JPS62269692A - Cellulase gene - Google Patents

Cellulase gene

Info

Publication number
JPS62269692A
JPS62269692A JP11192886A JP11192886A JPS62269692A JP S62269692 A JPS62269692 A JP S62269692A JP 11192886 A JP11192886 A JP 11192886A JP 11192886 A JP11192886 A JP 11192886A JP S62269692 A JPS62269692 A JP S62269692A
Authority
JP
Japan
Prior art keywords
cellulase
plasmid
dna
pnk2
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11192886A
Other languages
Japanese (ja)
Inventor
Koki Horikoshi
弘毅 掘越
Toshiaki Kudo
俊章 工藤
Nobuhiro Yubihara
指原 信廣
Fumiyasu Fukumori
福森 文康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP11192886A priority Critical patent/JPS62269692A/en
Publication of JPS62269692A publication Critical patent/JPS62269692A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:A DNA which hybridizes DNA sequence of N-4ACMCase gene and codes polypeptide having cellulase activity, obtained by a transforming host from a chromosome DNA fragment of Bacillus sp. No.N-4 strain. CONSTITUTION:Chromosome DNA of Bacillus sp. ATCC21833 strain is scissored with restriction enzyme Hind III, linked to vector pBR322 similarly scissored with the enzyme in the presence of ligase and transduced to Escherichia coli to give plasmid pNK2 containing Hind III fragment with 2.1kb and plasmid pNK2 containing Hind III fragment with 2.8kb from a transformant. Plasmid pNK1 to code cellulase is approximately equal to plasmid pNK2 except a fact that the plasmid pNK1 has 60 direct repeat amino acid sequence in the vicinity of C-terminal end. Cellulase obtained from the plasmids substantially no difference from cellulase produced by N-4 strain.

Description

【発明の詳細な説明】 (技術分野) 本発明は、セルラーゼ遺伝子に関するものであり、更に
詳しくは、特異なアルカリセルラーゼ産生能を有するバ
チルス・エスピー・Na N −4(Bacillus
 sρ、NaN−4)由来のセルラーゼ遺伝子に関する
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a cellulase gene, and more specifically to Bacillus sp.
sρ, NaN-4)-derived cellulase gene.

(発明の背景) セルラーゼは、1,4−β−グルカングルカノハイドロ
ラーゼ(E C3,2,1,4)と称し、多くの微生物
より見出されている。これら、はとんどのセルラーゼは
、多成分よりなる酵素系であり、酸性又は中性pH領域
において活性を有するといわれている。近年、殺菌起源
のセルラーゼに関し、クロストリジウム・サーモセラム
(Clostridiumthermocellum)
  及びセルロモナス・フイミ(Cellulomon
as fimi)  由来の多成分よりなる酵素系セ、
ルラーゼの構造遺伝子の大腸菌によるクローニングが報
告されている〔コルネットら、FEMSマイクロバイオ
ロジー・レターズ(Cornet et al、。
(Background of the Invention) Cellulase is called 1,4-β-glucan glucanohydrolase (EC3,2,1,4) and has been found in many microorganisms. Most of these cellulases are enzyme systems consisting of multiple components, and are said to have activity in an acidic or neutral pH region. In recent years, regarding cellulases of bactericidal origin, Clostridium thermocellum (Clostridium thermocellum) has been studied.
and Cellulomonas fuimi (Cellulomon
as fimi) enzyme system consisting of multiple components derived from
Cloning of the structural gene of lulase in Escherichia coli has been reported [Cornet et al., FEMS Microbiology Letters.

FEMS Microbiology Letters
)  16 、 137 − 141(1983);ギ
ルケスら、ジャーナル・オブ・バイオロジカル・ケミス
トリー(Gilkes et at、。
FEMS Microbiology Letters
) 16, 137-141 (1983); Gilkes et al., Journal of Biological Chemistry.

Journal of Biological Che
mistry) 259 、 10455−10459
 (1984)参照〕。
Journal of Biological Che
mistry) 259, 10455-10459
(1984)].

又、上記クロストリジウム・サーモセラムのセルラーゼ
遺伝子及びバチルス・ズブチリス(Bac−illus
 5ubtilis)  のβ−グルカナーゼ遺伝子の
ヌクレオチド配列が決定されたとの報告も有る〔ベギン
ら、ジャーナル・オブ・バタテリオロジ−(Begui
n et atlJontnal of Bacter
iology)162 。
In addition, the cellulase gene of Clostridium thermocellum and Bacillus subtilis
There is also a report that the nucleotide sequence of the β-glucanase gene of S. 5ubtilis has been determined [Begui et al.
net atlJontnal of Bacter
iology) 162.

102−105 (1985);マーフィら、核酸研究
(!Jurphy et al、、 Nucleic 
Ac1ds Re5ear+:h)ユ、309−321
 (1984)参照〕。
102-105 (1985); Jurphy et al., Nucleic
Ac1ds Re5ear+: h) Yu, 309-321
(1984)].

一方、本発明者らの一部は、高いpH領域(pH1’0
〜11)で良好に生育する好アルカリ性微生物を、すで
に多く単離しているが、これらの微生物は、アルカリ領
域に活性至適pHを有する菌体外酵素を生産することが
知られている〔ホリコシら、“好アルカリ性細菌”、ス
プリンガー・フェアラーク、ニューヨーク(Horik
oshi、  K、 & T、Akiba、 Alka
−1ophilic microorganisms、
 Springer−Verlag、NewYork)
(1982)参照〕。
On the other hand, some of the present inventors have studied the high pH region (pH 1'0
We have already isolated many alkaliphilic microorganisms that grow well in the alkaline region. et al., “Alkaliphilic Bacteria”, Springer-Verlag, New York (Horik
oshi, K. & T., Akiba, Alka.
-1ophilic microorganisms,
Springer-Verlag, New York)
(1982)].

本発明者らの一部は、先に好アルカリ性バチルス・エス
ピー・No、 N −4より特異な作用を有するアルカ
リセルラーゼ〔アルカリカルボキシメチルセルラーゼ(
以下“N −4ACMCase”という)〕を単離した
〔ポリコシら、カナディアン・ジャーナル・オフ・マイ
クロバイオo シー (Horikoshiet al
、 Canadian Journal of Mic
robiology)30゜Nα6.774−779 
(1984)参照〕。
Some of the present inventors previously reported that alkaline cellulase [alkaline carboxymethyl cellulase (
(hereinafter referred to as “N-4ACMCase”)] [Horikoshi et al., Canadian Journal of Microbiology]
, Canadian Journal of Mic
robiology) 30°Nα6.774-779
(1984)].

この酵素はアビセルに対する活性は弱いが、CMC(カ
ルボキシメチルセルロ、−ス)に対して極めて強い活性
を示し、至適pHを6.7とl010に有する特異的な
セルラーゼである。
This enzyme is a specific cellulase that has weak activity against Avicel, but extremely strong activity against CMC (carboxymethylcellulose), and has an optimum pH of 6.7 and 1010.

(発明の目的) 本発明の目的は、バチルス・エスピーNαN−4由来の
々ルラーゼ遺伝子を提供することにある。
(Object of the Invention) An object of the present invention is to provide a Bacillus sp. NαN-4-derived lulase gene.

又、本発明の目的は、N −4A CMCase遺伝子
のD N A配列にハイブリッドするDNA配列であっ
て、天然もしくは半合成によって得られるも′のであり
、上記DNA配列に対してヌクレオチドの置換、ヌクレ
オチドの欠失、ヌクレオチドの挿入及びヌクレオチド配
列の逆位その他の突然変異によって関連づけられており
、且つ上記セルラーゼ活性を有するポリペプチドをコー
ドするDNA配列を提供することにある。
Furthermore, the object of the present invention is a DNA sequence that hybridizes to the DNA sequence of the N-4A CMCase gene, which is obtained naturally or semi-synthetically, and which includes nucleotide substitutions and nucleotide changes to the above DNA sequence. The object of the present invention is to provide a DNA sequence encoding a polypeptide having cellulase activity as described above, which is related by deletions, insertions of nucleotides, inversions of the nucleotide sequence, and other mutations.

更に、本発明の目的は、上記いずれかのDNA配列を含
む組換えDNA分子を提供することにある。
Furthermore, it is an object of the present invention to provide a recombinant DNA molecule containing any of the above DNA sequences.

更に、又本発明の目的は、上記いずれかのDNA配列を
含み、且つそのDNA配列が発現コントロール配列に発
現可能に結合されている組換えDNA分子を提供するこ
とにある。
Furthermore, it is an object of the present invention to provide a recombinant DNA molecule that contains any of the above DNA sequences, and in which the DNA sequence is operably linked to an expression control sequence.

(発明の構成) く染色体DNAの調製〉 本発明のN −4A CMCase生産菌は、バチルス
・エスピー・kN−4(以下「N−4株」という。)で
あり、アメリカン・タイプ・カルチュア・コレクシl 
7 (The American Type Cu1t
ure Co11ect−ion)  に寄託番号AT
CC21833で寄託され、ており、何人も入手可能で
ある(The AmericanType Cu1tu
re Co11ection Catalogue o
f Str、ains。
(Structure of the Invention) Preparation of Chromosomal DNA> The N-4A CMCase-producing bacterium of the present invention is Bacillus sp. l
7 (The American Type Cult
Deposit number AT
It was deposited under CC21833 and is available to anyone (The American Type Cu1tu).
re Co11ection Catalog o
f Str, ains.

14th Edition 1980、p43参照)。14th Edition 1980, p. 43).

上記N−4株をアルカリ性培地で、37℃で好気的に培
養する。対数増殖初期の菌体を集菌後、フェノール法に
よるpNA抽出法〔サイトウら、バイオキミカ・バイオ
フィジヵ・アクタ(Saito。
The above N-4 strain is aerobically cultured at 37°C in an alkaline medium. After collecting bacterial cells in the early stage of logarithmic growth, pNA extraction was performed using the phenol method [Saito et al., Biochimica Biophysica Acta (Saito et al.

H,& Miura、 K、Biochimica e
t Biophysiea Acta)コ、619−6
29 (1963)参照〕によって、N−4株の染色体
DNAを抽出、精製して得る。
H., & Miura, K., Biochimica e.
t Biophysia Acta), 619-6
29 (1963)], the chromosomal DNA of the N-4 strain was extracted and purified.

<D NA断片のベクター・プラスミドへの挿入及び形
質転換〉 ベクター・プラスミドpBR322は、ポリバーらの方
法によって調製することもできるが〔ポリバーら、ジー
ン(Bolivar et at Gene)  2 
、95−113 (1977)参照〕、市販のものも使
用できる(例えば、ベセスダ・リサーチ・ラボラトリー
ズ(Bethesda Re5earch Labor
atories)  社製)。
<Insertion of DNA fragment into vector/plasmid and transformation> Vector/plasmid pBR322 can also be prepared by the method of Bolivar et al. [Bolivar et at Gene 2
, 95-113 (1977)], and commercially available products can also be used (e.g., Bethesda Research Laboratories).
manufacturers).

上記染色体DNAを制限酵mH+ndl[で切断する。The above chromosomal DNA is cut with restriction enzyme mH+ndl [.

一方ブラスミドpBR322をHindI[[で切断し
、上記切断した染色体DNAを加えDNA !Jガーゼ
によってDNA鎖の結合反応を行う。得られた結合混合
物を、常法(例えば、レーデルペルグら、ジャーナル・
オフ・バクテリオロジー(Lederbe−rg、 E
、M、、 & Cohen、 S、N、 Journa
l of Bacterio−1ogyH19,107
2−1074(1974)参照)により大腸菌に形質転
換を行って、1μgDNA当り、約20.000株の形
質転換株を得る(Ap’株の約lO%が、TD” であ
った)。これら形質転換株のうち、CMCを含んだLB
寒天プレート上で、コロニーのまわりに浅いクレータ−
を形成した株が8株あった。これらの株は、すべてAp
′ 、セルラーゼ活性を示す形質転換株である。
On the other hand, plasmid pBR322 was cut with HindI, and the cut chromosomal DNA was added to the DNA! A DNA strand binding reaction is performed using J gauze. The resulting binding mixture was prepared using conventional methods (e.g., Röderperg et al., Journal
Off-bacteriology (Lederberg, E.
, M., & Cohen, S.N., Journa.
l of Bacterio-1ogyH19,107
2-1074 (1974)) to obtain approximately 20,000 transformed strains per 1 μg of DNA (approximately 10% of the Ap' strain was TD''). Among convertible stocks, LB including CMC
Draw a shallow crater around the colony on the agar plate.
There were 8 stocks that formed. These strains are all Ap
', a transformed strain exhibiting cellulase activity.

この形質転換株を増殖させ、常法によりプラスミドを抽
出・精製し、2.1kb(キロベース)のHind m
断片を含むプラスミドpNK1及び2.8にbのHin
d m断片を含むプラスミドpNK2を得る。
This transformed strain was propagated, the plasmid was extracted and purified by a conventional method, and the 2.1 kb (kilobase) Hind m
Plasmids pNK1 and 2.8 containing the fragment b Hin
A plasmid pNK2 containing the d m fragment is obtained.

(挿入したDNA断片と染色体DNAの相同性)pBR
322に挿入したDNAの起源(origin)を分析
するため、32pでラベルしたプラスミドpNK l及
びpNK2を、ニトロセルロース・シート上に固定化し
、制限酵素で切断したN−4株及びエシェリヒア・コリ
HBIOI(ε5cher 1ch−iacoli H
BIOI )の染色体DNAを、ハイブリッドさせた。
(Homology between inserted DNA fragment and chromosomal DNA) pBR
In order to analyze the origin of the DNA inserted into 322, plasmids pNKl and pNK2 labeled with 32p were immobilized on a nitrocellulose sheet, and N-4 strain and Escherichia coli HBIOI ( ε5cher 1ch-iacoli H
BIOI) chromosomal DNA was hybridized.

プラスミドpNK1及びpNK2の放射活性でラベルし
たDNA断片を、プラスミドpNK1及びpNK2のラ
ベルしなかった断片と、それぞれハイブリッドさせた。
Radioactively labeled DNA fragments of plasmids pNK1 and pNK2 were hybridized with unlabeled fragments of plasmids pNK1 and pNK2, respectively.

又、N−4株由来の2.1にb及び2.8にb断片もハ
イブリッドさせた。
In addition, the b fragments were also hybridized to 2.1 and 2.8 derived from the N-4 strain.

その結果、プラスミドpNK l及びpNK2の、それ
ぞれの断片は、部分的に相同性が認められたが、日、c
oli HBIOIの染色体DNA断片では、プラスミ
ドpNK1及びpNK2の断片に相補的なりNA配列は
検出されなかった。
As a result, the respective fragments of plasmids pNKl and pNK2 were partially homologous, but
No NA sequence complementary to the plasmid pNK1 and pNK2 fragments was detected in the chromosomal DNA fragment of oli HBIOI.

(セルラーゼをコードするDNA配列及びアミノ酸配列
) サブ・クローニングにより・プラスミドpNK2のセル
ラーゼは、l、 5 KbEcoRI −Hlnd m
断片上に、少なくとも発現に必要な部位が存在する。一
方、プラスミドpNK lのセルラーゼは、2.IKb
HindI[I断片上に、少なくとも発現に必要な部位
が存在することが分った。これらの断片のシーフェンシ
ングのための方針及び制限酵素切断地図を第1図に示す
。シーフェンシングは、サンが−のジデオキシ鎖末端法
(Dideoxy chain terminati−
on method: Sanger et al、プ
ロシーディンゲス0オブ・ヂ・ナショナル・アカデミ−
・サブ・サイエンス(Proceedings of 
the National Academyof 5c
iences)、U、S、A、、74.5463−54
67 (1967)参照〕により行った。すなわち、プ
ラスミドpNK1のHindIII断片及びpNK2の
EcoRI  −Hlnd m断片を(α−”P)dC
TP(Amersham)  及びM−13シークエン
シング・キット(宝酒造■製)を用いてシーフェンシン
グを行うため、ファージM13ベクターへクローン化し
た。
(DNA sequence and amino acid sequence encoding cellulase) By sub-cloning, the cellulase of plasmid pNK2 is 1, 5 KbEcoRI-Hlnd m
At least the sites necessary for expression are present on the fragment. On the other hand, the cellulase of plasmid pNK1 is 2. IKb
It was found that at least a site necessary for expression exists on the HindI[I fragment. The strategy and restriction enzyme cleavage map for sea fencing of these fragments is shown in FIG. Sea fencing is based on the dideoxy chain termination method.
on method: Sanger et al, Proceedings of the National Academy of Sciences
・Sub-science (Proceedings of
the National Academy of 5c
iences), U, S, A,, 74.5463-54
67 (1967)]. That is, the HindIII fragment of plasmid pNK1 and the EcoRI-Hlndm fragment of pNK2 were combined with (α-”P)dC
It was cloned into a phage M13 vector for sea fencing using TP (Amersham) and M-13 sequencing kit (manufactured by Takara Shuzo).

上記サンガーの方法によりラベルした断片を、40cm
X20cm、厚み0.3 mmの8%アクリルアミドゲ
ルに溶解したものを用いた。緩衝液は、8M−尿素、8
9mM−)リス緩衝液、89mM−ホウ酸緩衝液及び2
 mM−EDTA (pH8,3)を用いた。又、M1
3ファージ誘導株、mp8及びm p 9 (Mess
ing、 J、 1983゜New M13 vect
or forcloning、 34ethodsεn
zymo1.参照)の宿主には、エシェリヒア・コリJ
 M 101 (Messing、 J、 etal 
 l 981 、 A system for sho
tgun DNAsequencing、 Nucle
ic Ac1ds Re5earch 9:309−3
21参照)を用いた。このようにして得られたプラスミ
ドpNK1のセルラーゼをコードするDNA配列及びア
ミノ酸配列を第2図に、又プラスミドpNK2のセルラ
ーゼをコードするDNA配列及びアミノ酸配列を第3図
に示す。
The fragments labeled by Sanger's method above were separated into 40 cm
The gel was dissolved in an 8% acrylamide gel with a size of 20 cm x 0.3 mm and a thickness of 0.3 mm. The buffer solution was 8M-urea, 8M-urea, 8M-urea,
9mM-) Liss buffer, 89mM-Borate buffer and 2
mM-EDTA (pH 8,3) was used. Also, M1
3 phage derivatives, mp8 and mp9 (Mess
ing, J. 1983°New M13 vect
or forcloning, 34methodsεn
zymo1. ), the host is Escherichia coli J.
M 101 (Messing, J, etal
l 981, A system for show
tgun DNA sequencing, Nucle
ic Ac1ds Re5earch 9:309-3
21) was used. The cellulase-encoding DNA and amino acid sequences of plasmid pNK1 thus obtained are shown in FIG. 2, and the cellulase-encoding DNA and amino acid sequences of plasmid pNK2 are shown in FIG.

第2図より、プラスミドpNK1の2.l kb )f
ind■断片は、488個のアミノ酸をコードする14
64bp (塩基対)のオープン・リーディング・フレ
ーム(open reading frame)を有し
ていた。一方、第3図より、プラスミドpNK2の1.
5kb EcoRI−HindI[断片は、409個の
アミノ酸をコードするl 227bpのオープン・リー
ディング・フレームを宥していた。
From FIG. 2, 2. l kb ) f
The ind■ fragment encodes 488 amino acids.
It had an open reading frame of 64 bp (base pairs). On the other hand, from FIG. 3, 1.
The 5kb EcoRI-HindI fragment contained a 227bp open reading frame encoding 409 amino acids.

第2図及び東3図中、いずれもヌクレオチドは、Aを1
として数え始め、又、アミノ酸は、メチオニン(!J 
e t )を(1)として数え始める。
In both Figures 2 and 3, the nucleotides are A and 1.
Also, the amino acid is methionine (!J
Start counting with e t ) as (1).

(セルラーゼをコードしない領域の比較)リポソーム結
合部位(S、 D、配列)、すなわち、Bacillu
s 5ubtilis  l 5 SリボノーマルRN
Aの3′−末端を相補するAGGAGG配列が、プラス
ミドpNKl及びpNK2のそれぞれのセルラーゼ遺伝
子の翻訳配列の51]P上流に認められた。
(Comparison of non-cellulase-encoding regions) Liposome binding sites (S, D, sequences), i.e., Bacillus
s 5ubtilis l 5 S ribonormal RN
An AGGAGG sequence complementary to the 3'-end of A was found upstream of the translated sequence of the cellulase gene of plasmids pNKl and pNK2, 51]P.

プラスミドp N K lのセルラーゼ遺伝子の3′−
末端の下流に、逆位反復配列(parindromic
inverted repeat )が存在し、続いて
大腸菌のチロシンt−RNA5usをコードする遺伝子
中に存在する原核性のρ−依依存性終部部位ρ−dep
en−dant terminator) (Kupp
er etal、 Nature 272:423−4
28 (1978)参照〕に類似したTAACAAC配
列が結合していた。
3'- of the cellulase gene of plasmid pNKl
Downstream of the terminus, there is an inverted repeat sequence (parindromic
inverted repeat), followed by a prokaryotic ρ-dependent termination site ρ-dep present in the gene encoding the tyrosine t-RNA5us of E. coli.
en-dant terminator) (Kupp
er etal, Nature 272:423-4
28 (1978)] was bound to the TAACAAC sequence.

一方、プラスミドpNK2のセルラーゼ遺伝子の3′−
末端の下流であって、逆位構造(parin−drom
ic 5tructure )の上流には、4T領域と
共に転写終結部位(p −1ndependent t
ranscriptiveterminator )が
存在していた。RNAヘアピン構造のΔGs(ギブスの
自由エネルギー)の計算値は、プラスミドpNK 1、
pNK2が、それぞれ−21,8Kcal/mol、 
 −25,8Kcal/molであった。
On the other hand, the 3'-
Downstream of the terminus, an inverted structure (parin-drome)
ic5structure), there is a 4T region and a transcription termination site (p-1ndependent t
(ranscriptiveterminator) was present. The calculated values of ΔGs (Gibbs free energy) of the RNA hairpin structure are as follows: plasmid pNK1,
pNK2 is -21 and 8 Kcal/mol, respectively.
-25.8 Kcal/mol.

又、両者の逆位構造の間には、特徴的な相同性は見出さ
れなかった。
Moreover, no characteristic homology was found between the two inverted structures.

(プラスミドpNK lとpNK2がコードしているセ
ルラーゼの類似性) 予想されるセルラーゼのアミノ酸配列をドツト・プロッ
ト・マトリックス(dot plot matrix)
によって分析した。この結果を第4図に示す。この結果
、プラスミドpNK1がコードしているセルラーゼが、
pNK2がコードしているセルラーゼ中には存在しない
60個の純くり返しくdirectrepeat )ア
ミノ酸配列を有していることを除いて、2つのセルラー
ゼは、はぼ同じであることが認められた。又、2つの上
記セルラーゼ蛋白のDNA配列及びアミノ酸配列を比較
したものを第5図に示す。第5図中、1はプラスミドp
NK1に含まれているセルラーゼ遺伝子であり、2は、
プラスミドpNK2に含まれているセルラーゼ遺伝子で
あり、−は、pNKlがコードしているセルラーゼ遺伝
子のヌクレオチドと同じヌクレオチドであることを示す
。又、異なるアミノ酸は、ヌクレオチド配列の下又は上
側に示す。ヌクレオチドは、最初のAを1として数える
。この結果、これらの配列は、コドンの第3位の塩基が
異なる場合があることを除いて、極めて強い相同性を有
することが認められた。このことは、そのアミノ酸配列
が、酵素活性を保持していることを示唆している。
(Similarity between cellulases encoded by plasmids pNKl and pNK2) Dot plot matrix of predicted amino acid sequences of cellulases
It was analyzed by The results are shown in FIG. As a result, the cellulase encoded by plasmid pNK1
The two cellulases were found to be nearly identical, except for having a 60 pure (direct repeat) amino acid sequence not present in the cellulase encoded by pNK2. FIG. 5 shows a comparison of the DNA and amino acid sequences of the two cellulase proteins. In Figure 5, 1 is plasmid p
It is a cellulase gene contained in NK1, and 2 is
This is a cellulase gene contained in plasmid pNK2, and - indicates that it is the same nucleotide as the cellulase gene encoded by pNKl. Also, different amino acids are indicated below or above the nucleotide sequence. Nucleotides are counted with the first A as 1. As a result, these sequences were found to have extremely strong homology, except that the base at the third position of the codon may differ. This suggests that the amino acid sequence retains enzymatic activity.

一方、余り相同性のない領域が、シグナルペプチド領域
の近傍(あるいは中)に見出された。しかしながら、シ
グナルペプチド領域におけるアミノ酸は、分泌蛋白中に
見出されたアミノ酸と類似していた(Beguin e
tal、 Journal of Bacteriol
−Ogy、162 : 102−105 (1985)
  ;5tephens。
On the other hand, a region with little homology was found near (or within) the signal peptide region. However, the amino acids in the signal peptide region were similar to those found in secreted proteins (Beguin e
tal, Journal of Bacteriol
-Ogy, 162: 102-105 (1985)
;5tephens.

M、^、etal 1bid且8:369−372(1
984);Yan、 M、、 et al Nucle
ic Ac1ds Re5earch  11+237
−249 (1983)参照)。このことから、これら
の変化は、この領域の機能には、それほど重要ではない
ことが予想された。
M, ^, etal 1 bid and 8:369-372 (1
984); Yan, M., et al Nucle
ic Ac1ds Re5search 11+237
-249 (1983)). From this, it was predicted that these changes would not be very important for the function of this region.

(純くり返し配列のセルラーゼ活性発現についての必要
性) 60個のアミノ酸配列を有する純くり返し配列が、セル
ラーゼをコードするプラスミドpNKlのC−終結末端
の近傍に見出される。従来、C−終結末端の近くに存在
する23個のアミノ酸領域が、クロストリジウム・サー
モセラム(C1ostri−dium thermoc
ellum)のセルラーゼ遺伝子中で高度の相同性をも
って繰り返されており、この繰り返しユニットが、セル
ロース分子のグルコースの結合を認識して切断するのに
関与していることが予想されていた〔ベギンら、ジャー
ナル・オブ・バクテリオロジ−(Beguin、P、e
t al、Journai ofBacteriolo
gY 162 : 102−105(1985)参照〕
(Need for a pure repeat sequence for expression of cellulase activity) A pure repeat sequence with a 60 amino acid sequence is found near the C-terminal end of the cellulase-encoding plasmid pNKl. Conventionally, a 23 amino acid region located near the C-terminus is isolated from Clostridium thermocellum (Clostri-dium thermocellum
It was predicted that this repeating unit would be involved in recognizing and cleaving the glucose bond of cellulose molecules [Begin et al. Journal of Bacteriology (Beguin, P.e.
tal, Journey of Bacteriolo
gY 162: 102-105 (1985)]
.

しかしながら、セルラーゼをコードするpNK2は、操
り返し配列を有していないにもかかわらず、この蛋白は
、酵素活性(セルラーゼ)を発現する。プラスミドpN
K l中には、2箇所のΔ」I制限部位が、それぞれの
純繰り返し配列の3′−末端の近傍に存在する。Nco
I を用い、純繰り返し配列の1つを取り除いた。得ら
れたプラスミドルNK1−Δ上三■は、261個の塩基
対(1186−1446個目までのDNA断片)が取り
除かれたプラスミドである。このプラスミドp N K
 l−ΔNcoIでコードされた蛋白は、依然としてセ
ルラーゼ活性を有している。
However, even though pNK2, which encodes cellulase, does not have a manipulated sequence, this protein expresses enzymatic activity (cellulase). Plasmid pN
Two Δ''I restriction sites are present in Kl near the 3'-end of each pure repeat sequence. Nco
One of the pure repeat sequences was removed using I. The resulting plasmid NK1-Δ (upper three) is a plasmid in which 261 base pairs (DNA fragments from 1186th to 1446th) have been removed. This plasmid pNK
The protein encoded by l-ΔNcoI still has cellulase activity.

この結果、純繰り返し配列は、酵素活性には必ずしも必
要でないことが予想された。
As a result, it was predicted that pure repeat sequences are not necessarily required for enzyme activity.

くN−4株の生産するセルラーゼと、エシェリヒア・コ
リHBI 01 (pNKl)及びHBIOI(pNK
2)の生産するセルラーゼの比較〉それぞれのセルラー
ゼのpH安定性、熱安定性及び分子量を調べたところ、
実質上の差異は認められなかった。
Cellulases produced by Escherichia coli strain N-4 and Escherichia coli HBI 01 (pNKl) and HBIOI (pNK
2) Comparison of produced cellulases> When the pH stability, thermostability, and molecular weight of each cellulase was investigated,
No substantive differences were observed.

実施例 <1.  染色体DNAの調製〉 前記N−4株(ATCC21833)をアルカリ培地(
デンプン10g1酵母エキス(pifco )5g、ポ
リペプトン5 g 5K2HPO41g SMgSO4
・7H,00,2g 5Na2CO3(別殺菌)10g
、if蒸留水(pH10,0))で、37℃で3時間、
好気的に培養を行い、対数増殖初期の菌体を集め、フェ
ノール法によるDNA抽出法によって染色体DNAを抽
出、精製し、染色体DNA5mgを得た。
Example <1. Preparation of chromosomal DNA> The N-4 strain (ATCC21833) was cultured in an alkaline medium (
10g starch 5g yeast extract (pifco), 5g polypeptone 5K2HPO41g SMgSO4
・7H,00,2g 5Na2CO3 (separate sterilization) 10g
, if distilled water (pH 10,0)) at 37°C for 3 hours.
Culture was carried out aerobically, bacterial cells at the early stage of logarithmic growth were collected, and chromosomal DNA was extracted and purified by DNA extraction using the phenol method to obtain 5 mg of chromosomal DNA.

<2.  染色体DNA断片のベクタープラスミドへの
挿入〉 上記染色体DNAl0μgを取り、制限酵素HindI
I[を加え、37℃で14時間反応させて部分的に切断
した。一方、プラスミドpBR322(Bethesd
a Re5earch Laboratories社(
米国)製)に、HindIIIを加え、1時間反応させ
て完全に切断し、65℃、5分間熱処理した。その後、
切断したベクター・プラスミドDNA 1Mgと切断し
た染色体DNA3μgを混合し、T4ファージ由来のD
NA リガーゼを加えて、室温で一夜反応させてD N
 A !31連結反応を行い、65℃、5分間熱処理後
、反応液に3倍容のエタノールを加えて染色体DNAを
組み込んだプラスミドDNAを沈殿、採取した。
<2. Insertion of chromosomal DNA fragment into vector plasmid> Take 0 μg of the above chromosomal DNA and add restriction enzyme HindI.
I[ was added and reacted at 37°C for 14 hours to partially cleave. On the other hand, plasmid pBR322 (Bethesd
a Re5Earch Laboratories (
(manufactured in the United States) was added with HindIII, reacted for 1 hour, completely cut, and heat-treated at 65° C. for 5 minutes. after that,
Mix 1 Mg of cut vector plasmid DNA and 3 μg of cut chromosomal DNA, and
Add NA ligase and incubate at room temperature overnight.
A! 31 ligation reaction was performed, and after heat treatment at 65° C. for 5 minutes, 3 times the volume of ethanol was added to the reaction solution to precipitate and collect plasmid DNA incorporating chromosomal DNA.

<3.  プラスミドによる形質転換〉エシェリヒア・
コリに一12株とエシェリヒア・コリ8株のバイブリフ
ト株である、エシェリヒア・コリ(Escherich
ia coli) HB 101株(Gol−dfar
b et al、 Proceedings of t
he National^cade+y+y of 5
ciences of the United 5ta
tes ofA+nerica 79 、5886 −
5890(1982)  参照〕 (遺伝形質:」二、
  leu B、B、1ユ胚Y、旦dR,h封x+。
<3. Transformation using plasmids〉Escherichia
Escherichia coli (Escherichia coli), a Vibrift strain with 12 strains of Escherichia coli and 8 strains of Escherichia coli.
ia coli) HB 101 strain (Gol-dfar
b et al, Proceedings of t
he National^cade+y+y of 5
Sciences of the United 5ta
tes of A+nerica 79, 5886 -
5890 (1982)] (Genetic traits: "2,
leu B, B, 1 embryo Y, dan dR, h seal x+.

ara 14.  gal K2.  xyl−5、m
tl−1,」E44.  F−。
ara 14. gal K2. xyl-5, m
tl-1,”E44. F-.

endo r、  recA、 str’ )  を用
い、レーデルベルグらの方法に従って形質転換を行った
(シederberg。
endor, recA, str') was used for transformation according to the method of Lederberg et al.

ε、M、、& Cohen、  S、N、119. 1
072−1074(1974参照)。
ε, M., & Cohen, S. N., 119. 1
072-1074 (see 1974).

すなわち、前記88101株をLB培地〔マ二アチスら
、モレキユラー・クローニング、ア・ラボラトリ−・マ
ニニア/l/ (Maniatis et al、)4
o1ec−ular cloning、 a 1abo
ratory manual)、pp  68−69(
1981)参照〕 :純水11当り、トリゾ) 7 (
Dirco) 10 g 、酵母エキス5g、グルコー
ス1g、NaCj!10gを含む液をpH7に調整した
もの>10mJ2に接種し、37℃で振とう培養を行い
、対数増殖後期まで生育させた後、集菌した。
That is, the 88101 strain was cultured in LB medium [Maniatis et al., Molecular Cloning, A Laboratory Maniatis/l/ (Maniatis et al., ) 4
o1ec-ular cloning, a 1abo
ration manual), pp 68-69 (
1981)] : Purified water 11 per cent, Trizo) 7 (
Dirco) 10 g, yeast extract 5 g, glucose 1 g, NaCj! A solution containing 10 g was adjusted to pH 7 and inoculated at >10 mJ2, cultured with shaking at 37°C, grown to late logarithmic growth, and then harvested.

これを水冷下、最終濃度で0.03M  CaCI12
 の溶液に□順次懸濁させてコンピテントな細胞とした
This was cooled with water at a final concentration of 0.03M CaCI12.
The cells were sequentially suspended in a solution of □ to prepare competent cells.

この細胞懸濁液に前記2で得たプラスミドDNAの溶液
を加えて水冷下で60分間反応させ、42℃、1〜2分
間ヒート・ショックを与えて前記プラスミドを細胞内に
とり込ませた。このようにして、1MgのDNA当り約
20.000株の形質転換株を得た(Ap’株の約10
%がTc’ であった〉。これらの形質転換株のうち、
CMCを含んだLB寒天プレート上で、コロニーの周り
に浅いクレータ−を形成した株が8株あった。これらの
株は、すべてAp’、セルラーゼ活性を示す形質転換株
であった。この形質転換株を増殖させ、その細胞懸濁液
を別途、前記LB培地に接種し、37℃、3〜5時間振
とう培養した後、集菌し、洗浄してそれぞれプラスミド
pNK1及びpNK2により形質転換されたエシェリヒ
ア・コリHB101(pNKl)及びエシェリヒア・コ
リHB101 (pNK2)を、それぞれ辱だ。
The plasmid DNA solution obtained in 2 above was added to this cell suspension, and the mixture was allowed to react for 60 minutes under water cooling, followed by heat shock at 42° C. for 1 to 2 minutes to incorporate the plasmid into the cells. In this way, approximately 20,000 transformed strains were obtained per 1 Mg of DNA (approximately 10
% was Tc'>. Among these transformed strains,
On the LB agar plate containing CMC, there were 8 strains that formed shallow craters around the colony. All of these strains were transformed strains exhibiting Ap' and cellulase activities. This transformed strain was grown, and the cell suspension was separately inoculated into the LB medium, cultured with shaking at 37°C for 3 to 5 hours, harvested, washed, and transformed with plasmids pNK1 and pNK2, respectively. Converted Escherichia coli HB101 (pNKl) and Escherichia coli HB101 (pNK2), respectively.

この菌体を次のように処理して、MWプラスミドを得た
This bacterial cell was treated as follows to obtain a MW plasmid.

菌体 50mj2  ポリピロピレン製遠心管溶菌 ゆるやか
に混合、水浴上15分〜30分遠心分離 17.000
r、pom、  4℃、40分上澄液 ↓ 250+mj!  ガラスびん 遠心分離 650 (]r、ρ1m、4℃、15分り 上層 1等量のフェノール;クロロホルム 遠心分離 650 Qr、I)、m、  4℃、15分
↓ 上「 遠心分離 6500r、p、m、  −20℃、60分
↓ DNAペレット、過剰の液体を乾燥 り混合 A−50カラム(2X35cm、1フラクションDNA
分画(A26゜ ピーク) [ DNAペレット CsC1グラジ工ント遠心分離、36000r、p、m
Bacterial cells 50 mj2 Polypropylene centrifugal tube lysis. Gently mix, centrifuge on water bath for 15 to 30 minutes. 17.000
r, pom, 4℃, 40 minutes supernatant liquid ↓ 250+mj! Glass bottle centrifugation 650 (]r, ρ1m, 4℃, 15 minutes Upper layer 1 equivalent of phenol; Chloroform centrifugation 650 Qr, I), m, 4℃, 15 minutes ↓ Top "Centrifugation 6500r, p, m, -20℃, 60 minutes ↓ DNA pellet, dry excess liquid and mix A-50 column (2 x 35 cm, 1 fraction DNA
Fraction (A26° peak) [DNA pellet CsC1 gradient centrifugation, 36000 r, p, m
.

下方バンドのDNAを滴々、集める。Collect the DNA in the lower band bit by bit.

[ ダウエックス50W−X8カラム(UVで検出)[(明
状態に保持) 透析 (10mM)  リ ス、 l  mM   E
DTA、pH830ITll コルテックス遠心管 遠心分離 6500r、p、n+、  −20℃、60
分[ DNA沈殿 1〜21Tlβ  TEN緩衝液 精製プラスミドDNA(1+g/培養物1m1−20〜
−70℃で貯蔵 く形質転換株によるセルラーゼ生産〉 (培養法) エシェリヒア・コリHBLOl (pNKl)及びエシ
ェリヒア・コリHBI 01 (pNK2)のそれぞれ
を上記LB培地に接種し、500mj!容のフラスコで
37℃、24時間好気的に培養後、集菌し、オスモティ
ック・ショック法〔カトウら、ヨーロピアン・ジャーナ
ル・オブ・アプライド・マイクロバイオロジー・アンド
・バイオテクノロジー(Osmotic 5hock 
Methods:にato etal Eur、J。
[Dowex 50W-X8 column (detected by UV) [(maintained in bright state) Dialysis (10mM) Squirrel, lmM E
DTA, pH830ITll Cortex centrifuge tube centrifugation 6500r, p, n+, -20℃, 60
min [DNA precipitation 1-21Tlβ TEN buffer purified plasmid DNA (1+g/ml culture 1-20~
Cellulase production using transformed strain stored at -70°C> (Culture method) Each of Escherichia coli HBLOl (pNKl) and Escherichia coli HBI 01 (pNK2) was inoculated into the above LB medium, and 500 mj! After culturing aerobically for 24 hours at 37°C in a large-sized flask, the bacteria were harvested using the osmotic shock method [Kato et al., European Journal of Applied Microbiology and Biotechnology (Osmotic 5hock)].
Methods: Niato etal Eur, J.

AppllMicrobiol、Biotechnol
)(1983)18:339−343参照〕により、菌
体外、ベリブラズミック空間及び菌体外画分に分画した
Appll Microbiol, Biotechnol
) (1983) 18:339-343] into extracellular, veliplasmic space, and extracellular fractions.

(酵素活性測定) CMC(2,0%)1 ml、グリシ7−NaC1−N
aOH緩衡液(pH9,0) 1 mlに酵素液0.5
mj!を加え40℃、20分間反応する。
(Enzyme activity measurement) CMC (2.0%) 1 ml, Glyci7-NaC1-N
0.5 mL of enzyme solution per 1 ml of aOH buffer (pH 9,0)
mj! and react at 40°C for 20 minutes.

反応終了後、3・5−ジニトロ−サリチル酸法〔3・ 
5−ロ1nitro−salicylic  acid
(DNS)method  )にて還元糖の定量を行な
う。即ち、反応液0゜25mllにDNS試薬11Tl
lを加え、5分間100℃で加熱、発色し、冷却後、4
1TII!の蒸留水を加えて希釈する。これを波長50
0mμで比色定量する。
After completion of the reaction, 3,5-dinitro-salicylic acid method [3.
5-ro1nitro-salicylic acid
(DNS) method) to quantify reducing sugars. That is, 11 Tl of DNS reagent was added to 0.25 ml of reaction solution.
1, heated at 100℃ for 5 minutes to develop color, cooled, and heated at 100℃ for 5 minutes.
1TII! Dilute by adding distilled water. Wavelength 50
Colorimetrically determined at 0 mμ.

酵素力価の単位は、上記の条件下で1分間に1μモルの
ぶどう糖に相当する還元糖を生成する場合を1単位(L
J)とする。
The unit of enzyme titer is 1 unit (L) when producing reducing sugar equivalent to 1 μmol of glucose per minute under the above conditions.
J).

セルラーゼの菌体外、ベリブラズミγり空間及び菌体内
生産の分布を調べたところ、次表の如き結果を得た。
When we investigated the distribution of cellulase produced outside the cell, in the Beriplasmi gamma space, and within the cell, we obtained the results shown in the following table.

次に、反−4株の生産するセルラーゼと、エシェリヒア
・コリHBI 01 (pNKl)の生産するセルラー
ゼ(pNK1セルラーゼ)及びエシェ  :リヒア・コ
リHBI O1(pNK2)の生産する  jセルラー
ゼ(pNK2NK2セルラーゼpHにおける活性(pH
安定性)、熱安定性及び分子量を調べて比較した。
Next, cellulase produced by anti-4 strain, cellulase produced by Escherichia coli HBI 01 (pNKl) (pNK1 cellulase), and cellulase produced by Escherichia coli HBI 01 (pNK2) (pNK2NK2 cellulase at pH Activity (pH
stability), thermal stability and molecular weight were investigated and compared.

(pH安定性) pH4,4と5.0は、酢酸緩衝液、pH7,5と8.
0は、トリス塩酸緩衝液、pH9,2,10,1,10
69,11,7,12,8はグリシン緩衝液を用いた。
(pH stability) pH 4, 4 and 5.0 are acetate buffer, pH 7, 5 and 8.
0 is Tris-HCl buffer, pH 9, 2, 10, 1, 10
No. 69, 11, 7, 12, and 8 used glycine buffer.

又、それぞれのセルラーゼはlomLIずつ用いた。 
  j緩衝液と酵素混合液を60℃、10分間反応させ
た後、前記測定法と同様にしてセルラーゼ活性を測定し
た。なお、酵素活性は、pH10,1における活性を1
00%とした。             1この結果
を第6図に示す。
In addition, lomlI was used for each cellulase.
After reacting the j buffer solution and the enzyme mixture at 60° C. for 10 minutes, cellulase activity was measured in the same manner as the measurement method described above. In addition, the enzyme activity is the activity at pH 10.1
It was set as 00%. 1 The results are shown in Figure 6.

第6図より、いずれのセルラーゼもpH5〜11まで安
定であり、又酵素作用のための最適pHは、pH5,0
と10.9の間にあることが分る。
From Figure 6, all cellulases are stable at pH 5 to 11, and the optimal pH for enzyme action is pH 5.0.
It can be seen that it is between 10.9 and 10.9.

(熱安定性) 前記活性測定法において、温度を変化させて10合間反
応を行って、pH5,5及び10.0における残芋活性
を調べた。この結果、いずれのセルラーゼb175℃ま
で安定であった。
(Thermal Stability) In the activity measurement method described above, the reaction was carried out for 10 periods while changing the temperature, and the residual potato activity at pH 5, 5 and 10.0 was investigated. As a result, both cellulases b were stable up to 175°C.

(分子量) セファクリルS−200を用いたゲル濾過法にとる、p
NK1セルラーゼ及びpNK2セルラービの分子量は、
それぞれ、約58.000及び約50.000であった
(Molecular weight) P taken by gel filtration method using Sephacryl S-200
The molecular weights of NK1 cellulase and pNK2 cellulase are
They were approximately 58,000 and approximately 50,000, respectively.

かくして、それぞれのセルラーゼは、pH安定性、東安
定性および分子量においてほぼ同一であることが確認さ
れた。
Thus, it was confirmed that the respective cellulases are almost identical in pH stability, stability, and molecular weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、N−4株由来のセルラーゼ遺伝子を困む領域
の制限酵素切断地図及びシークエンジンrのための方針
を示す図であり、矢印(−)は、DNA配列分析の方向
及び範囲を示し、凹線は、セルラーゼ遺伝子のコード領
域を示し、Aは、pNK1セルラーゼ領域、Bは、pN
K2セルラ−上領域を示す。 第2図はプラスミドpNK1の2. lkb Hind
 III断片中にエンコードされているセルラーゼ遺伝
子のヌクレオチド配列を示し、第3図は、プラスミドp
NK2の1.6kb ’EcoRI −HlndI[I
断片中ニエンコードされているセルラーゼ遺伝子のヌク
レオチド配列を示す。 第4図は、pNK 1セルラーゼ対1)NK2セルラー
ゼのアミノ酸配列の相同領域のコンピュータによる調査
を示す図である。 第5図は、pNK1セルラーゼとpNK2NK2セルラ
ーゼドする塩基配列及びそのアミノ酸配列の比較を示す
図である。 第6図は、N−4株由来、E、coli  HB 10
1(pNKl)及び巳、coli  HBI 01  
(pNK2)の生産するセルラーゼのpH安定性を示す
図である。 第4図 PNKlセルラーゼアミノ駿シーケンス←→PNに1 h−−−h PNに2 H
Figure 1 is a diagram showing a restriction enzyme cleavage map of the region in which the cellulase gene derived from the N-4 strain is troubled and the strategy for Sequence Engine R. The arrow (-) indicates the direction and range of DNA sequence analysis. The concave line indicates the coding region of the cellulase gene, A is the pNK1 cellulase region, B is the pN
K2 supracellular region is shown. Figure 2 shows 2. of plasmid pNK1. lkb Hind
Figure 3 shows the nucleotide sequence of the cellulase gene encoded in the plasmid p
1.6kb of NK2 'EcoRI-HlndI[I
The nucleotide sequence of the cellulase gene encoded in the fragment is shown. FIG. 4 shows a computer survey of homologous regions of the amino acid sequences of pNK1 cellulase versus 1) NK2 cellulase. FIG. 5 is a diagram showing a comparison of the base sequences and amino acid sequences of pNK1 cellulase and pNK2NK2 cellulase. Figure 6 is derived from N-4 strain, E. coli HB 10
1 (pNKl) and Snake, coli HBI 01
(pNK2) is a diagram showing the pH stability of cellulase produced by pNK2. Figure 4 PNKl Cellulase Amino Shun Sequence ←→1 to PN h---h 2 H to PN

Claims (3)

【特許請求の範囲】[Claims] (1)次のアミノ酸配列を有するセルラーゼをコードす
るDNA配列。 【遺伝子配列があります】
(1) A DNA sequence encoding a cellulase having the following amino acid sequence. [There is a gene sequence]
(2)特許請求の範囲第(1)項記載のDNA配列にハ
イブリッドするDNA配列であって、天然、合成もしく
は半合成によって得られるものであり、特許請求の範囲
第(1)項記載のDNA配列に対してヌクレオチドの置
換、ヌクレオチドの欠失、ヌクレオチドの挿入及びヌク
レオチド配列の逆位その他の突然変異によって関連づけ
られており、かつセルラーゼ活性を有するポリペプチド
をコードするDNA配列。
(2) A DNA sequence that hybridizes to the DNA sequence set forth in claim (1), which is obtained naturally, synthetically, or semi-synthetically; A DNA sequence that is related to the sequence by nucleotide substitutions, nucleotide deletions, nucleotide insertions, nucleotide sequence inversions, and other mutations and that encodes a polypeptide that has cellulase activity.
(3)特許請求の範囲第(2)項記載のDNA配列が、
次のDNA配列であるDNA配列。 【遺伝子配列があります】
(3) The DNA sequence described in claim (2) is
A DNA sequence that is the following DNA sequence. [There is a gene sequence]
JP11192886A 1986-05-16 1986-05-16 Cellulase gene Pending JPS62269692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11192886A JPS62269692A (en) 1986-05-16 1986-05-16 Cellulase gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11192886A JPS62269692A (en) 1986-05-16 1986-05-16 Cellulase gene

Publications (1)

Publication Number Publication Date
JPS62269692A true JPS62269692A (en) 1987-11-24

Family

ID=14573637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11192886A Pending JPS62269692A (en) 1986-05-16 1986-05-16 Cellulase gene

Country Status (1)

Country Link
JP (1) JPS62269692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034108A2 (en) * 1995-04-28 1996-10-31 Genencor International, Inc. Alkaline cellulase and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF BACTERIOLOGY=1984 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996034108A2 (en) * 1995-04-28 1996-10-31 Genencor International, Inc. Alkaline cellulase and method for producing the same
WO1996034108A3 (en) * 1995-04-28 1996-12-05 Genencor Int Alkaline cellulase and method for producing the same

Similar Documents

Publication Publication Date Title
Onawunmi Evaluation of the antimicrobial activity of citral
JP7297924B2 (en) Use of thermostable β-glucosidase in the production of gentiooligosaccharides
JPH08507695A (en) EG III Cellulase Purification and Molecular Cloning
WO2015007033A1 (en) Mutant of xylanase xynas9-m with improved thermal stability and gene and use thereof
CA2198828C (en) Method for increasing thermostability in cellulase emzymes by removal of the cellulose binding domains
JPH09275978A (en) New nitrile-hydratase
Romaniec et al. Cloning of Ruminococcus albus endo‐β‐1, 4‐glucanase and xylanase genes
JP3025625B2 (en) Alkaline pullulanase gene having alkaline α-amylase activity
US5643791A (en) Characterization and structure of an endodglucanase gene of Cellulomonas fimi
JPS62269692A (en) Cellulase gene
US6300115B1 (en) Pullulanase expression constructs containing α-amylase promoter and leader sequences
JPH0671428B2 (en) Uricase DNA sequence and process
EP0216080B1 (en) Novel plasmids and transformants
CN107083375B (en) Medium-temperature alpha-amylase and gene and application thereof
CN111172136A (en) β -glucosidase with high specific enzyme activity and high thermal stability and preparation method and application thereof
Romaniec et al. Cloning and expression of a Clostridium thermocellum DNA fragment that encodes a protein related to cellulosome component S L
JP2928265B2 (en) DNA fragment, slightly acidic slightly cryogenic cellulase and method for producing the same
CN108342400A (en) The genetic engineering bacterium and its construction method of recombinant expression oxalate oxidase and application
JPS62232386A (en) Cellulase gene
KR101222889B1 (en) Expression System Comprising Dual Promoters And Overexpression of Foreign Genes Using The Same
CN114854778B (en) Fucoidan gene Fcn1 and application thereof
JPH11313683A (en) New xylosidase gene, vector, transformant using the same and its use
CN110004130B (en) Genetically engineered bacterium for improving thermal gel hydrolysis efficiency and application thereof
JPH02286077A (en) Bacillus-s-p, dna fragment containing l-lactic acid dehydrogenase gene, gene recombinant plasmid containing the same gene, l-lactic acid dehydrogenase gene and gene recombinant plasmid containing the same gene
JP2544177B2 (en) DNA fragment containing the cellulase gene