a byproduct produced in the aluminum surface treatment process. 14. Claim 13, characterized in that a second heat exchanger for further heat exchange with steam is provided after the first heat exchanger in the supply line of the sulfuric acid aqueous solution containing aluminum sulfate. Device. 15. A steam control that provides a temperature indication adjustment recorder after the second heat exchanger in the supply line of the aluminum sulfate-containing sulfuric acid aqueous solution, and adjusts the amount of steam supplied to the second heat exchanger in conjunction with the recorder. 15. Device according to claim 14, characterized in that a valve is provided in the steam supply pipe to the second heat exchanger.
JP61110473A 1986-05-16 1986-05-16 Method for continuously synthesizing aqueous solution of aluminum sulfate from aluminum hydroxide sludge and device thereof Granted JPS62270416A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP61110473A JPS62270416A (en) 1986-05-16 1986-05-16 Method for continuously synthesizing aqueous solution of aluminum sulfate from aluminum hydroxide sludge and device thereof
CA000551675A CA1328980C (en) 1986-05-16 1987-11-12 Method and apparatus for continuous synthesis of aqueous aluminum sulfate solution from aluminum hydroxide sludge
GB8726775A GB2212486B (en) 1986-05-16 1987-11-16 Method and apparatus for continuous synthesis of aqueous aluminum sulfate solution from aluminum hydroxide sludge
AU81232/87A AU595662B2 (en) 1986-05-16 1987-11-16 Method and apparatus for continuous synthesis of aqueous aluminum sulfate solution from aluminum hydroxide sludge
DE19873738888 DE3738888A1 (en) 1986-05-16 1987-11-16 METHOD AND DEVICE FOR THE CONTINUOUS SYNTHESIS OF AN AQUEOUS ALUMINUM SULFATE SOLUTION FROM AN ALUMINUM HYDROXIDE SLUDGE
BR8706255A BR8706255A (en) 1986-05-16 1987-11-16 METHOD AND APPARATUS FOR THE CONTINUOUS SYNTHESIS OF AN Aqueous ALUMINUM SULPHATE SOLUTION DERIVED FROM ALUMINUM HYDROXIDE
FR878716119A FR2623489B1 (en) 1986-05-16 1987-11-20 PROCESS AND APPARATUS FOR THE CONTINUOUS SYNTHESIS OF AN AQUEOUS ALUMINUM SULFATE SOLUTION FROM AN ALUMINUM HYDROXIDE SLUDGE AND APPARATUS FOR CONTROLLING THE TEMPERATURE THEREOF
HK102094A HK102094A (en) 1986-05-16 1994-09-22 Method and apparatus for continuous synthesis of aqueous aluminum sulfate solution from aluminum hydroxide sludge

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP61110473A JPS62270416A (en) 1986-05-16 1986-05-16 Method for continuously synthesizing aqueous solution of aluminum sulfate from aluminum hydroxide sludge and device thereof
CA000551675A CA1328980C (en) 1986-05-16 1987-11-12 Method and apparatus for continuous synthesis of aqueous aluminum sulfate solution from aluminum hydroxide sludge
DE19873738888 DE3738888A1 (en) 1986-05-16 1987-11-16 METHOD AND DEVICE FOR THE CONTINUOUS SYNTHESIS OF AN AQUEOUS ALUMINUM SULFATE SOLUTION FROM AN ALUMINUM HYDROXIDE SLUDGE
HK102094A HK102094A (en) 1986-05-16 1994-09-22 Method and apparatus for continuous synthesis of aqueous aluminum sulfate solution from aluminum hydroxide sludge

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP29359890A Division JPH03164426A (en) 1990-11-01 1990-11-01 Reaction temperature controller for continuously producing aqueous aluminum sulfate solution from aluminum hydroxide sludge

Publications (2)

Publication Number Publication Date
JPS62270416A true JPS62270416A (en) 1987-11-24
JPH0336768B2 JPH0336768B2 (en) 1991-06-03

Family

ID=27426501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61110473A Granted JPS62270416A (en) 1986-05-16 1986-05-16 Method for continuously synthesizing aqueous solution of aluminum sulfate from aluminum hydroxide sludge and device thereof

Country Status (7)

Country Link
JP (1) JPS62270416A (en)
AU (1) AU595662B2 (en)
CA (1) CA1328980C (en)
DE (1) DE3738888A1 (en)
FR (1) FR2623489B1 (en)
GB (1) GB2212486B (en)
HK (1) HK102094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623489A1 (en) * 1986-05-16 1989-05-26 Yoshida Kogyo Kk Process and apparatus for the continuous synthesis of an aqueous aluminium sulphate solution from an aluminium hydroxide sludge and apparatus for adjusting the temperature during this synthesis

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4877597A (en) * 1988-10-25 1989-10-31 Handy Chemicals Ltd. Method for producing aqueous solutions of basic poly aluminum sulphate
FI97291C (en) * 1993-06-17 1996-11-25 Kemira Chemicals Oy Method for recovering aluminum from a water treatment slurry
DE19607300A1 (en) * 1996-02-27 1997-08-28 Klaus Dipl Ing Klein Method and device for producing salt solutions
FI103401B (en) * 1996-04-12 1999-06-30 Kemira Chemicals Oy A method for treating impure alumina
CN1070823C (en) * 1998-06-14 2001-09-12 新疆工学院 Selective dissolving process for preparing aluminium sulfate
ES2176064B1 (en) * 2000-01-27 2003-09-16 Floculantes Del Ebro S A MANUFACTURING PROCEDURE FOR ALUMINUM SULFATE AND ITS DERIVATIVES FROM ALUMINUM HYDROXIDE MUDS FROM THE ANODIZED PLANTS.
CN105836777B (en) * 2016-04-29 2017-08-25 上海高桥大同净水材料有限公司 A kind of automatic production method of liquid aluminium sulfate
CN115536226A (en) * 2022-11-01 2022-12-30 深圳市世清环保科技有限公司 Method and device for preparing aluminum sulfate coagulant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3667905A (en) * 1969-08-06 1972-06-06 George H Jennings Continuous production of aluminium sulphate
JPS54157792A (en) * 1978-06-01 1979-12-12 Sumitomo Aluminium Smelting Co Method of manufacturing aluminum sulfate from aluminum sludge containing soluble silicic acid
DD151144A1 (en) * 1980-06-02 1981-10-08 Klaus Feiler METHOD AND DEVICE FOR CONTINUOUS PRODUCTION OF ALUMINUM SULFATE
SE452148B (en) * 1984-11-14 1987-11-16 Olof Carlsson WAY TO MAKE A FLOCKING AGENT
JPS62270416A (en) * 1986-05-16 1987-11-24 Yoshida Kogyo Kk <Ykk> Method for continuously synthesizing aqueous solution of aluminum sulfate from aluminum hydroxide sludge and device thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623489A1 (en) * 1986-05-16 1989-05-26 Yoshida Kogyo Kk Process and apparatus for the continuous synthesis of an aqueous aluminium sulphate solution from an aluminium hydroxide sludge and apparatus for adjusting the temperature during this synthesis

Also Published As

Publication number Publication date
FR2623489A1 (en) 1989-05-26
DE3738888C2 (en) 1992-02-13
AU595662B2 (en) 1990-04-05
GB8726775D0 (en) 1987-12-23
JPH0336768B2 (en) 1991-06-03
CA1328980C (en) 1994-05-03
FR2623489B1 (en) 1990-04-20
DE3738888A1 (en) 1989-05-24
GB2212486B (en) 1991-10-09
GB2212486A (en) 1989-07-26
HK102094A (en) 1994-09-30
AU8123287A (en) 1989-06-01

Similar Documents

Publication Publication Date Title
JPH0442326B2 (en)
JPS62270416A (en) Method for continuously synthesizing aqueous solution of aluminum sulfate from aluminum hydroxide sludge and device thereof
CN106495215B (en) A kind of method that magnesium arsenate is produced containing arsenic waste solution
AU2011276916B2 (en) Flocculent addition and mixing rate for separating a slurry
CN105502842B (en) The waste water Fenton oxidation life assemblage processing method and its device that a kind of sludge circulation utilizes
CN210001801U (en) Water removal system of phosgenation isocyanate production device
CN108726553B (en) System for utilize carbide slag and sulfuric acid waste production calcium sulfate
CN108946779A (en) A kind of production method and production system of high-purity Polyaluminium Sulfate Chloride
CN106430704A (en) Movable integrated coating wastewater treating device and treating method thereof
CN110743476A (en) Multifunctional calcium hydroxide preparation tank and preparation method
CN212954949U (en) Chlorobutane continuous production device
JP5160215B2 (en) Method for treating sodium hydroxide waste solution of aluminum material
CN204714522U (en) A kind of Waste Sulfuric Acid method of cooling process and equipment for reclaiming
CN206886880U (en) A kind of processing system containing high-salt wastewater
CN105692718A (en) Method for automatic production of liquid polyaluminium-ferric chloride sulfate
CN216024823U (en) Continuous production equipment for methyl tin mercaptide
JP2009154103A5 (en)
CN210313822U (en) DSD acid wastewater treatment system
CN204841634U (en) Pilot scale experimental facilities of precipitation and separation of solid -liquid reactant
CN218968882U (en) Continuous treatment device for formaldehyde wastewater
CN219156638U (en) Sewage sedimentation equipment
CN216172201U (en) Real device of instructing of intermittent type cauldron formula reactor
US20230095165A1 (en) Method for continuous synthesis of acylnaphthalene with acylation liquid
CN217600501U (en) Waste ionic liquid coordination treatment and recycling system
CN217989308U (en) Safety interlock system for vinylene carbonate production system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees